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We present a lattice-gas (generalized Ising) model for liquid droplets on solid surfaces.
The time evolution in the model involves two processes: (1) single-particle moves which
are determined by a kinetic Monte Carlo algorithm, which incorporate into the model
particle diffusion over the surface and within the droplets and also evaporation and
condensation, i.e., the exchange of particles between droplets and the surrounding vapor,
and (2) larger-scale collective moves, modeling advective hydrodynamic fluid motion,
determined by considering the dynamics predicted by a thin-film equation. The model
enables us to relate how macroscopic quantities such as the contact angle and the surface
tension depend on the microscopic interaction parameters between the particles and with
the solid surface. We present results for droplets joining, spreading, sliding under gravity,
dewetting, the effects of evaporation, the interplay of diffusive and advective dynamics,
and how all this behavior depends on the temperature and other parameters.
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I. INTRODUCTION

Understanding and predicting the collective dynamics of fluid particles (atoms or molecules)
over substrates is a crucial aspect of surface science. For instance, the rate of diffusion of the
particles is a key controlling factor in many dynamical processes occurring on surfaces, such as
spreading, chemical reactions and the growth of islands and epitaxial layers [1]. Factors such as the
temperature, the shape of the particles, the degree to which they adhere to the surface, how they
adhere to each other and the particle density on the surface, greatly influence the rate of diffusion
over the surface. Whether the motion over the surface is largely a single-particle phenomenon or a
collective process is fundamental to determining the structures that are formed on surfaces.

The situations of particular interest here concern the behavior of liquid droplets on solid surfaces
and the influence of evaporation and wettability. This is a common situation arising in a vast
range of applications, such as in coating, printing and lubrication, making such systems important
to study and understand [2]. During the drying process droplets can interact, joining and fusing
in a coarsening process that involves hard to observe phenomena such as the evaporation and
condensation of particles and the diffusion of particles over the surface. This behavior is even
more rich if the liquid has a tendency to dewet from the substrate. To describe situations like this,
here we develop a coupled kinetic Monte Carlo (KMC) and hydrodynamic model for liquids on
solid surfaces that incorporates the thermodynamics of evaporation and condensation, as well as
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the hydrodynamics of fluid flow. We assume a simple lattice-gas (generalized Ising) model for the
underlying Hamiltonian that incorporates the microscopic interactions between the fluid particles
and the surface. The benefit of modeling in this way is that although it is a simplified (coarse-
grained) model, it does correctly include much of the relevant fluid structure and thermodynamics
and allows for the study of the interfacial properties of the model system. For example, it is fairly
straightforward to find the wetting or dewetting behavior of the liquid and the connection to the
microscopic properties of the system such as the particle interaction energies.

The use of lattice models to study equilibrium fluid wetting behavior goes back to the 1980s
[3–5] and they have been extremely useful for building our understanding of the physics. More
recently, dynamical lattice models for nonequilibrium droplets and liquid films on surfaces have
been developed [6–17], with the focus largely being on modeling and understanding the patterns
formed by the drying of particle suspensions, i.e., the coffee ring stain effect, etc. Some of these
models solely implement a dynamics governed by the Metropolis Monte Carlo algorithm (of course,
based on the model Hamiltonian), while other models add other kinds of particle moves, with the
aim being to incorporate the influence of the fluid hydrodynamics, which leads to particle advection.
For example, the model in Ref. [13] biases particle moves depending on the distance to the nearest
contact line and the model in Ref. [15] assumes a certain form for the fluid velocity field and uses this
to bias particle moves. Such moves do not satisfy detailed balance, which is required if one is to use
Monte Carlo methods to simulate the dynamic properties of Hamiltonian systems [18]. However, it
is not clear to us that one should enforce detailed balance when constructing coarse-grained models
of such nonequilibrium systems, since droplets on surfaces are highly dissipative systems, due to
the evaporation, the strong coupling to the substrate, etc. Of course, at equilibrium, there should be
detailed balance in the model.

To model collective hydrodynamic motion in our model, we generate large-scale collective
particle moves by considering the dynamics that is predicted by a thin-film equation. This is a time
evolution equation for the liquid film thickness profile h, i.e., the height of the liquid-vapor interface
above the surface [2,19–22]. This equation is derived from the Navier-Stokes equations for a film
of liquid on a surface by making a long-wave approximation, which greatly simplifies the analysis.
When generating these “thin-film moves,” we first determine the liquid film height profile from the
configuration of occupied lattice sites, we then evolve the thin-film equation for a short amount
of time, and then map back to the lattice. In our model, an important quantity is the parameter
λ, defined below in Eq. (13), which is proportional to the ratio of the number of KMC attempted
particle moves to the number of thin-film moves. When λ = 0, our model reduces to just evolving
the thin-film equation, while in the limit λ → ∞, our model is a pure KMC model. Therefore, this
parameter λ ∝ Dη, where D is a single-particle diffusion coefficient and η is the viscosity.

Key quantities that characterizes how a liquid wets a surface are the spreading parameter S =
γsv − (γsl + γlv ), where γsv , γsl , and γlv are the solid-vapor, solid-liquid, and liquid-vapor interfacial
tensions, respectively [2], and also the contact angle θ , which is given by Young’s equation [2]:

γlv cos θ = γsv − γsl . (1)

The contact angle is the angle that the height profile for equilibrium droplets makes with the surface.
γlv is a parameter that must be input into the thin-film equation, while θ is determined by the
disjoining pressure �(h), which is a function that must also be input into the thin-film equation.
All these quantities depend on the fluid state point (i.e., the temperature and the pressure) and also
on the nature of the interactions between the fluid particles and with the substrate. Here we use the
approach of Refs. [23,24] (see also Refs. [25,26]) that uses classical density functional theory (DFT)
[27–29] to calculate the binding potential g(h), from which one obtains �(h) = −∂g(h)/∂h and also
the interfacial tensions. Thin-film equations together with binding potentials from DFT have been
used previously to elucidated the influence of the fluid microscopic structure on droplet spreading
[30]. Here we instead use the thin-film equation with the quantities g(h) and γlv determined from
DFT to generate collective multiparticle moves for our lattice model.
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FIG. 1. A schematic of the system and how we model it: the liquid is discretized in space by setting it on
a lattice. The dynamics is governed by a combination of single-particle diffusive dynamics implemented by a
KMC algorithm and collective advective droplet dynamics determined by coupling to a thin-film equation.

There are, of course, other approaches that one can take to model the behavior of liquid droplets
on surfaces: Fully microscopic (particle resolved) approaches include (1) applying molecular
dynamics computer simulations to solve Newton’s equations of motion for all the individual atoms
or molecules in the fluid (see, e.g., Ref. [31]) or (2) Monte Carlo simulations (see, e.g., Ref. [32]).
As mentioned above, (3) microscopic DFT can be applied, such as in Ref. [24], or DFT can also
be applied to develop coarse-grained mesoscopic theories such as those described in Refs. [33–35].
Thin-film equation-based models are also widely used [2,19–22] and if thermal fluctuations are
important, these can also be incorporated, creating stochastic thin-film equation models [36,37].
Macroscopic scale approaches include just directly solving the Navier-Stokes equations or via
methods such as lattice-Boltzmann [38]. However, when implementing such methods it is hard
to connect to microscopic system properties (i.e., the underlying Hamiltonian), as we do here.

This paper is structured as follows: In Sec. II we introduce the lattice Hamiltonian that defines
the energetics the model. In Sec. III the Monte Carlo single-particle dynamics algorithm and the
thin-film evolution equation used to describe the effects of collective advective droplet dynamics
over solid substrates are described. In Sec. IV the DFT-based statistical mechanical theory used
for calculating the binding potential and other thermodynamic quantities is presented. We present
results for the bulk fluid phase diagram, the liquid-vapor interfacial tension and the binding
potential, showing how all of these depend on the temperature, on the fluid interaction parameters
and the parameter governing the strength of the attraction of the fluid to the wall. In Sec. V we
present equilibrium droplet properties, including calculating droplet density profiles using KMC
and comparing the contact angle of droplets with the predictions from DFT. In Sec. VI we present
results from simulating nonequilibrium droplets on surfaces. This includes droplets joining via
evaporation and condensation process, droplets sliding together and joining and also droplets sliding
under lateral driving, e.g., due to gravity. Finally, in Sec. VII we draw our conclusions.

II. LATTICE MODEL AND HAMILTONIAN

In Fig. 1 is illustrated the system of interest and how it is modeled here. It consists of a planar
solid surface upon which are a collection of interacting particles, with the majority gathered together
forming a liquid droplet. We consider a Cartesian coordinate system (x, y, z) with the x and y axis
being parallel to the solid surface and the z axis being perpendicular to the solid surface. The system
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is discretized onto a regular grid. To simplify, here we treat the system as being two-dimensional
(2D), so that there are no variations in the y direction, but the model can easily be generalized to
three dimensions. We define σ to be the lattice spacing, which we set to σ = 1, throughout. We
define li to be the occupation number of lattice site i, where i = (i, j) is the 2D discrete position
vector. We assume that 1 � i � Nx and 0 � j � Ny, with j = 0 corresponding to the solid surface.
When li = 1 then site i is occupied by a particle and when it is unoccupied, then li = 0. We typically
initiate the liquid in one or two semicircular droplet configurations on the surface.

Note that one need not necessarily assume that each lattice site is of the same size as the
individual molecules. One can also consider the model to be a coarse-grained model, with σ being
much larger than the diameter of the molecules. In this case, when we refer to a lattice site as being
“occupied by a particle” we mean that it contains mostly liquid and when a lattice site is referred to
as “unoccupied” or “not containing a particle,” then we mean that it mostly contains vapor.

The total energy of the system E is modeled by the Hamiltonian

E = −ε
∑

i,j

ci,jlilj +
∑

i

Vili, (2)

where the first term corresponds to a sum over pairs of lattice sites, and the overall strength of the
interaction between particles is defined by the parameter ε. The interaction energy between pairs of
particles at lattice sites i and j depends on the distance between them and is given by ci,j. Here we
use

ci,j =
⎧⎨
⎩

1 if j ∈ NN i,
1
2 if j ∈ NNN i,
0 otherwise,

(3)

where NN i and NNN i denote the nearest neighbors of i and the next nearest neighbors of i,
respectively. The choice of values in Eq. (3) is important, since with these any equilibrium droplets
that form on the surface tend to have the shape in the form of a segment of a circle [17,34,39].
If, for example, one were to assume only nearest-neighbor interactions, i.e., with ci,j = 0, for
j ∈ NNN i, then rectangular shaped droplets are liable to be formed, particularly at low temperatures.
The choice of ci,j in Eq. (3) minimizes the dependence of the vapor-liquid surface tension on the
interface-orientation. The values of ci,j in Eq. (3) come from considering how to discretize the
Laplacian while minimizing errors due to the discretization [34,39].

In the second term in Eq. (2), is a sum over all the lattice sites and is the contribution to the
potential energy from the external potential Vi due to the surface on which liquid is deposited. We
model it as follows:

Vi =
⎧⎨
⎩

∞ if i = (i, 0),
−εw if i = (i, 1),
0 if i = otherwise,

(4)

where εw is the parameter which determines the interaction strength between the particles and the
solid surface (the wall). With this potential, the boundary condition for the particles at the wall
is straightforward: we set li = 0 for all lattice sites with j < 1 in Eq. (4). As regards the other
boundaries, for some of the simulations we use periodic boundary conditions on the left and right
boundaries that are perpendicular to the wall and for other simulations we make these hard purely
repulsive walls. For the top boundary, we either assume that the system is closed, i.e., so that this is
also a hard purely repulsive wall, or that the system is open, so that it is an absorbing boundary.

We also consider cases where there is a constant force G on the particles parallel to the surface,
for example due to gravity. In this case, a term jG is added to the expression for the external potential
Vi in Eq. (4).
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III. DYNAMICS OF THE LIQUID

Having defined the Hamiltonian, we must now specify the dynamics of the system. We use a
combination of two types of particle moves to evolve the system forward in time: (1) Single-particle
moves, generated via the Metropolis Monte Carlo algorithm and (2) collective many-particle moves,
generated by considering the dynamics from a thin-film equation. We describe the moves of type
(1) first.

A. Monte Carlo dynamics

The Metropolis Monte Carlo algorithm [40] is commonly used to evolve systems in time, since
it generates configurations with the correct (Boltzmann) equilibrium distribution:

Pn = 1

Z
e−βEn , (5)

where the integer index n labels the sequence of configurations {li} generated by the algorithm,
each having energy En = E ({li}), given by the Hamiltonian (2). The normalization factor Z is the
partition function and β = 1/kBT , where kB is Boltzmann’s constant and T is the temperature. The
master equation governing the time evolution of the nonequilibrium probability Pn(t ) is [40]

∂Pn(t )

∂t
= −

∑
m �=n

[Pn(t )Wn→m − Pm(t )Wm→n], (6)

where Wn→m is the transition probability for the system to go from state n to state m. Equation (6)
has the form of a continuity equation, so the total probability remains normalized (

∑
n Pn(t ) ≡ 1)

for all time. At equilibrium, where ∂Pn/∂t = 0, Eq. (6) yields

Pn(t )Wn→m = Pm(t )Wm→n. (7)

Since the equilibrium probability distribution function for state n is given by Eq. (5), and similarly
for state m, the ratio of the probabilities also gives the transition rate ratio

Pn(t )

Pm(t )
= Wm→n

Wn→m
= e−β�E , (8)

where �E = En − Em. Below is outlined the Metropolis Monte Carlo algorithm that we implement,
which samples with the above ratio of probabilities:

(1) Pick a random particle.
(2) Pick randomly a nearest neighbor lattice site to the selected particle.
(3) Check whether the neighboring site is empty. If it is, calculate the change in energy �E

using Eq. (2) corresponding to moving the particle into the empty site.
(4) If �E < 0, then move the particle to its new position.
(5) If �E > 0, allow the move with probability e−β�E .
The assumption we make (the standard assumption in KMC algorithms) is that Eq. (8) still holds

out of equilibrium, and so we can use the above algorithm to evolve the system forward in time.
The KMC algorithm outlined above leads to the particles performing a diffusive dynamics that at
equilibrium generates configurations with the (correct) probability distribution (5).

B. Hydrodynamics via the thin-film equation

While the above KMC algorithm correctly samples the equilibrium states with a diffusive
dynamics, this is not in fact what nonequilibrium liquids on surfaces actually do. We therefore
introduce additional particle moves to better model the hydrodynamics of the liquid on the surface.
The additional particle moves are collective moves, transferring several particles simultaneously.
These are governed by considering a thin-film equation from hydrodynamic theory [21]. The effects
of collective advective droplet hydrodynamic motion is illustrated in Fig. 1. The film height profile
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h(x, t0) for the nonequilibrium droplet at time t0 is given by the red dashed line, while the black
solid line is the new height profile h(x, t1) that the droplet assumes at the later time t1. In three
dimensions, the thin-film equation is

∂h

∂t
= −∇ ·

(
h3

3η
{∇[γlv∇2h + �(h)] + G}

)
, (9)

where h(x, y, t ) is the film thickness profile, γlv is the liquid-vapor interfacial tension, η is the
viscosity, and ∇ = (∂/∂x, ∂/∂y). The term γlv∇2h represents the Laplace or curvature pressure.
Here, where we assume the system is 2D, we simply replace ∇ → ∂/∂x. G represents an additional
force that may be present (e.g., gravity) acting in the positive x direction. The term �(h) is the
disjoining pressure, which describes the effective molecular forces between the substrate and the
liquid-vapor interface. The disjoining pressure can be written as the derivative of an excess free
energy [2], referred to as the binding potential, g(h), as follows:

�(h) = − ∂g

∂h
. (10)

The disjoining pressure is in fact a constrained excess free energy. The equilibrium film thickness
is given by the minimum value of g(hmin), where hmin is the value of h that minimizes g(h). When
the minimum is at a small and finite value, then the liquid is said to be partially wetting. In contrast,
when the minimum is at h → ∞, then the liquid is said to be wetting. Additionally, the equilibrium
contact angle θ is determined by the value of g(hmin), as follows [24,41,42]:

θ = cos−1

[
1 + g(hmin)

γlv

]
. (11)

In the literature, there are many different approximations used for the disjoining pressure �(h),
depending on the nature of the fluid and the interactions with the surface [2,30,43,44]. Here we use
the binding potential that we calculate from DFT using the approach of Ref. [24]. The form of g(h)
depends on the state point, i.e., on the particular values of ε, εw, and the temperature T . The DFT
we use is also described below in Sec. IV. The DFT data are fitted to the form [24,25,30]

g(h) = a1 sin(2πa2h + a3) + a4 exp(−h/b) + a5 exp(−2h/b) + a6 exp(−3h/b), (12)

where a1, a2, a3, a4, a5, a6, and b are constants that depend on the state point. We also use the DFT
to calculate the liquid-vapor interfacial tension γlv , as described below in Sec. IV. These are then
used together with Eqs. (9) and (10) to determine the liquid droplet dynamics.

The relation between the KMC and thin-film steps is as follows. After completing a prescribed
number of KMC steps, M1, we first determine the discretized liquid film height profile from the
configuration of occupied lattice sites. This is done by computing for each i the number of occupied
lattice sites above the lattice site (i, 0) up to a point where we find a vacancy of a certain number (we
normally choose two) of consecutive lattice sites. This determines the height profile h(xi, 0), where
xi = i. If for a certain xi it turns out that h(xi, 0) = 0, we set it equal to the precursor film thickness
hmin. This profile is then used as an initial condition for the thin-film equation. We solve the thin-film
equation numerically using finite-difference approximations to represent spatial derivatives, and
evolve the solution in time using, e.g., Euler’s method. We choose a time step, �t , and solve the
thin-film equation for a certain number of time steps, M2. Next, we map the computed thin-film
profile back to the lattice by appropriately removing (adding) particles where the film profile became
thicker (thinner), as illustrated in Fig. 1. Note that this does not change the position of any particles
in the vapor phase. To ensure the conservation of the number of the particles in the system, we
then count the total number of the particles and add or remove a few particles, if needed, at random
positions above the computed thin-film profile. The resulting lattice site configuration can then be
used again for the KMC computations. The evolution of the system is obtained by successively
repeating the KMC and thin-film steps as described above for a certain number of times, n.
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C. Diffusion coefficient and timescales

An important quantity in the procedure described above is the parameter λ proportional to the
ratio of the number of KMC attempted particle moves per particle M1/N to the number of thin-film
moves M2, or more strictly the total time the thin-film equation is evolved for at each step, M2�t .
In dimensionless time units, this ratio becomes

λ = M1τ

M2N�t
. (13)

Here N is the total number of the particles in the system and τ is proportional to the viscosity of the
liquid, η:

τ = 3ηβσ 3. (14)

When λ = 0, the system is evolved by using only the thin-film equation, while the limit λ → ∞
corresponds to evolving the system using only KMC particle moves. Since the single-particle
KMC moves generate diffusive type motion, a large M1/N leads to a higher diffusion coefficient.
Therefore, λ ∝ Dη, where D is a single-particle diffusion coefficient. The bulk liquid diffusion
coefficient for a three-dimensional (3D) model very similar to that considered here, with dynamics
governed by the same KMC algorithm, was determined in Ref. [17]. For temperatures in a similar
range to those considered here, they obtained the result that D ≈ 2.6 × 10−4σ 2 KMC steps −1,
where x KMC steps means x attempted moves per lattice site. In the present 2D system, one should
expect D to be of a similar magnitude in the bulk liquid. As regards the diffusion coefficient for
isolated particles on the surface, in this regime D ∼ σ 2λ ∝ M1. Recalling the Einstein relation
D = (6πσηβ )−1, this may be used if seeking to match results from the present model to particular
experimental systems. Moreover, this allows to see that the matched value of λ is largely determined
by the viscosity and the temperature.

IV. LATTICE DFT FOR THE FLUID

We use classical DFT [27,29] adapted to lattice models [45], in order to calculate the binding
potential g(h) and also the liquid-vapor interfacial tension γlv . These quantities are then input into
the thin-film equation to create the collective hydrodynamic moves, as described in the previous
section. We also use the DFT to calculate the bulk fluid phase diagram.

DFT is a statistical mechanical theory for the fluid one-body average density profile, which on a
lattice is the quantity

ρi = 〈li〉, (15)

where 〈 · 〉 denotes an ensemble average. The approximation for the Helmholtz free energy that we
use is

F ({ρi}) = kBT
∑

i

[ρi ln ρi + (1 − ρi) ln(1 − ρi)] − ε
∑

i,j

ci,jρiρj +
∑

i

Viρi. (16)

A derivation of this is given in Ref. [45]. There is an obvious (mean-field) connection between
the Hamiltonian (2) and the terms on the second line in Eq. (16), and the first term is essentially
entropic in origin [45]. The equilibrium fluid density profile {ρi} is obtained by minimizing the
grand potential

�({ρi}) = F ({ρi}) − μ
∑

i

ρi, (17)

where μ is the chemical potential [27,29].
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FIG. 2. The bulk fluid phase diagram in the temperature versus density plane obtained from DFT together
with the Onsager result for the 2D Ising model scaled to match the observed critical temperature. The binodal
gives the densities of the coexisting vapor and liquid phases as the temperature is varied. The spinodal is also
displayed.

A. Bulk fluid phase diagram from DFT

Determining the phase diagram of the bulk fluid, away from the influence of any interfaces, is a
prerequisite to embarking on any study of the behavior of the fluid at walls. Phase coexistence be-
tween a high-density liquid phase and a low-density vapor phase is exhibited when the temperature
T is less than the critical temperature Tc. Thermodynamic coexistence of two phases occurs when
the temperature, chemical potential, and pressure are all equal in the two phases. The locus in the
phase diagram of these coexisting states is referred to as the binodal and for our model is displayed
in Fig. 2, plotted in the density versus temperature plane. We display the result from the DFT (16)
(see the following paragraph for the details of how this is calculated) together with an estimate
for the true location of the binodal. The latter is made by determining Tc using our Monte Carlo
simulations, based on Eq. (2), and then by scaling the exact Onsager 2D Ising result for the binodal
[46], so that the critical temperature matches that from our simulations, Tc ≈ 1.1ε/kB. Recall that
the Onsager result is for the standard 2D Ising which just has nearest-neighbor interactions, i.e.,
setting ci,j = 0 for j ∈ NNN i. We see that in the region near Tc, the mean-field DFT fails, but for
temperatures kBT/ε < 1 the agreement between the DFT and the Monte Carlo results is fairly good,
as we also see below where we present results for droplets on surfaces and for the wetting behavior.

To calculate the binodal predicted by the free energy (16), a symmetry in the lattice-gas model
proves to be rather useful. Note that this symmetry is absent in continuum models of fluids. If we
replace li = 1 − oi in the Hamiltonian (2), then we see that this leaves the form of it unchanged.
We can think of oi as being a “hole” occupation number. As a consequence of this particle-hole
symmetry, we therefore have the following relation between the density of the liquid ρl and the
vapor ρv at coexistence:

ρl = 1 − ρv. (18)

From Eq. (16), we obtain the Helmholtz free energy per unit area in the absence of any external
field:

f = F

A
= kBT [ρ ln ρ + (1 − ρ) ln(1 − ρ)] − 3ερ2, (19)

where A is the area of the system. Recall that we are considering a 2D system; one should, of
course, consider the free energy per unit volume F/V in 3D, where V is the volume. Note also that
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we have used the result ε
∑

i,j ci,j = 6ε/2, to obtain Eq. (19). This is the sum over the interactions of
a particle with all of its neighbors [see Eq. (3)]. The factor 1/2 is present to avoid double counting
the interactions between each of the pairs. The pressure in the system is therefore [29]

p = −
(

∂F

∂V

)
T,N

= ρ
∂ f

∂ρ
− f

= −kBT ln(1 − ρ) − 3ερ2. (20)

Invoking Eq. (18) and solving p(ρ) = p(1 − ρ) leads to the binodal curve

kBT

ε
= 3(2ρ − 1)

ln[ρ/(1 − ρ)]
. (21)

This is the curve displayed in Fig. 2. The maximum on the binodal corresponds to the critical point
temperature, above which there is no vapor-liquid phase separation. Substituting the critical density
ρ = 1/2 into Eq. (21) gives the critical temperature predicted by the DFT to be Tc = 1.5ε/kB, while
from our KMC simulations we find that in reality it is Tc ≈ 1.1ε/kB. We can also calculate the
chemical potential

μ = −
(

∂F

∂N

)
T,V

= ∂ f

∂ρ

= kBT ln

(
ρ

1 − ρ

)
− 6ερ. (22)

The value of the chemical potential at bulk phase coexistence (i.e., on the binodal) is found by
substituting Eq. (21) into Eq. (22), which gives

μcoex = −3ε. (23)

In Fig. 2 we also display the spinodal predicted by the DFT. Spontaneous phase separation occurs
within this region of the phase diagram, since the uniform fluid is unstable for state points within
the spinodal curve. The condition to determine the spinodal is

∂2 f

∂ρ2
= 0. (24)

Using this together with Eq. (19) we obtain the following result for the spinodal:

kBT

ε
= 6ρ(1 − ρ), (25)

which is the curve plotted in Fig. 2. Note that the particle-hole symmetry discussed above
is manifested in all the curves in Fig. 2. Of course, real continuum liquids do not have this
symmetry. This symmetry can be broken by introducing a three-body term ∝ ∑

i,j,k c̃i,j,kliljlk in
the Hamiltonian (2); see Ref. [47] for more details. We do not pursue this possible extension to the
model here.

B. Properties of the vapor-liquid interface

Having determined the bulk fluid phase diagram, one can then determine the properties of the
interface between the coexisting liquid and vapor phases. In Fig. 3 we display a sequence of density
profiles for the vapor-liquid interface, calculated over a range of different temperatures. The density
profiles are calculated by minimizing the grand potential (17) with the Helmholtz free energy F
given by Eq. (16) and the chemical potential μ set to be the value at coexistence, given in Eq. (23).
To calculate these we set the external potential Vi = 0 and assume that the profiles only vary in
one direction (along the z axis). We also assume the system has periodic boundary conditions and
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FIG. 3. A series of density profiles for the vapor-liquid interface obtained from the DFT (16) for various
values of βε, as indicated in the key. These are used to calculate the vapor-liquid interfacial tension.

initiate the system with half of it containing the liquid and the other half containing the vapor. The
final equilibrium therefore contains two vapor-liquid interfaces, but only one of these is displayed
in Fig. 3.

Having calculated these profiles, we can then calculate the liquid-vapor interfacial tension γlv .
Recall that a planar interface between the vapor and the liquid in a 3D system adds to the free
energy of the system an excess (over bulk) contribution equal to the interfacial tension multiplied
by the area of the interface [27,29]. Similarly, for the present 2D system the interfacial contribution
is equal to 2Lγlv , where 2L is the length of the interface. The factor 2 arises because there are two
interfaces in our system with periodic boundary conditions. Having calculated the grand potential
� for the system containing the interface, the interfacial tension is then

γlv = � − �0

2L
, (26)

where

�0 = −pA (27)

is the grand potential for a 2D box having the same area A, but containing only one of the two
phases, and where p is pressure. For example, when βε = 2.5, this approach gives the vapor-liquid
interfacial tension to be βγlv = 2.48.

In Fig. 4 we display the surface tension of the planar liquid-vapor interface plotted as a function
of temperature. We see that as the temperature T approaches from below the critical temperature
Tc = 1.5ε/kB, then γlv → 0, due to the fact that the difference in the density of the two coexisting
phases goes to zero as T → Tc. In addition to the full DFT results for γlv , in Fig. 4 we also display
the results from a so-called “sharp-kink” approximation (cf. Refs. [48,49]), where we assume that
the interface consists of a sharp step from the liquid with density ρl , to the vapor with density ρv ,
both being the values at phase coexistence; see Eqs. (18) and (21). The excess free energy for this
density profile is then evaluated via Eq. (16). We also show in Fig. 4 the results from an even cruder
sharp-kink type approximation that assumes that in the liquid li = 1 and then use the Hamiltonian
to evaluate the energy change when such a system is cleaved in two to create an interface with a
vacuum, i.e., we effectively assume for this calculation that in the vapor li = 0, with a steplike planar
interface between the two (this is labeled in Fig. 4 as the “Energy approx.”). We see from Fig. 4 that
there is good agreement between the value for the surface tension calculated from DFT and from
the first sharp-kink approximation for all temperatures and also with the second sharp-kink energy
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(solid line), calculated using the sharp-kink approximation (symbols), and also calculated using the energy
approximation based on Eq. (2) (dashed line), which assumes a sharp interface and that the liquid has li = 1
and the vapor has li = 0.

approximation for temperatures kBT/ε < 0.8, indicating that in this regime the major contribution
to the interfacial tension is energetic, rather than entropic.

The calculations of the solid-vapor and solid-liquid interfacial tensions, γsv and γsl , respectively,
are done in a similar manner to the calculation of γlv described above, but of course the wall potential
is retained and the system is initialized with just either the vapor or the liquid density values,
respectively. For additional details on how these calculations are done, see, e.g., the discussion
in Ref. [45].

C. Calculation of the binding potential using DFT

The excess grand potential per unit length (per unit area, in three dimensions) for a film of liquid
adsorbed between a wall and a bulk vapor can be written as [24,25,45,48]

ωex(h) ≡ � − �0

L
= γsl + γlv + g(h) + �δμ, (28)

where L is the length of the interface with the wall, �0 is given by Eq. (27), δμ = (μcoex − μ), g(h)
is the binding potential and � is the adsorption, given by

� = 1

L

∑
i

(ρi − ρv ), (29)

which is the excess (over bulk) number of particles adsorbed on the interface. Note that strictly we
should consider g to be a function of the adsorption �, not of h, since the latter is not a well defined
quantity [24]. However, when h is large Eq. (29) gives

� ≈ h(ρl − ρv ). (30)

Therefore, throughout this paper we discuss h and � almost interchangeably, and treat Eq. (30) as
an equality which defines the value of h.

When the system is at vapor-liquid phase coexistence we have δμ = 0 and so the last term in
Eq. (28) is zero. We also see that when h → ∞ we must have g(h) → 0, since when δμ = 0 the
only contributions to ωex must be those from the wall-liquid and the liquid-vapor interfaces, i.e.,
γsl and γlv , respectively. These considerations also enables us to see what g(h) really is: it is the
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FIG. 5. The binding potential calculated from DFT for βε = 0.85. (a) Results for varying βεw , as given
in the key. The inset shows the exponential asymptotic decay form for � → ∞ in the tails of the binding
potentials. (b) A comparison of the DFT results with the fit function in Eq. (12) for βεw = 1.02.

additional contribution to ωex from the interaction between these two interfaces when they become
close to one another. For the case when the liquid is partially wetting, i.e., when g(h) has a minimum
at a finite value of h, then g(h) “binds” these two interfaces together, hence the name given to g(h).
This interaction between the interfaces stems from the molecular interactions between fluid particles
and with the wall and can be thought of as arising in a similar manner to the surface tension.

The equilibrium film thickness is that minimizes Eq. (28). When δμ = 0, this is obtained by
solving �(h) = − ∂g

∂h = 0. For all other values of h, the system is out of equilibrium and therefore
to determine g(h) for other values of h, one must either move away from coexistence or apply a
constraint, the constraint being that there is a specified thickness h of liquid at the wall.

The approach used to calculate g(h) here is that developed in Refs. [23,24], which consists of a
constrained free energy minimization. This method uses an iterative algorithm to minimize the grand
potential (17) subject to the constraint that the adsorption � is a specified value, which via Eq. (30)
is equivalent to minimizing subject to the constrain that the film thickness h is a specified value.
It turns out that this constraint is equivalent to applying a fictitious additional external potential
that stabilizes the liquid film of the specified thickness [23,24]. The calculation is repeated for a
sequence of different values of �, enabling us to calculate g(�) over the whole range of values of
�. This data set is subsequently fitted to the form given in Eq. (12) and then input into the thin-film
equation (9).

In Figs. 5 and 6 we display results for the binding potential determined via this method for a
range of different state points. In Fig. 5 we display results for βε = 0.85, which corresponds to
a temperature that is not that far below the critical temperature Tc. In Fig. 5(a) are results for a
sequence of different values of the wall attraction strength εw. We see that for small values of βεw,
which corresponds to a weakly attracting solvophobic wall, the global minimum of g(�) is at a small
value of �, i.e., the liquid does not wet the wall. As βεw is increased, there is a first-order wetting
transition when βεw ≈ 1.36 and for βεw > 1.36, the global minimum in g(�) is at � → ∞; i.e.,
for these values of βεw the liquid wets the wall. The inset of Fig. 5(a) shows the same results with
the vertical axis plotted on a logarithmic scale to show more clearly the monotonic decay behavior
as h → ∞. In Fig. 5(b) we show the result for βεw = 1.02 to demonstrate the excellent agreement
between the numerical results for g(�) and the fit function in Eq. (12). This shows clearly that this
simple form is highly appropriate for fitting the binding potential over the whole range of values of
� [16,24,25].

In Fig. 6 we display results for the binding potential for βε = 2.5, which corresponds to a much
lower temperature than the results in Fig. 5. The results in Fig. 6(a) are for a range of different values
of εw and we see that for βεw ≈ 5 the minimum in g(�) close to the wall disappears, so that for
βεw > 5 the global minimum in g(�) is at a larger value of �. However, we note that in this case, due
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FIG. 6. The binding potential calculated from DFT for βε = 2.5. (a) Results for varying βεw , as given in
the key. The inset shows the oscillations that occur in the tails of the potentials that arise as a result of the
system being a lattice model. (b) A comparison with the fit function in Eq. (12) for βεw = 2.5.

to the presence of oscillations in g(�) that do not decay in amplitude, there is an infinite sequence of
minima in g(�) as � → ∞. Oscillations that decay in amplitude can occur in the binding potential
as a result of the nature of the molecular interactions [25,30]. However, in the present system the
oscillations are due to the low temperature and the discrete (lattice) nature of the model [24]. Each
subsequent minimum in g(h) corresponds to the vapor-liquid interface moving by a distance of one
lattice site further from the wall. The inset of Fig. 6(a) shows the same results with the vertical
axis plotted on a logarithmic scale to show more clearly the oscillatory decay behavior. We see in
Fig. 6(b) that, as for the previous case, the fit function (12) gives an excellent representation of the
numerical DFT results, in this case for βεw = 2.5.

V. CONTACT ANGLE AND STATIC DROPLET PROFILES FROM KMC

As described in the previous section, it is straightforward to calculate the three interfacial tensions
γlv , γsl , and γsv using our lattice DFT (16). These can then be inserted into Young’s equation (1)
to determine the equilibrium contact angle θ . This is also the contact angle that equilibrium droplet
solutions of the thin-film equation have, since θ is determined by g(h), as Eq. (11) shows. It is
important that the value of θ determined by g(h) in the thin-film equation is close to the value of
the contact angle that the KMC simulations drive the system towards. If there is too big a difference
between the contact angle from DFT and from the KMC simulations, then when we have both the
KMC and thin-film dynamics in our model, these will work against each other, which would be
unsatisfactory. Thus, the contact angle from the DFT and from the KMC must be close in value.
This is also a check of the accuracy of the DFT. Of course, at higher temperatures near Tc the DFT
is not accurate; that is clear from the phase diagram in Fig. 2. However, at lower temperatures we
do find that the DFT becomes rather accurate, as we now show.

In Fig. 7 we display a sequence of density profiles, each obtained by averaging over a time series
from our KMC simulations, for various different values of the wall attraction parameter βεw and
for the temperature kBT/ε = 1/2.5. For these simulations we do not include any of the thin-film
collective dynamics, since at this stage we are solely interested in equilibrium properties. In each
case there are N = 897 particles in the system, which has a total domain size of 100 × 100 lattice
sites and with periodic boundary conditions between the left and right sides. We initiate the system
by setting li = 1 for all the lattice sites within a semicircular region in the middle upon the substrate,
and we set li = 0 outside the semicircle. We see that for the largest value of the wall attraction
βεw = 5, the liquid spreads out over the substrate; i.e., it wets the substrate. For smaller values of
βεw, the liquid forms a droplet on the substrate with an increasingly large contact angle as βεw is
decreased; i.e., for these cases the liquid is partially wetting. This behavior and the observed wetting
transition at βεw ≈ 5 is in very good agreement with what we expect based on Fig. 6. Note too that
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FIG. 7. A series of 2D density profiles corresponding to a liquid droplet on a surface, calculated using
KMC for βε = 2.5 and for varying values of the wall attraction strength βεw = 0.5, 1.5, 2.5, 3.5, 4.5, and
5. These are obtained by averaging over a series of configurations generated by 4 × 109, 10 × 109, 2 × 108,
6 × 109, 9 × 109, and 20 × 109 attempted moves, respectively.

the droplet profiles in Fig. 7 are similar to the droplet profiles calculated in Refs. [24,45] using DFT
for a very similar lattice-gas model; see also the 3D droplet density profile calculated using Monte
Carlo simulations in Ref. [17].

From droplet density profiles such as those in Fig. 7, following, e.g., Ref. [17], we can calculate
the contact angle by fitting a circle to the location of the liquid-vapor interface, which is defined as
the points determined by linear interpolation between pairs of neighboring lattice sites, where the
density ρ = 0.5. Results for the contact angle determined via this method are plotted in Fig. 8 for the
temperature βε = 2.5 and for a range of different values of the wall attraction βεw. We also display
the results from DFT and via Young’s equation (1). We see excellent agreement between the results
from the two approaches, demonstrating that at such temperatures (away from the critical point) the
DFT is accurate and so the binding potential obtained from the DFT should also be reliable.
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FIG. 8. The contact angle for droplets with temperature βε = 2.5 on a surface with varying wall attraction
strength εw . The solid line is the result obtained from the lattice DFT (16) together with Young’s equation (1).
The dashed line is the results from KMC simulations.

The results in Fig. 8 show that the contact angle θ = 0 for βεw > 5, where the liquid wets the
wall. As εw is decreased, decreasing the strength of the attraction between the particles and the
surface so that the surface becomes more solvophobic, the contact angle θ increases and the liquid
increasingly beads up upon the surface.

VI. RESULTS FOR NONEQUILIBRIUM DROPLETS ON SURFACES

The results in the preceding sections essentially constitute a series of checks that the model has
the desired, correct, and self-consistent thermodynamics. In this section, we present results for the
nonequilibrium behavior predicted by the model.

A. Pure KMC at two different temperatures

For droplets to be able to equilibrate with the vapor phase, the system must be enclosed (i.e.,
treated in the canonical ensemble), with a fixed number of particles in the system. This is achieved
by assuming a hard but nonattracting (εw = 0) wall on the top.

We first present results for the behavior of two droplets using only KMC simulations. The total
domain is of size 120σ × 60σ , with periodic boundary conditions between the left and right sides.
The system is initiated by setting li = 1 for all the lattice sites within two semicircular regions of
radii 12σ with the centers of the corresponding circles at the sites (40,1) and (80,1), and we set
li = 0 outside of these two semicircles. This gives N = 368 particles in the system.

The results in Fig. 9 are for the temperature kBT/ε = 1/1.5, and we choose the wall attraction
parameter βεw = 2.1. The contact angle for these parameter values is θ ≈ 60◦. The different panels
in Fig. 9 correspond to a sequence in time, i.e., for increasing numbers of the KMC steps, as
indicated in the top right of each. The droplets initially evaporate and somewhat decrease in size,
equilibrating with a low-density vapor phase. They also adjust their average contact angle from
the initial value of θ = 90◦ closer to θ ≈ 60◦, the equilibrium value (cf. Fig. 7). However, as time
proceeds, due to the random (thermal) fluctuations, the size of one of the droplets (the left one
in this KMC simulation) keeps decreasing, but the size of the other droplet (the right one in this
KMC simulation) starts to increase. The centers of the droplets remain at approximately the initial
positions. Eventually, the left droplet completely disappears, leaving the system containing only
a single droplet, which of course is the global free energy minimum state. In the case in Fig. 9
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FIG. 9. Simulation of the coarsening (joining) of two droplets using KMC for βε = 1.5 and βεw = 2.1 in
a domain of length 120σ and height 60σ . The times corresponding to each snapshot are in units of the KMC
steps divided by 104.

(i.e., for the temperature kBT/ε = 1/1.5), this coarsening process occurs mainly via the diffusive
migration of the particles through the vapor, evaporating from one droplet and condensing onto
the other, although there is additionally a small particle flux over the surface. In Ref. [50], when
clusters (equivalent to our droplets) aggregate in a similar manner, it is referred to as joining via
the “Ostwald mode,” in contrast to joining by the droplets moving towards one another, which is
referred to as joining via the “translation mode.” For the model system considered in Ref. [50], it
is possible to show that there is an eigenfunction associated with each of these two possible modes
and that it is the mode with the largest eigenvalue that dominates the observed dynamics, although
in principle it is possible for the two eigenvalues to be similar in value. However, in the case in
Fig. 9 it is clearly the Ostwald mode that is dominant. For more background on Ostwald ripening,
see, e.g., Ref. [51].

Figure 10 correspond to a lower temperature kBT/ε = 0.4, and we choose the wall attraction
parameter βεw = 3.5 so that the equilibrium contact angle is still θ ≈ 60◦. The droplets in this
case initially spread a little over the surface because the KMC time evolution drives the system
towards achieving the equilibrium contact angle for both droplets. There is a much smaller rate
of evaporation because of the lower temperature, or, equivalently, due to the stronger attraction
between the particles in this case. Then over time the droplets eventually merge and form a single
droplet in the center of the domain. The coarsening process in this case appears to mainly be due
to overall translation of the droplets over the surface, i.e., coarsening due to the translational mode
[50,51].
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FIG. 10. Simulation of the joining (coarsening) of two droplets using KMC for βε = 2.5 and βεw = 3.5
in a domain of length 120σ and height 60σ . The times corresponding to each snapshot are in the units of KMC
steps divided by 104.
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FIG. 11. Simulation of two droplets joining, with the flux from one to the other being largely via diffusion
through the vapor. These results are for βε = 1.5 and βεw = 2.1 in a domain of size 120σ × 60σ . We calculate
over a total of n = 600 cycles, with each cycle consisting of M1 = 104 KMC steps alternating with M2 = 104

thin-film steps with �t = 10−5. The times indicated on each snapshot correspond to the number of cycles
passed. In the final panel we show the time evolution of the numbers of the particles that cross the vertical line
in the middle of the domain, at i = 60, migrating over the surface, Ns (blue line) and through the vapor, Nv

(red line). Increasing (decreasing) Ns or Nv means that the particle moves to the left (right), respectively. Since
|Nv| � |Ns|, this indicates that diffusion through the vapor is the dominant process.

B. Combination of KMC and thin-film equation dynamics

We now consider behavior of the system when the fluid dynamics governed by a combination of
the single-particle KMC moves in conjunction with the collective particle moves generated by the
thin-film equation. We use the same domain and the same initial configuration as in the previous
subsection. Figure 11 corresponds to the same temperature and wall attraction strength as in Fig. 9.
For this simulation, we used n = 600 cycles of M1 = 104 KMC steps followed by M2 = 104 thin-
film steps with the time step �t = 10−5, which gives λ = 272, where λ is the parameter defined by
Eq. (13). As in Fig. 9, the system coarsens into one droplet. However, the speed of coarsening is
increased when the thin-film steps are included, which is not too surprising, since the total number
of possible moves has been increased by the addition of the thin-film moves. As before, in the initial
stages the droplets partially evaporate and spread, to reach a contact angle close to the equilibrium
value. In the later stages, it can be observed that the size of one of the droplets (the left one in
this simulation) keeps decreasing, but the size of the other droplet (the right one in this simulation)
starts to increase. As in the case in Fig. 9, the centers of the droplets in Fig. 11 remain more or less
fixed. The coarsening in this case is mainly due to a flux of particles evaporating from one droplet,
traveling though the vapor and condensing onto the other, although there is also a smaller flux due
to a diffusive migration of the particles over the surface. To illustrate this in more detail, we show
in the bottom right panel of Fig. 11 how the numbers of particles that cross the vertical line in the
middle of the domain at i = 60 varies in time. These are split into two populations: (1) those that
migrate over the surface at height j � hi (Ns, see the blue line) and (2) those that travel through
the vapor at height j > hi (Nv , see the red line). Increasing (decreasing) Ns or Nv means that the
particle moves to the left (right), respectively, crossing the i = 60 line. In this particular simulation,
it can be observed that there is relatively low migration of the particles over the surface, while there
is a significant net transfer of particles from left to right through the vapor. Thus, we can conclude
that in this case the main coarsening mechanism is due to particles evaporating from one droplet,
diffusing through the vapor, and then condensing onto the other droplet. Using only the thin-film
equation would not allow us to capture this, and this justifies the importance of our hybrid model
which combines both the thin-film equation governed dynamics with the KMC diffusive dynamics.
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FIG. 12. Simulation of two droplets joining, with time evolution including both single-particle KMC
dynamics and thin-film equation dynamics, for βε = 2.5 and βεw = 3.5 in a domain of size 120σ × 60σ .
We have a total of n = 3000 cycles consisting of M1 = 104 KMC steps and M2 = 104 thin-film steps with
�t = 10−5. The times corresponding to each snapshot are in the units of cycles. The last panel displays the
time evolution of the numbers of particles that cross the vertical line in the middle of the domain at i = 60,
migrating over the surface, Ns (blue line) and through the vapor, Nv (red line). Increasing (decreasing) Ns or Nv

means that the particle moves to the left (right), respectively.

Figure 12 corresponds to the same values of the temperature and the wall attraction strength
parameter as in Fig. 10. For this simulation, we used n = 3000 cycles of M1 = 104 KMC steps
followed by M2 = 104 thin-film steps with the time step �t = 10−5, which gives the same value of λ

as for the results in Fig. 11. As in the higher temperature case in Fig. 11, we find that the speed of the
coarsening is increased when the thin-film steps are included. As in the pure KMC case in Fig. 10,
the droplets initially spread over the surface to reach a contact angle close to the equilibrium value
θ ≈ 60◦, but with only a small amount of evaporation due to the low temperature. As time proceeds,
the size of the right droplet starts to decrease and the left droplet starts to grow, and apparently this
happens mainly due to motion of particles from one to the other over the surface. To understand the
coarsening mechanisms in more detail, we present in the last panel of Fig. 12 the time evolution
of the numbers of the particles that cross the vertical line in the middle of the domain, at i = 60,
that migrate over the surface, Ns, and through the vapor Nv . In this particular simulation, it can be
observed that there is a relatively low rate of migration of the particles through the vapor, while the
majority of the mass transfer is via the surface. Thus, we can conclude that in this case of lower
temperature, the main coarsening mechanism is due to the transfer of the particles over the surface.

C. Droplet evolving under lateral driving

In this subsection, we consider the dynamics predicted by the model when the fluid is under the
influence of a constant lateral driving force parallel to the surface, i.e., we have a constant force
G = 0.2 to the right on each particle. The domain is a box of size 100σ × 50σ , with hard walls on
both the left and right boundaries, as well as the attracting surface on the bottom and the hard wall at
the top considered previously. The system is initiated by setting li = 1 for all the lattice sites within
a semicircular region of radius 14σ with the center at the site (25,1), and we set li = 0 outside of
this semicircle. This gives N = 305 particles in the system. As a consequence of the lateral driving
and the walls at the left and right boundaries, in all of the results displayed in this section in the final
stages of the dynamics we see a pile-up of particles on the right-hand boundary wall.

Figure 13 shows results for when the dynamics is solely generated by the KMC algorithm, with
no thin-film dynamics. The initial configuration consists of the semicircular droplet displayed in the
top left panel, which has contact angle θ ≈ 60◦. We set βε = 1.5 and the wall attraction strength
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FIG. 13. A droplet evolving in time under the influence of a constant force G = 0.2 to the right, for βε =
1.5 and βεw = 2.1. The dynamics is pure single-particle KMC (i.e., λ = ∞), and the system is of size 100σ ×
50σ . The times corresponding to each snapshot are in units of KMC steps divided by 1500 (i.e., M1 = 1500
and M2 = 0).

βεw = 2.1. We see from the results in Fig. 13 that the droplet center of mass hardly moves over
time. However, since there is a constant (but slow) evaporation rate of particles from the surface,
once these leave the droplet they are then carried away to the right by the driving force G �= 0. Over
time, these then build up on the wall on the right side. Thus, although on every particle in the system
there is a force to the right G = 0.2, due to the KMC dynamics only considering one particle at a
time, we see that there is little or no collective motion resulting from this force. As we see next, this
is not the case when we also allow collective motion by considering the dynamics from the thin-film
equation.

Figure 14 shows snapshots from a simulation where all the model parameters are the same as
for the simulation in Fig. 13 except we now include some collective multiparticle moves generated
by considering the thin-film equation (9) with G = 0.2. We set M1 = 1.5 × 103, M2 = 103, and
�t = 10−6, which gives λ = 4918. We see that the thin-film moves enable the droplet to migrate
across the surface under the lateral driving. By comparing with the previous result in Fig. 13, it
is clear that this dynamics must be a collective multiparticle (hydrodynamic) phenomenon. Though
the majority of the particle motion to the right is now via the droplet sliding over the surface, there is
still a small flux through the vapor. Note too that the overall timescale for the dynamics is reduced,
due to the additional thin-film moves.

 0

 25

 50

 0  25  50  75  100

t = 0

 0

 25

 50

 0  25  50  75  100

t = 45

 0

 25

 50

 0  25  50  75  100

t = 105

 0

 25

 50

 0  25  50  75  100

t = 907

 0

 25

 50

 0  25  50  75  100

t = 1999

 0

 25

 50

 0  25  50  75  100

t = 2999

FIG. 14. Results for a system the same as that in Fig. 13, except here the particle motion also includes
collective multiparticle moves generated by the thin-film equation, as well as some single-particle moves from
the KMC. We have M1 = 1.5 × 103 KMC steps per cycle and M2 = 103 thin-film steps with �t = 10−6 per
cycle, which corresponds to λ = 4918. The times corresponding to each snapshot are in the units of numbers
of cycles.
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FIG. 15. Results for a system the same as that in Figs. 13 and 14, except here there are an even higher
proportion of the dynamics constituting of collective multiparticle moves generated by the thin-film equation.
We have M1 = 1.5 × 103 KMC steps per cycle and M2 = 105 thin-film steps with �t = 10−6 per cycle, which
corresponds to λ = 0.49. The times corresponding to each snapshot are in the units of numbers of cycles.

In Fig. 15 we show results for a system with an even higher proportion of particle moves
generated by the thin-film equation. In this case we have M1 = 1.5 × 103, M2 = 105 and �t =
10−6, which gives λ = 0.49. We again observe that the thin-film moves enable the droplet to slide
from left to right under the driving. Additionally, for this choice of parameter values we see that the
droplet takes a characteristic shape with a “tail” trailing behind, typical sometimes of rain droplets
sliding down a window. The appearance and bifurcations of such tails is discussed in Ref. [52] for
the thin-film equation.

VII. CONCLUDING REMARKS

We have developed a hybrid model for droplet dynamics on surfaces, that combines both
single-particle diffusive dynamics via KMC and advective hydrodynamic multiparticle moves via
a thin-film equation. We have shown that the model incorporates the correct thermodynamics and
hydrodynamics, microscopic structure, evaporation, condensation and the diffusion of particles over
a surface. The model contains parameters which can be determined by relating to experiments. For
example, from measurements of the equilibrium contact angle of drops of the liquid on the relevant
surfaces and the surface tension, the interaction parameters can be estimated and the mobility
coefficients estimated from the bulk liquid viscosity and diffusion coefficient; see also the discussion
in Ref. [17] about determining these coefficients.

An important part of the coarse graining that we performed in order to bridge from the
microscopic Hamiltonian (2) to the mesoscopic thin-film equation (9), is the use of DFT. Here we
considered a lattice model, to make this bridging more easily. However, we see no reason why this
could not also be done for a continuum model. The main requirement is to have an accurate DFT,
that is able to describe the structure of the liquid of interest. For example, for the Lenard-Jones
model liquid, much of the work has already been done in Ref. [25]. The one thing that would need
to be adapted and developed further is the algorithm for determining the liquid droplet height profile
and the algorithm for moving the particles as determined by the thin-film equation. For the former,
we believe that calculating a local adsorption would be sufficient. However, the present algorithm
for inserting the particles would surely need some testing and refining, since in the present work
the underlying lattice makes this process much more straight-forward to implement. We should
also emphasize how valuable it is to make the connection with DFT, since this gives access to
thermodynamic quantities such as the surface tensions, equilibrium contact angles, pressure and
the bulk fluid phase behavior. These are important things to know and are much harder to obtain
via other methods; for example, to obtain these from KMC simulations is more complicated and
requires more lengthy computations.
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For the purposes of the present study the DFT results presented here in Sec. IV were performed
in order to make sure the thermodynamic underpinnings of the thin-film equation used in the
time evolution is correct. However, we believe the present work is also a valuable contribution
to the development and testing of lattice-DFT models of this type. There has previously been some
testing of the mean-field DFT (16) by comparing to simulations (see, e.g., Ref. [35]), but the results
presented here showing that the DFT is also accurate at some temperatures for describing the contact
angle and the other related interfacial properties have not been performed before for a 2D model, to
the best of our knowledge.

We have presented striking results showing the process of how a pair of droplets on a surface join
together depends on the temperature and also the other system parameters: at higher temperatures
the coarsening process largely occurs via evaporation of particles from the smaller droplets,
diffusion through the vapor and then condensation onto the larger droplets, i.e., via the Ostwald
mode [50]. In contrast, at lower temperatures drops coalesce via the translation mode, moving
towards one another over the surface and joining. In the present lattice system it is not possible
to calculate the eigenfunctions and eigenvalues associated with each of these modes, as it is for the
simpler continuum model in Ref. [50]. However, it is clear that these processes are present here. In
fact, there are tantalizing hints in some of our results that there may in fact be two different surface
modes: an Ostwald-type mode, determined by the diffusion of particles over the surface (rather than
via the vapor), which is somewhat different in character to the collective surface motion due to
capillary forces that is described by the thin-film equation. However, to confirm this conjecture and
really distinguish that there are two distinct surface modes would require a much simpler continuum
model that is amenable to the analysis approach used in Ref. [50].

The results presented in Sec. VI C, where the system evolves under lateral driving, show that
collective many-particle hydrodynamic motion is essential for droplets to slide over surfaces. The
thin-film equation dynamics is also crucial to whether the droplet takes a sliding shape with a tail or
not. If the particles are assumed to move one at a time, then the droplets do not slide. The knowledge
that the overall droplet shape is linked to the underlying particle motion gives valuable insight into
the behavior of these types of systems.

For the driven droplets in Fig. 13, where the dynamics is solely due to the KMC (λ = ∞), we
see that the advancing and receding contact angles appear to be the same as the equilibrium contact
angles. However, when λ is finite (Figs. 14 and 15), clearly the advancing and receding contact
angles are different. It would be of interest to determine how these angles depend on λ and on the
strength of the driving G and to compare with predictions in the literature, such as Refs. [53,54].
However, to get the same amount of data in such nonequilibrium situations as was used to determine
the equilibrium contact angle values with the statistical precision displayed in Fig. 8 would require
numerous repeated simulations. It is a much more complex scenario than the equilibrium case and so
would require a very careful analysis of the results to match together all the different simulations,
for robust conclusions to be obtained. This would enable the calculation of the nonequilibrium
ensemble-average density profiles (the analog of Fig. 7), which would yield further information
about the complex relationship between the contact line structure (density profile) and the wetting
dynamics [55]. Therefore, we leave this for future work.

One limitation of our model, inherited from using the thin-film equation (9), is that for contact
angles θ � 90◦ the model becomes inaccurate. The KMC part of the model works fine in this regime,
it is only the thin-film equation part that fails. Thus, for example, the model could not be applied in
its present form to study droplets on superhydrophobic surfaces. A further limitation of the model
is that in certain situations it does not correctly capture the fluid dynamics within the droplet. For
example, sometimes there can be a circulation of the liquid within a droplet as it slides [56,57]. Some
aspects of circulatory motion are described by the thin-film equation; see, e.g., Ref. [58]. However,
in our model if one were to tag a particular lattice particle, one would not observe circulatory motion,
since our collective particle moves do not couple to the liquid velocity field, and are determined from
the variations in the hight profile.
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