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In many applications it is important to estimate a fluid flow field from limited and
possibly corrupt measurements. Current methods in flow estimation often use least squares
regression to reconstruct the flow field, finding the minimum-energy solution that is
consistent with the measured data. However, this approach may be prone to overfitting
and sensitive to noise. To address these challenges we instead seek a sparse representation
of the data in a library of examples. Sparse representation has been widely used for image
recognition and reconstruction, and it is well-suited to structured data with limited, corrupt
measurements. We explore sparse representation for flow reconstruction on a variety of
fluid data sets with a wide range of complexity, including vortex shedding past a cylinder at
low Reynolds number, a mixing layer, and two geophysical flows. In addition, we compare
several measurement strategies and consider various types of noise and corruption over
a range of intensities. We find that sparse representation has considerably improved the
estimation accuracy and robustness to noise and corruption compared with least squares
methods. We also introduce a sparse estimation procedure on local spatial patches for
complex multiscale flows that preclude a global sparse representation. Based on these
results, sparse representation is a promising framework for extracting useful information
from complex flow fields with realistic measurements.
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I. INTRODUCTION

Estimating the structure of a flow field from limited and noisy measurements is an important
challenge in many engineering applications. For example, accurate estimation is central to active
flow control [1–4], which has the potential to advance next-generation technology, ranging from
fuel-efficient, low-drag automobiles [5] to high-efficiency turbines [6] and internal combustion
engines [7]. The ability to reconstruct important flow features from restricted observations is also
critical in applications as diverse as cardiac blood-flow modeling [8,9], ship wake identification
[10], and climate science [11]. All of these applications rely on estimating the structure of complex
fluid flows based on limited measurements. This work focuses on addressing this challenge by using
techniques from machine learning and sparse representation [12], which have recently been applied
to flow-field classification [13–16].

Modern experimental methods and the increasing scale and resolution of numerical simulations
have led to an abundance of fluid-flow data. Although we are able to achieve unprecedented fidelity
in measurement and simulation in laboratory settings, in applications we are typically limited to
a few noisy sensors. The challenge in flow-field estimation is thus to synthesize the profusion
of offline data and limited, unreliable online information. This synthesis relies on learning and
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representing the essential structure of the flow field by leveraging the physical behavior observed
in past data. Fluid mechanics is not unique in having a wealth of data, however, and recent years
have seen the rapid development of revolutionary machine learning techniques to leverage big data,
particularly in image processing [17,18]. Since flow-field data are often discretized on a grid, many
of these techniques can be applied to fluid mechanics with only minor modifications; for example,
for flow-field classification [13] and estimation [19].

A common model-free approach to flow-field reconstruction is to represent the field as a linear
combination of modes in a library, such as empirical eigenfunctions from proper orthogonal
decomposition (POD) [20,21] or dynamic mode decomposition (DMD) [22–25]. Gappy POD was
introduced by Everson and Sirovich [26] to repair corrupted or missing data and was adapted
to flow-field reconstruction by Bui-Thanh et al. [27]. This method has been used to reconstruct
unsteady flow fields around a cylinder [28] and an airfoil [29], arterial blood-flow data [8], and
low-dimensional ocean velocity and temperature fields [30]. Podvin et al. [31] used a similar method
to estimate POD coefficients for three-dimensional (3D) cavity flow from two-dimensional (2D)
particle image velocimetry (PIV) data. Other leading methods for flow-field estimation include
stochastic estimation and model-based observers, which are discussed in more detail in Sec. II.
However, the majority of these approaches are based on least-squares regression, which may be
prone to overfitting and sensitive to noise. Furthermore, although these methods minimize the
kinetic-energy deviation between the predicted and actual measurements, this does not guarantee
that the reconstruction will be globally optimal.

Inspired by the work of Wright et al. [12] on sparse representation for image recognition, we
propose searching for a sparse representation in a library of example flow fields rather than a
minimum-energy solution in the modal library, as shown schematically in Fig. 1. If the flow is
statistically stationary and the library is sufficiently extensive, it may be possible to identify a sparse
combination of the few most similar fields in the library that are consistent with the measurements.
If such a sparse representation is available, this approach corresponds to searching in prior data for
recurring coherent structures, which may be nonlinearly correlated with observations. Moreover,
sparsity-promoting techniques are known to prevent overfitting and provide robustness to noisy
and corrupt measurements, which are essential for flow-field estimation. Sparse representation has
been previously applied to classify flow regimes in a library of POD modes based on limited
sensors in the seminal work of Bright, Lin, and Kutz [13], and sparse flow classification has
been extended in related work [14–16]. Our work builds on this framework, extending regime
classification to full flow-field reconstruction and demonstrating sparse representation in a library
of training examples instead of a modal basis. We show that, when the flows are more complex
than previously studied, or the measurements are corrupted, this method significantly outperforms
reconstruction with a POD library. Since highly complex flows may not have a sparse representation
in terms of POD modes, this result reinforces the importance of sparsity for robustness to noise
and accuracy of reconstruction. We extensively explore this method on several example systems
of increasing complexity with various levels of measurement noise, including numerical and
geophysical data sets and find that it produces more accurate and robust reconstructions than
standard least-squares methods. Flow-field estimation continues to be an important and difficult
challenge, but improvements in robustness and accuracy are consistent with previous work in sparse
regression and highlight the value of sparsity in reconstruction methods.

The remainder of this work is organized as follows: Section II provides an overview of
related work on flow-field estimation. In Sec. III, we describe the proposed method for flow-field
reconstruction based on sparse representation. The four flow configurations used to test this
method are described in detail in Sec. IV. Section V explores sparse reconstruction for flow-field
reconstruction on these examples with various sampling strategies from corrupted measurements,
demonstrating that sparse representation exhibits improved robustness and accuracy compared with
least-squares estimation. These results include careful benchmark comparisons on four fluid flows,
including two canonical flows and two geophysical flows: periodic vortex shedding past a cylinder
at Re = 100 (Sec. V A), a mixing layer at Re = 720 (Sec. V B), global sea surface temperature fields
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(a) Library building (offline)

(b) Sparse representation (online)

(c) Full flow field estimation (online)

training library Ψ
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y CΨ ŝ

estimate coefficients ŝ

reconstruct
x̂ = Ψŝ

FIG. 1. Flow-field reconstruction process using sparse representation. (a) In offline library building the
measurement operator C is applied to the training set �. (b) The sparse representation step solves the
relaxed convex optimization problem (7) to estimate sparse coefficients ŝ which are consistent with the noisy
measurements y. (c) Finally, the full flow field is reconstructed as a linear combination of the training examples.
The reconstructed field shown in panel (c) is the actual output of the sparse representation algorithm with the
noisy test data and measurements shown in panel (b). Flow past a cylinder is discussed further in Sec. V A.

(Sec. V C), and data from a Gulf of Mexico ocean model (Sec. V D). On the mixing layer and Gulf of
Mexico ocean data, we demonstrate that, when a globally sparse representation is not available, the
flow field can be more accurately estimated with a superposition of local reconstructions and show
that this improvement is facilitated by enhanced sparsity of the local representations. In Sec. VI we
summarize the main results and discuss limitations of the method, and we conclude with Sec. VII.
To promote reproducible research, all code is available online.1

II. PRIOR WORK IN FLOW-FIELD RECONSTRUCTION

Because of its far-reaching applications, flow-field estimation is a rich field with seminal works
spanning the past half century. Here, we provide a brief overview of some of the most relevant
related works, which are organized into three broad groups: stochastic estimation, model-based
observers, and library-based reconstruction. Each of these methodologies approaches the problem
with a slightly different motivation, but many modern studies are driven by the overarching goals of
estimation and control.

Stochastic estimation (SE) was introduced by Adrian [32] to study coherent structures in
turbulence. SE is a statistical technique that estimates a quantity of interest in the flow as a
conditional average given the measurements. Expanding the conditional average in a Taylor series

1github.com/jcallaham/robust-flow-reconstruction
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and minimizing the mean-square estimation error yields a functional dependence between the
observation and flow-field variables determined by unconditional statistics, such as the two-point
correlation tensor. SE has been extended to the estimation of POD coefficients [33], spectral
coefficients [34,35], and inclusion of time-delayed measurements [36,37]. The stochastic estimation
method has been used to study isotropic turbulence [32,38,39], turbulent boundary layers [40,41],
axisymmetric jets [33,35], the backwards-facing step [42–44], open cavities [45,46], and for
feedback in closed-loop control of flow separation over an airfoil [47].

In another approach to flow-field estimation, an observer dynamical system is used to evolve
the estimate of the system state according to a reduced-order model while measurements provide
feedback used to improve the estimate. The model may be linear; for example, based on dynamic
mode decomposition (DMD) [22–25], with an estimate maintained by Kalman filtering [16,48,49].
The model could also be nonlinear, based on a Galerkin projection of the Navier-Stokes equations
onto a set of POD modes [50–52], or the result of model identification [53,54]. Recent work has
investigated the use of data assimilation techniques (e.g., particle filters or ensemble Kalman filters)
to estimate the mean flow [55–57] or the full flow field [58–62]. In any case, the accuracy of
observer-based methods depends on the quality of the reduced-order model, so there is inevitably a
trade-off between low-latency and high-accuracy models. There are a number of excellent reviews
of modal decomposition and model reduction in fluids [63,64].

A third category of model-free flow-field estimation takes advantage of large offline data sets
via library-based reconstruction. Often the flow field will be discretized and reshaped into a
high-dimensional vector, which is then approximated by a linear combination of modes in a library
[64]. The modes may be generic (e.g., a Fourier or wavelet basis) or tailored to the particular flow
(such as POD or DMD modes), which each have advantages for sensor-based flow reconstruction
[65]. Advanced data-driven algorithms such as K-SVD [66,67] and GOBAL [68] may also be used.
Gappy POD [26] is a popular library-based method, where the library consists of POD modes and
coefficients are estimated by least-squares regression based on limited or masked data [27,29,46].
Podvin et al. [31] used gappy POD to estimate POD coefficients for a 3D flow past a cavity from
2D PIV data, choosing the number of measurements to equal the number of modes, resulting in
the inversion of a square matrix. In a related approach, Yu and Hesthaven [19] use deep learning
to estimate POD coefficients, while Fukami et al. and Erichson et al. have both studied direct
estimation of flow fields with neural networks [69,70].

Linear dimensionality reduction techniques, such as POD and DMD, have well-known limita-
tions, including the inability to efficiently capture symmetries in the data, such as traveling waves
or rotating structures [71,72]. An alternative approach involves identifying a nonlinear coordinate
transformation onto a low-dimensional manifold, for example using an autoencoder neural network
with nonlinear activation functions [73]. With advances in deep learning, these nonlinear embedding
approaches are becoming more mainstream [74–78]. More generally, deep learning is a powerful
emerging technique to represent multiscale flow structure and model turbulence closure [79–82],
although it generally requires tremendous amounts of training data and may be prone to overfitting
unless care is taken to constrain the models with known physics. In a sense, deep learning may be
considered a sophisticated nonlinear interpolation scheme that leverages a large library of historical
examples [83]. However, linear dimensionality reduction is still widely used, in part because of its
simple formulation in terms of linear algebra, which enables fast computations and methodological
extensions [72].

The estimation and reconstruction algorithms described above are generally based on �2 opti-
mization, which suffers from the same limitations as standard least-squares parameter estimation;
sparsity-promoting methods have emerged as a principled way to address these shortcomings by
regularizing the regression [72,84–86]. Sparse representation in a library takes advantage of known
structure in the data and is robust to measurement corruption [12]. If the coefficient vector of the
modal representation is sparse in the sense that it has relatively few nonzero entries, the coefficients
can be recovered from surprisingly few measurements with efficient tools, such as matching pursuit
[87–90] or by �1 minimization of the coefficient vector [91,92], under certain assumptions. If the
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library consists of generic modes, such as a discrete cosine transform (DCT) basis, then recovery
based on �1 minimization is known as compressed sensing (CS) [93–95]. Compressed sensing
has been used in fluid mechanics to reconstruct a signal in a linear-duct acoustic problem [96],
identify dominant frequencies in low-dimensional projections of sub-Nyquist rate PIV data [97],
and to find a compact representation for wall-bounded turbulence [98]. Although these results are
promising, general flows are often not sparse enough to take advantage of compressed sensing,
requiring prohibitively many measurements and expensive computations that do not scale well.

The sparsifying library does not need to be universal, however. Sparse representation in a data-
driven POD basis was used to classify the Reynolds number for flow past a cylinder [13,15]. Bai
et al. [99] similarly demonstrated CS in a POD library to reconstruct PIV data. Wright et al. [12]
proposed a straightforward alternative to modal libraries, such as DCT and POD, in the sparse
representation for classification (SRC) algorithm for facial recognition. In SRC, an image of an
individual is downsampled and approximated with a sparse representation in terms of a library
consisting of the training data itself, which contains some example images of the same person. The
coefficients corresponding to the test individual will naturally be of greater magnitude, indicating
the identity of the subject. SRC is robust against noise, corruption, or occlusion of the image, and has
been applied for early diagnosis of Alzheimer’s disease [100], segmentation of MRI images [101],
automatic detection and classification of brain tumors [102], music genre categorization [103], and
dolphin whistle classification [104]. Although SRC was introduced for classification, the success
of sparse representation in a library of the training data has far reaching applications, including
for flow-field reconstruction, as will be explored here. A similar idea has been used in the field of
analog weather forecasting, where identifying the most similar past conditions (i.e., finding a sparse
representation of current conditions in terms of past conditions) provides information that enables
future predictions [105–107].

III. SPARSE REPRESENTATION OF A FLOW FIELD IN A LIBRARY

In this work, we investigate the utility of sparse representation for flow-field reconstruction
in a library of historical flow-field data, exploring robustness and scaling with flow complexity.
This section provides the methodological foundations for the results that follow. We describe the
general library-based signal recovery framework in Sec. III A, including reconstruction from sparse
representation. In Sec. III B we introduce our method for sparse-representation-based flow-field
reconstruction.

A. Library-based signal recovery

Here we provide the general problem statement and notation for sensor-based reconstruction of a
high-dimensional state in a library. Given a discretized state vector x ∈ IRn, for example representing
the fluid velocity or vorticity field at a set of grid points, and linear measurements y = Cx, with y ∈
IRp and p � n, we seek an estimate x̂ of the full signal. We assume that the state x can be accurately
expressed as a linear combination of library elements {ψ j}, j = 1, 2, . . . , r with ψ j ∈ IRn, so that

x ≈ �s, (1)

for some coefficient vector s ∈ IRr, where columns in the library � ∈ IRn×r are the vectors ψ j . The
reconstruction problem reduces to estimating the coefficients ŝ that satisfy

y ≈ C�ŝ. (2)

In other words, we seek an estimate that produces measurements ŷ = C�ŝ consistent with actual
observations y. As described earlier, the library � may comprise a modal basis, such as Fourier,
wavelets, POD, or DMD modes, or it may be chosen to contain examples of flow fields from training
data. We also explore reconstruction for different classes of measurement matrix C, although it is
also possible to tailor this matrix for a given library � for improved reconstruction [65].
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In practice, solving for ŝ in Eq. (2) must be formulated as an optimization problem, since C� is
not typically a square matrix. For instance, in the overdetermined case where p > r and there are
more measurements than library elements, we may choose to solve for the least-squares solution

ŝ = arg min
s

‖y − C�s‖2. (3)

It is generally useful to modify the least-squares regression by adding a regularization term to
prevent overfitting and promote robustness to noise and outliers in the data:

ŝ = arg min
s

‖y − C�s‖2 + λ‖s‖q. (4)

A choice of q = 2, corresponding to Tikhonov or ridge regression, penalizes high-variance solu-
tions. For instance, Buffoni [52] employed this regularization to estimate POD coefficients in a
nonlinear observer. A choice of q = 1 (LASSO regression) promotes a sparse representation [108].
The regularization parameter λ can be tuned to adjust the strength of this term. Other choices of
q are possible, but q = 1 and q = 2 are the most common since they can be solved with convex
optimization [109], which scales well to large problems.

For high-dimensional and multiscale data, it is often the case that there are fewer available
measurements than modes in the library, leading to an underdetermined problem with p < r. In
this case the appropriate optimization problem is

ŝ = arg min
s

‖s‖q subject to y = C�s. (5)

Again, q = 2 leads to the minimum-energy solution consistent with measured data, while q = 1
leads to a sparse representation in the library �.

If the coefficient vector s is known to be sparse, and it is assumed to have exactly K nonzero
elements (i.e., the vector s is K-sparse), this problem can be formulated as

ŝ = arg min
s

‖y − C�s‖2 subject to ‖s‖0 = K, (6)

where ‖s‖0 is the number of nonzero entries of s. Although an estimate of the sparsity K may not
generally be available, there are many efficient algorithms such as OMP [87–89] or CoSaMP [90]
that can solve this problem more efficiently than Eq. (5).

The representation problem in Eq. (5) can be applied to noisy sensor measurements y. In this
case, the measurements are y = Cx + η, where η is a noise vector. The optimization problem then
relaxes the equality constraint:

ŝ = arg min
s

‖s‖q subject to ‖y − C�s‖2 < ε, (7)

where ε is an error tolerance. If the measurements have independent and identically distributed
Gaussian noise [i.e., η ∈ IRp with ηi ∼ N (0, σ )], ε may be chosen as a multiple of the total noise
σ
√

p. When noise is introduced artificially, we nondimensionalize the noise level σ by the rms
fluctuations of the field variable in the training set.

The relaxation in Eq. (7) assumes that σ is relatively small compared with typical fluctuations in
the measurement vector y. Wright et al. [12] describe a method for sparse representation, with q = 1,
to handle sparse corruption with large amplitude, where some unknown fraction ρ of random entries
in y suffer from uniformly distributed corruption over the full range of observed values. That is, the
measurement y is now y = Cx + e, where e has ρp nonzero entries. The optimization problem
is extended to also identify e by direct minimization of its �1 norm. If the signal is additionally
corrupted by dense low-amplitude noise as in Eq. (7), the problem becomes

ŝ = arg min
s, e

‖s‖1 + ‖e‖1 subject to

∣∣∣∣
∣∣∣∣[C� I

][s
e

]
− y

∣∣∣∣
∣∣∣∣
2

< ε. (8)

We find, consistent with their results, that although the corruption e must be sparse in the sense
that it has enough zero entries to enable identification via minimization of its �1 norm, it can
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Ψ = X CΨ
ŝ = arg mins s 1

y − CΨs 2 <x y = Cx + η

x̂ = Ψŝ

FIG. 2. Schematic of the sparse representation method shown graphically in Fig. 1. After constructing the
library C� in an offline step, the sparse coefficients ŝ consistent with measurements y are estimated. The full
flow field can be reconstructed as a linear combination of the training examples in �.

actually consist of a substantial fraction of total measurements (see, e.g., Fig. 5). We demonstrate
reconstruction from noisy measurements in Secs. V A and V B, but we relax the optimization
problem even when noise is not explicitly added. Since Eq. (1) will generally not be exact, the
relaxation ε plays a role similar to that of the regularization parameter λ in Eq. (4); larger relaxations
ε allow sparser estimates ŝ which still satisfy the constraint in Eq. (7).

As mentioned earlier, there are many choices for the library of modes, and some may be more
natural depending on the application. Fourier modes or wavelets may be useful in audio or image
compression, and empirical POD modes are often used in fluids. To construct “tailored” libraries,
such as POD modes, it is necessary to have a training set X ∈ IRn×m of flow fields that contains
representative examples. Such a training set can be obtained from simulations or experiments. Other
libraries may be designed to be optimal in another sense. For instance, the K-SVD algorithm [66,67]
iteratively constructs a library in which data should have a representation with some prescribed
sparsity. GOBAL [68] is a similar method that enforces observability of the library modes. Wright
et al. [12] simply use the training set as the library, so that the columns of � are the prior
observations.

This reconstruction framework enables many choices for the library and the optimization
formulation. For example, gappy POD [26] solves the least-squares problem (3) with a library
of POD modes. To identify the high-energy structures in the flow field and ensure that the
problem remains underdetermined, the library of POD modes can be truncated. This may be done
automatically, for instance with the hard threshold of Gavish and Donoho [110], although it is not
clear in general what level of truncation is optimal for flow reconstruction.

B. Flow-field reconstruction from sparse representation

We now adapt the library-based reconstruction framework for fluid flow-field reconstruction.
The procedure is shown schematically in Figs. 1 and 2. The signal x ∈ IRn is the full discretized
flow field and the measurement operator C still relates measurements y to the full field by y = Cx.
Following the work of Wright et al. [12] in image analysis, we assume that the flow field has
a sparse representation in a library of training examples �, as opposed to POD modes. That is,
x = �s for some s with ‖s‖0 = K � n. The coefficient vector s can be estimated by using one of
the optimizations in Eqs. (5)–(8).

To improve the performance of this method for systems in fluid mechanics, we make several
modifications. First, the empirical mean of the training set may be subtracted from all data. This
is effective in cases where the mean represents a significant fraction of the energy in the data; for
instance in sea surface temperature fields (Sec. V C). Second, the amplitudes of the reconstructed
flow fields can be rescaled so that the total energy of the flow is equal to that computed from
the training data. This rescaling is useful for reconstruction from noisy measurements; flow fields
reconstructed with Eq. (7) tend to have lower amplitudes than the true field, since high levels of
noise can be consistent with qualitatively accurate fields of reduced amplitude. In this work we only
use this modification in Sec. V A.
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Third, we develop a method of localized reconstruction for complex fluid flows. In the recon-
struction process above, it is assumed that the test field is a simple linear combination of global
fields in the library. However, for flows with coherent structures at multiple spatial scales, it may be
prohibitively expensive to collect enough data to have representative examples of all likely global
flow fields. Said another way, for multiscale flows, it is difficult to collect enough data for the library
to converge to a statistical stationary distribution. Fortunately, if we decompose the global domain
into local patches, each patch may be much lower rank, enabling a local sparse representation. To
facilitate localized reconstruction, we introduce local kernels � j, j = 1, 2, . . . , k that restrict the
measurement y j = C� jx and reconstruction to the jth local region:

ŝ j = arg min
s j

‖s j‖q subject to ‖y j − C� j�s j‖2 < ε. (9)

These decoupled optimization problems lead to compact local estimates x̂ j = � j�ŝ j, with a full
state estimate, x̂ = ∑

j x̂ j , that is globally valid.
Finally, we define a metric to compare the quality of various reconstructions. The normalized

root-mean-square residual of the difference of the reconstruction x̂ and the test field x is

error = ‖x − x̂‖2

‖x‖2
. (10)

If the empirical mean x̄ is subtracted from both x and x̂, then the appropriate metric is

error = ‖x − x̂‖2

‖x + x̄‖2
. (11)

At this point, it is important to summarize some of the main assumptions that sparse represen-
tation relies on. First, as with all reconstruction methods based on a tailored library, we assume
that the flow is statistically stationary, so that a sufficiently large library based on training data can
generalize to future states. We then assume that the training set is comprehensive enough that the
observed states are well-approximated by a linear combination of library elements. This is a related
requirement, but while the former is a property of the flow, the latter is a property of the training data
itself. All reconstruction methods further rely on the measurements containing sufficient information
to accurately identify the coefficients ŝ. Just as reconstruction is impossible, even with relatively
dense sampling, for a flow state that is essentially orthogonal to the library, we cannot realistically
expect to accurately reconstruct a turbulent channel flow from one point measurement, no matter
how extensive the library. Finally, sparse representation assumes that a flow field of interest may be
expressed as a linear combination of a small number of other flow fields in the training library. This
assumption holds for simple flows, such as periodic vortex shedding at low Reynolds number, but
may be unjustified for complex, multiscale flows unless a staggering amount of data is available.
We examine the implications of these assumptions in the following sections.

1. Algorithm

The complete flow-field reconstruction based on sparse representation is as follows:
(1) Compute the library � ∈ IRn×r . The library may be given by the unmodified training data

X ∈ IRn×m, although we also investigate reconstruction using POD modes and a K-SVD library.
Optionally, the empirical mean flow field x̄ ∈ IRn may be subtracted from X .

(2) Take measurements y = Cx + η of the flow field x by using the measurement operator C ∈
IRp×n with noise η. For the examples below, the measurement matrix C consists of rows of the
identity matrix corresponding to measured locations in the discretized field.

(3) Solve the appropriate optimization problem in Eqs. (5)–(8) for the coefficient vector ŝ. If the
coefficients are found by minimizing the �1 norm, we refer to this as sparse representation.

(4) Reconstruct the estimated flow field with x̂ = �ŝ. Optionally, rescale the estimated field to
have the same variance as the training fields; this is helpful for very noisy measurements.
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§5.1: Re = 100 vortex shedding §5.2: Re = 720 mixing layer

§5.3: Sea surface temperature §5.4: Gulf of Mexico vorticity

FIG. 3. Example flow fields from the data sets which we investigate with the sparse representation-based
reconstruction method. We study two canonical flows (periodic vortex shedding past a cylinder at Re = 100
and a mixing layer at Re = 720) and two geophysical data sets (sea surface temperature and Gulf of Mexico
vorticity fields).

For dictionary learning with K-SVD, we use KSVD-BOX v13. We solve the pursuit problem in
Eq. (6) with OMP-BOX v10 [111]. To solve the convex optimization problems (7)–(9), we use the
CVX Matlab package [112,113]. The complexity of sparse approximation grows with the number
of measurements and the number of modes in the dictionary but does not directly depend on the
number of points in the original discretized field.

IV. FLOW CONFIGURATIONS

Here we describe the fluid flows explored in this work and the methods used to obtain the data.
We apply flow-field reconstruction to four data sets of increasing complexity, shown in Fig. 3: vortex
shedding past a cylinder at Re = 100, a mixing layer at Re = 720, observations of sea surface
temperature, and sea surface vorticity in the Gulf of Mexico.

A. Periodic vortex shedding

The first test case is given by the two-dimensional fluid flow past a circular cylinder at Reynolds
number 100, which is characterized by periodic, laminar vortex shedding. This flow is a canonical
benchmark system, although it is considerably simpler than most flows of practical interest.

Our data were generated from direct numerical simulation of the incompressible Navier-Stokes
equations using the immersed boundary projection method [114,115]. The computational domain
consists of four nested grids with the smallest grid covering a domain of 9 × 4 cylinder diameters
and the largest grid covering a domain of 72 × 32 diameters. The resolution for each grid is
450 × 200 (50 points per cylinder diameter) and the simulation uses a time step of �t = 0.02
time units that are nondimensionalized by the free-stream velocity and the cylinder diameter. We
collect 151 post-transient snapshots, corresponding to five periods of vortex shedding, with each
snapshot separated by 10�t . The Reynolds number for this flow, based on the cylinder diameter
and free-stream velocity, is Re = DU∞/ν = 100, where D is the diameter, U∞ is the free-stream
velocity, and ν is the kinematic viscosity. The training set consists of the first 32 snapshots, which
spans one full period. We analyze the vorticity field, although the method could be applied to
velocity, pressure, scalar concentrations, or any other field variables of interest. The mean vorticity
field is included in visualizations, although analyses and error calculations are performed after
subtracting the empirical mean of the training data.
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B. Mixing layer

As a more complex example, we consider a two-dimensional, compressible mixing layer at
Reynolds number

Re = �U δ

ν
= 720,

where δ is the initial vorticity thickness, �U is the velocity difference across the layer, and ν is the
kinematic viscosity. Stanley and Sarkar [116] showed that two-dimensional numerical simulations
in this regime reproduce the flow structures observed in three-dimensional experiments.

We generated this data set by direct numerical simulation of the compressible Navier-Stokes
equations using a finite-volume, fifth-order WENO scheme [117]. The spatial coordinates are
normalized by the vorticity thickness at the inlet. The velocities are normalized by the speed
of sound of the fluid far from the mixing region. The Mach numbers of the high- and low-
stream velocity are 0.5 and 0.25, respectively. The computational domain is x ∈ [0, 800] and y ∈
[−200, 200]. The flow is forced at the inflow boundary at its most unstable fundamental frequency,
and its subharmonic. Nonreflective boundary conditions are implemented on the other boundaries.
The grid is smoothly stretched away from the mixing region to the nonreflective boundaries to
prevent contamination by reflections. The grid in the mixing region is uniform with �x = 0.08
and �y = 0.02, respectively. After removing the transient portion of the simulation, we collect
2400 snapshots of the vorticity field in a window of (x, y) ∈ (0, 128) × (−12, 12), separated by
nondimensional time steps of �t = 0.5827. We compute the normal vorticity from these velocity
fields both for ease of visualization and for the importance of vorticity in identifying dynamically
significant coherent structures [118].

Forcing at the inlet excites instability waves, which roll up into vortices and convect downstream.
These vortices pair and eventually merge into successively larger vortices. This process contributes
to the linear growth of the mixing layer [119], and at higher Reynolds number, the turbulent mixing
layer is dominated by the linear growth of the coherent structures [120]. These structures play a
significant role in mixing, transport, and entrainment in turbulent shear flows [118]. Therefore, we
study this laminar mixing layer as a representative case to assess the ability of sparse representation
to generalize to other shear flow configurations.

C. Sea surface temperature field

Real-world data are rarely as well-behaved as the numerical solutions of canonical flows.
However, it is these flows, with limited training data, multiscale dynamics, and unmodeled coupling
to external systems, where the ability to infer the structure of the field would be most useful. To
this end we explore reconstruction methods with the NOAA Optimum Interpolation Sea Surface
Temperature (SST) V2 data set. Due to seasonal fluctuations, the SST field exhibits strongly periodic
structure, although complex ocean dynamics still lead to rich flow phenomena. Flow data are
available on a weekly basis on a one degree grid, and it is produced by combining local and satellite
temperature observations. We use all available data at the time of analysis (1914 weeks, spanning
October 1981 to June 2018). Our training set consists of the first 20 years of data (1040 weeks,
spanning 1981–2001). We calculate a long-term annual mean field and subtract the mean for all
analyses, since the mean accounts for the majority of the spatial structure of the field and is therefore
uninformative with respect to the performance of reconstruction methods.

D. Gulf of Mexico surface vorticity

Finally, we consider the Gulf of Mexico surface velocity estimates from the HYbrid Coordinate
Ocean Model (HYCOM) group. This data-assimilative model synthesizes remotely sensed and in
situ measurements on a hybrid coordinate system. We use daily 1/12.5◦-resolution data from 1992–
2018 (9268 snapshots, combined from HYCOM experiment numbers 19.0, 19.1, 90.9, 91.1, and
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FIG. 4. Singular value spectra for the flows studied in this work. Each is normalized by the sum of singular
values for that flow. The normalized cumulative sum of the singular values (bottom) represents the energy
captured in the dominant POD modes. The rate of convergence gives an indication of the complexity of the
flow. The singular values for vortex shedding past a cylinder (blue) converge quickly, whereas the Gulf of
Mexico vorticity data (purple) has a long tail. The sea surface temperature (yellow) and mixing layer vorticity
(red) are of intermediate complexity.

91.2). The training set consists of 8341 snapshots, or approximately 90% of the total data, with the
remainder withheld for independent validation. As with the mixing layer and cylinder, we compute
vorticity from 2D velocity measurements, although the methods are readily applied to any quantity
of interest. We analyze the fluctuating vorticity fields relative to the empirical mean of the training
set, but include the mean flow in visualizations.

Figure 4 shows the singular value spectra, equivalent to the POD eigenspectra, of the four data
sets. This offers a rough comparison of the complexity of the flows. The low-dimensional dynamics
of the flow behind a cylinder is clear from the sharp decay of singular values; most of the energy
is contained within the first twenty POD modes. On the other hand, the spectrum for the Gulf
of Mexico data converges slowly, indicating complex multiscale dynamics. The difficulties with
this data set are intuitive: by restricting our view to the Gulf of Mexico we study a flow with an
unmodeled coupling to a much larger chaotic system. The mixing layer and sea surface temperature
data exhibit intermediate complexity. For the mixing layer, the flow near the inlet is approximately
periodic, and the behavior becomes more complex as the flow evolves downstream. Similarly, the
SST fields show strong seasonal fluctuations with perturbations.

V. RESULTS

We now investigate flow-field reconstruction from limited measurements using the four data
sets described in Sec. IV, which span a range of physical scales and complexity. For the two
numerically generated flows, we study the impact of measurement noise on reconstruction accuracy
and find improved robustness with sparse representation. In the mixing layer, we demonstrate the
advantages of sparse representation by analyzing the flow in windows to enable higher levels of
sparsity. Finally, we demonstrate the proposed method on two geophysical data sets: global sea
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FIG. 5. Sparse reconstruction in a library of training data accurately recovers the flow past a cylinder in
the presence of noise and corruption using a variety of measurement strategies. (a) Illustration of different
measurements: random points (blue), vertical and horizontal slices (purple and green, respectively), and a
window (red). (b) Flow field from the test data set. (c) Example flow snapshot with corruption in 70% of
grid locations. The vertical stripe shows the measurement location. (d) Reconstructed flow field from sparse
representation using corrupted measurements shown in panel (c). (e) Normalized reconstruction error with
increasing percentage of grossly corrupted grid points (see Sec. III A). Colors correspond to the measurements
in panel (a) and error bars show standard error as obtained by simulating 10 different realizations of the
Gaussian noise for the 119 test fields. (f) Normalized reconstruction error with increasing levels of dense,
normally distributed noise. In all cases, more measurements result in better performance. A contour plot of
reconstruction errors is shown in Fig. 18 in Appendix C.

surface temperature and Gulf of Mexico surface vorticity. In all cases, we compare the performance
of sparse representation to other library-based methods, including gappy POD.

A. Periodic vortex shedding

Figure 5 demonstrates reconstruction of the flow past a cylinder from various measurements
with increasing levels of noise and corruption. In particular, we consider sparse representation in
a library of the training data and find that this flow can be accurately reconstructed, even in the
presence of significant noise. We also investigate various measurement strategies, including random
point measurements, a “window” inspired by PIV-type measurement, and continuous “slices” in
both vertical and horizontal orientations. For example, Fig. 5 demonstrates recovery of the entire
field using Eq. (8) from a cross-stream slice measurement where 70% of the measured points are
corrupted by replacing the observed value with a uniform random value on the range of observed
vorticity. In all cases, the measurement strategies with larger numbers of observations (e.g., the red
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FIG. 6. Comparison of reconstruction with different libraries and norms from a noisy vertical measurement
slice (Fig. 5, purple). The horizontal axis is the level of dense Gaussian noise, the vertical axis is the normalized
residual error in the reconstruction (10), and the error bars indicate standard error on the mean residual. Insets
show typical examples of reconstruction. Over this range of noise, sparse representation with the training
library (red) shows an average 35% improvement over the more standard gappy POD (purple).

window) exhibit more robust reconstruction performance. In addition, for corrupt measurements,
there is a phase change observed at a critical corruption density, consistent with the wider sparse
representation literature. It is not surprising that sparse representation is effective for this simple
example, since the flow is periodic and patterns observed in the training data generalize to the test
fields. In fact, for this reason, we do not have a truly independent set of flow fields on which we
validate the ability of these methods to generalize beyond training data. However, these results
are encouraging, because sparse representation exhibits accurate and robust reconstruction across a
variety of physical measurement configurations and noise intensity.

With the wealth of potential reconstruction techniques within the library-based optimization
framework, it is interesting to explore the relative resilience to noise of different choices of the
library and regularizing norm. Figure 6 shows a comparison of reconstruction accuracy with
increasing noise level for several of these combinations. We find that over a wide range of Gaussian
noise levels, the sparse reconstruction (�1 norm) with either the training library or a K-SVD library
outperforms POD-based methods. The slope of the �2-based methods are smaller than those of
the �1-based methods, so they will eventually achieve lower relative error, although at such large
levels of noise it is unlikely that any method will result in a useful reconstruction. The poor
performance of �1 optimization with a POD library indicates that the POD basis does not admit
a sparse representation; empirical POD modes are eigenfunctions of a time-averaged correlation
matrix, so that the energy in any particular flow field is distributed across modes. Thus, although the
POD basis is optimal in the sense that it offers the best global reconstruction for a given number,
this does not translate into optimality for the problem of reconstruction from limited measurements.
In contrast, the K-SVD library is designed to admit a sparse representation of the data, and it is
not surprising that this library results in the best performance.2 However, sparse representation in a

2K-SVD allows for tuning several parameters; although our chosen values work well, these are not necessarily
optimal.
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library of the training data exhibits similar performance and benefits from simple implementation
and interpretable results. These results reinforce the importance of sparse representation with
respect to robustness to noise, a quality which has made �1 regularization a popular tool to prevent
overfitting in parameter estimation [84].

It is not surprising that sparse representation is so effective on this example, since the flow
is low-rank, periodic, and does not exhibit multiscale phenomena. For a periodic flow, sparse
representation reduces to choosing the single example with the correct phase from the library. In
contrast, each flow field is a dense linear combination of POD modes, so that this library does
not admit a sparse representation. Reconstruction from limited, noisy measurements via sparse
representation in a training library can therefore provide a robust alternative to �2-based methods.
In addition, the set of sparse coefficients can also be used for robust estimation integral quantities
such as the lift coefficient, provided the fields in the training set are labeled with the corresponding
quantity of interest, as demonstrated in Appendix C.

B. Mixing layer

The downstream evolution of the mixing layer leads to globally aperiodic dynamics, so we cannot
expect to exactly reproduce an arbitrary flow field with a single example from the training library, as
was the case for the periodic vortex shedding behind a cylinder. However, we find that highly sparse
representations still lead to accurate flow-field estimates. This suggest that the library of mixing
flow fields generalize to new flows that are not in the training set, allowing a sparse representation.

Figure 7 demonstrates reconstruction of the normal vorticity of the mixing layer from spatially
downsampled measurements, given by 10:1 downsampling of the original data in the middle region
containing the mixing layer. Since noise is added to the measurements, the sparse representation is
found using Eq. (7) with an optimally chosen value of ε (see Appendix B). This may be thought
of as a super-resolution problem [121,122], where low-resolution measurement data is synthesized
into a higher-resolution field based on a high-resolution library. We compare reconstruction via
sparse representation in the training library to �2 minimization in a truncated library of POD modes
(r = 50). Both suffer from some degree of overfitting, since the specific global arrangement of
vortices in the test data is likely not observed in the training data. Still, sparse representation builds
a reasonable picture of the early perturbations and later large-scale vortical structure, whereas both
are barely identifiable in the POD reconstruction.

The relatively limited accuracy of sparse representation in this case suggests that the global test
field is not a sparse linear combination of examples in the training set, presumably because all
possible arrangements of vortices and their phases have not been observed. Compared to vortex
shedding past a cylinder, this flow exhibits more complex, multiscale dynamics that are driven by
the successive vortex pairing process. The local measurements may not be informative or correlated
with the global structure of the flow field, which is an implicit assumption of the global library-based
estimation. In such cases, where the global domain is larger than the decorrelation length, it may be
helpful to assume that measurements inform only the local spatial region of the flow. Thus, we apply
the localized reconstruction process introduced in Sec. III B. We divide the full flow field into ten
windows that grow linearly in the streamwise direction, consistent with the streamwise dynamical
scaling, and solve the local sparse representation problems independently. Reconstructions are then
formed from sparse combinations of the windowed training fields.

Figure 7(g) compares the relative sparsity of the global and windowed sparse representations,
given by the fraction of total nonzero coefficients across all independent windowed optimization
problems. The local representations are more sparse and have higher fidelity than the global
reconstruction. This suggests a connection between multiscale features of the flow and the sparsity
of representation. By restricting the scope of the reconstruction problem, we simplify the effective
dynamics, and this is reflected in the order of magnitude difference in the sparsity of representation.
These results suggest that the proposed flow-field reconstruction method may generalize well
to spatially complex flow fields. Note that, when averaged across the test data, the various
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FIG. 7. Global reconstruction of a mixing layer vorticity field via super-resolution. (a) The test field is
(b) measured with 10:1 downsampling and reconstructed with both (c) sparse representation in a training library
and (d) least-squares regression in a POD library. Although both methods overfit the data, sparse representation
captures the large-scale structures more effectively than least-squares POD. (e), (f) Separating the domain into
windows that grow linearly in the streamwise direction, consistent with the flow dynamics, leads to a more
realistic reconstruction from sparse representation, although gappy POD does not improve with this approach.
(g) The relative sparsity, given by the fraction of nonzero coefficients, of the global and windowed sparse
representations shows that windowing enables improved sparsity. A color map of reconstruction errors is shown
in Fig. 19 in Appendix C.

reconstruction results are comparable in an �2 error metric (∼0.4), even though the fields obtained
via sparse representations exhibit more qualitatively accurate flow structures. Gappy POD performs
relatively well in this case because there are more samples (p = 448) than POD modes in the
truncated basis (r = 50). The optimal performance of gappy POD tends to be in the oversampled
regime; see Appendix B for a discussion and demonstration on the sea surface temperature data set.
However, the �2 metric is likely not ideal for measuring differences in convecting flow structures,
because shifting the exact test field by a couple of pixels will result in an error that is comparable to
the gappy POD field.

Figure 8 demonstrates reconstruction from ten noisy point measurements evenly spaced along
the centerline of each window. In this case, sparse representation significantly outperforms gappy
POD, although when averaged across the test data, the global sparse reconstruction is more accurate,
in an �2 sense, than the windowed estimate. As discussed further in Sec. VI and shown in Fig. 12,
the dynamics have longer timescales in the downstream windows, because the flow evolves from
a linear instability wave to complex vortex interactions. Thus, the training data may not include
enough representative examples of downstream behavior to admit a sparse representation. Indeed,
the local reconstructions in the first seven windows are highly accurate and the errors in the total
flow field estimate are largely due to the final three windows.
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(a) Test field (b) Noisy measurement
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FIG. 8. Local mixing layer vorticity field reconstruction. As in Fig. 7, we construct windows that grow
linearly in the spanwise direction and collect ten point measurements at noise level σ = 0.3 (white and black
dots) from the mixing layer centerline in each window (separated by dashed lines). (e), (f) Local reconstructions
are computed based on a windowed library of training examples. The normalized residual error averaged across
the test set is (c) 0.49 for the global sparse reconstruction, (e) 0.58 for the windowed sparse reconstruction,
(d) 1.06 for global gappy POD reconstruction, and (f) 1.05 for the local POD estimate. Although the windowed
sparse representation has larger global errors than the global estimation, the local reconstruction is more
accurate in the windows closer to the inlet, since the timescales of the flow are shorter there and the training
set is more likely to contain examples of similar fields [see also Fig. 12(b)]. The relative sparsity of the global
and windowed sparse representations in panel (g) shows improved sparsity with windowing.

C. Sea surface temperature field

The global sea surface temperature (SST) data set represents a flow field that is strongly driven by
periodic seasonal forcing but also deviates from oscillatory behavior under the influence of complex
oceanographic and environmental processes. For this reason, the SST data may be viewed as a
problem of intermediate difficulty for the algorithm, with complexity somewhere between the Re =
100 flow past a cylinder from Sec. V A and the strongly aperiodic Gulf of Mexico data in Sec. V D.
Figure 9 shows a comparison of mean-subtracted temperature field reconstructions from randomly
located point measurements restricted to the mid-latitude region from 50◦ S to 50◦ N. We reconstruct
the field with sparse representation in a training library and compare the result to gappy POD with
the same measurements in a heavily truncated library (r = 2) and with many more measurements
in a library of r = 50 POD modes. Both methods perform similarly in the error metric given by
Eq. (10); average reconstruction errors across the test data are within one standard error of one
another.

Fluctuations in the sea surface temperature field are dominated by seasonal oscillations, so that
two POD modes capture a surprising amount of structure. In the absence of measurement noise,
gappy POD has proven effective in estimating flow fields that can be represented accurately in terms
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FIG. 9. (a) Example reconstruction of a sea surface temperature field using (b) sparse representation in
a training library and gappy POD with (c) p = 10 and (d) p = 500 measurements. The POD libraries were
truncated at r = 2 and r = 50 modes respectively, which were the empirically determined optimal values.
Errors in all three estimates are around 0.30. The long-term annual mean temperature field has been subtracted
to highlight variations in the data. A color map of reconstruction errors is shown in Fig. 20 in Appendix C.

only a few modes [29]. The fact that a flow as apparently complex as in Fig. 9(a) can be accurately
reconstructed with either method from as few as 10 random point measurements is a reflection of
the underlying low-dimensional structure of this data set.

D. Gulf of Mexico surface vorticity

The final test flow is the HYCOM Gulf of Mexico ocean velocity data, which poses the
greatest challenge for reconstruction. On the timescale of the available data, the flow is not
statistically stationary and, given the spatial complexity of the flow, accurate reconstruction requires
significantly more measurements than the other fields considered in this work. Figure 10 shows a
typical example of field reconstruction from p = 4000 random point measurements, which account
for about 8.5% of all grid locations. Global reconstructions from both sparse representation in the
training set and gappy POD with a truncated library of r = 500 modes successfully reconstruct
much of the large-scale structure in the field and have comparable reconstruction errors, although
the sparse representation estimate is contaminated by nonphysical high-frequency fluctuations.

As with the mixing layer, the test field cannot be accurately represented as a sparse combination
of training examples because of the complexity of the flow and the fact that the training data do not
fully generalize to the test set. The sparsest representation identified by Eq. (7) contains K = 3995
(around 48%) nonzero coefficients [Fig. 10(c)], around 400 times as many as the sea surface
temperature field in Fig. 9(b). However, we achieve a more accurate reconstruction through the local
kernel approach outlined in Sec. III B and the Appendix. By separating the reconstruction problem
into localized kernels, we can stitch these local reconstructions together to obtain a global field that
more accurately captures the large-scale vortical structures in the test field. This is intuitive from a
measurement perspective, since the localization essentially relaxes the optimization constraints so
that the sparse representation need only be consistent with local measurements. Seeking a global
reconstruction that matches all measurements simultaneously is overly restrictive for a flow in which
spatial correlations decay rapidly. As with the mixing layer, sparsity appears to be a hallmark
of complexity; on average, each kernel representation contains only K ≈ 106 (∼1%) nonzero
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(a) Test field (b) Measurement locations

(c) Global sparse representation (d) Global gappy POD

(e) Local sparse representation (f) Local gappy POD

FIG. 10. (a) Reconstruction of Gulf of Mexico vorticity field from (b) p = 4000 random points. (c) The
global sparse reconstruction from a training library suffers from overfitting, since there is not a highly sparse
global representation of this flow field in the training set. (d) Gappy POD on the global field is comparable to
global sparse representation; residual errors in both cases are ∼0.60. (e) Sparse reconstruction from the same
measurements but using the local kernel method described in Sec. III B with k = 96 equally spaced kernels,
enables locally sparse representations that combine to form a significantly more accurate global estimate, with
a reconstruction error of 0.37. (f) The local least-squares POD still suffers from high-frequency overfitting. A
color map of reconstruction errors is shown in Fig. 21 in Appendix C.

coefficients. This suggests that features in local patches of the flow may closely resemble those
present in the training data, even if the global flow field does not.

Figure 11 demonstrates reconstruction from uniformly downsampled measurements. The test
field is sampled at a 5:1 ratio in the ocean region (p = 1261 points) and reconstructed with gappy
POD and local sparse representation, using the same parameters as in Fig. 10. Again, reconstruction
from a local sparse representation is more accurate than gappy POD, suggesting that the method
may be useful for interpolating low-resolution sensor data.

VI. DISCUSSION

This work demonstrates the enhanced robustness and accuracy of flow-field reconstruction by
sparse representation in a library of training data, and we have explored this approach on a range
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(a) Test field (b) 5:1 downsampling

(c) Local sparse representation (d) Global gappy POD

FIG. 11. (a) Reconstruction of Gulf of Mexico vorticity field from (b) uniform 5:1 downsampling. (c) Local
sparse representation with k = 96 equally spaced kernels yields a 26% improvement in reconstruction error
over (d) gappy POD in a library truncated to r = 500 modes. Global sparse representation and local gappy
POD both perform worse than these methods.

of example flow fields of increasing complexity. We also discuss potential limitations of sparse
representation, along with proposed methodological extensions and improvements. The success
of sparse representation depends on the availability of both an extensive library that contains
representative examples of relevant flow structures and sufficiently rich sensor information to infer
which of these structures are active. Both of these requirements are related to the flow physics and
spatiotemporal scales of the particular system under consideration.

First, the library must contain a sufficiently extensive collection of example flow fields, so that a
new flow field may be approximated by a sparse combination of these examples. Even for aperiodic
flows, this may be satisfied if the training set contains a long enough flow history. To quantify
if the training library is sufficiently complete to generalize to a new test field, we compute the
residual error obtained by approximating a test field by orthogonal projection onto the training
library. If the test field is well approximated in the training library, the residual is small, and if
the test field has new structures that are not observed in the training data, there will be a large
residual. Figure 12 shows the residual error for each of the four flow examples from Sec. V as a
function of the length of the training data; the orthogonal projection is obtained by computing the
POD subspace for the given library with m training examples. Even with very few examples in the
library, the flow past a cylinder generalizes to the test data, since the flow is periodic. However,
the mixing layer and Gulf of Mexico vorticity data have relatively large generalization error, even
for large training libraries, indicating that there are new structures that have not been observed in
the training data. With enough training data, it is conceivable that the generalization error can be
controlled for these flows, although this may be prohibitively expensive in terms of data collection
and processing. Instead, decomposing the flow domain into local patches results in considerably
improved library generalization [see Fig. 12(b)], meaning that fewer training data are required for
an accurate representation of a new flow field in the library. As shown in Figs. 7, 8, and 10, the local
patches also admit a sparser representation in the library, resulting in more accurate and robust flow
reconstructions. The improved performance of a local sparse representation is intuitive because
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FIG. 12. Residual error in projection of test data onto the linear subspace spanned by POD modes. As more
data are added to the training set (horizontal axis), arbitrary fields from the test set are more likely to be in the
span of the training data. This residual represents a lower bound on the error in a global reconstruction based
on this linear subspace. (a) Comparison of all flows studied in this work. (b) Subspace projection residuals for
the windowing scheme shown in Figs. 7 and 8. Even for windows encompassing the complex vortex pairing
behavior downstream, the test data are approximately within the span of the subspace, although the timescales
of convergence are much longer.

decomposing the spatial domain makes it more likely to find similar local flow structures in the
training data. Thus, the generalization error of the training library provides a useful diagnostic to
quantify the expected performance of sparse representation.

Throughout these examples, we find that least-squares solutions generally overfit to noisy
sensor measurements, resulting in nonphysical high-frequency fluctuations, as in Figs. 7 and 10. In
contrast, sparse representation in a library of training examples results in robust and accurate flow
reconstruction, preventing overfitting and ensuring that that the unmeasured regions of the field are
consistent with prior knowledge. If a sufficiently sparse approximation is not possible, however, the
method will not reliably produce a field that is qualitatively similar to actual observations. However,
even if a sparse representation of the entire flow field does not exist, Figs. 8(b), 8(c), and 10(d)
demonstrate that locally sparse representations can be used for globally accurate reconstruction.
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FIG. 13. Normalized residual error of sparse representation-based reconstructions with increasing number
of random point measurements. We use the global reconstruction method for the periodic vortex shedding past
a cylinder (blue), mixing layer (red), sea surface temperature fields (yellow), and Gulf of Mexico (purple)
flow fields. For computational efficiency we estimate coefficient vectors ŝ using orthogonal matching pursuit
(OMP) with empirical estimates of the sparsity K. Accurate reconstruction requires both rich training data and
sufficient measurement information; the latter condition can vary widely depending on the flow.
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A second condition for successful sparse flow reconstruction, even with a rich enough library,
is for the measurements to provide sufficient information to correctly identify the sparse library
coefficients. For example, it is unrealistic to hope that a single point measurement can be used to
reconstruct a highly turbulent flow field, no matter how comprehensive the training library. In the
Bayesian perspective, even perfect knowledge of the prior distribution is not enough for an accurate
estimation, unless it is sufficiently conditioned on measurement information. Figure 13 shows the
accuracy of the sparse representation method versus the number of random point measurements for
each example. In each case, there is a rough number of sensors where the error sharply decreases:
p = 10 for the flow past a cylinder and sea surface temperature fields, p = 100 for the mixing
layer, and p = 4000 for the Gulf of Mexico data, which roughly correspond to the number of
measurements used in Sec. V. Further increasing the number of sensors results in a minimum error
plateau, which is defined by the generalization error of the library, as described above. It is important
to note that it may be possible to reconstruct the flow field with less error from fewer measurements
by leveraging additional knowledge about the flow; for example, from a reduced-order model [63]
or via time-delay embedding [123].

VII. CONCLUSION

In this study, we develop a method for flow-field reconstruction based on sparse representation in
a library of examples. This method builds on prior work in library-based reconstruction and sparse
representation; in particular the sparse representation for the classification algorithm [12,13]. We
apply this method to several example flows, ranging from simple canonical flows to challenging
geophysical data sets, and demonstrate improved accuracy and robustness to noise and corruption
compared with typical least-squares flow reconstruction, provided that the library is sufficiently rich
and the measurements are sufficiently informative.

This work suggests several directions of ongoing research to refine the method for practical
applications. For example, the requirement that the flow be statistically stationary appears to
preclude application in flows with changing operating conditions. However, the demonstration of
the method on the Gulf of Mexico vorticity field suggests that the stationarity requirement may be
violated, provided the library is rich enough. A more thorough investigation of parameter variation,
for example to reconstruct flow past a cylinder over a range of Reynolds numbers, would be
an interesting future direction; sparse representation has already been shown to identify different
dynamical regimes in a classification context [13]. In addition, sparse representation fundamentally
relies on a linear embedding, with the associated limitations. It is unclear how to naturally extend
these approaches to nonlinear embeddings, although this is an interesting avenue of ongoing work.
However, the localized methods of Secs. V B and V D provide a principled approach to lessen the
burden on the required training data.

Although Figs. 12 and 13 give rough metrics for sufficiency of the training data and measurement
information, more quantitative and principled criteria for both requirements would be useful to
determine a priori which flows are good candidates for this method, how much training data are
required, and which sensor configurations will sufficiently inform the structure of the flow field.
The performance of this method may also be improved with more sophisticated library learning
methods [66–68] or optimal sensor placement strategies [29,30,65,124], both of which are active
areas of research.

The localized reconstruction procedure presented here, while effective, has also not been
optimized. Continuing to develop this procedure is a promising future direction because it offers a
route to circumvent some apparent limitations of library-based reconstruction [see, e.g., Fig. 4(b)].
For example, in convection-dominated flows or flows with continuous symmetries, one might
envision a “universal” library constructed by convolving a kernel with the flow fields, in the spirit
of recent work on convolutional neural networks [69].

Furthermore, there are many ways to formulate and solve the sparse optimization problem
(7), and alternative approaches, such as sequentially thresholded least squares [86] or pursuit
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algorithms, may outperform �1 regression. In addition, the sparse optimization procedure may be
too computationally expensive for some real-time control applications, motivating ongoing work
to improve algorithmic efficiency; fortunately, the timescales of the geophysical flows investigated
in this work are slow compared with the sparse optimization. Finally, most flows of interest are
three dimensional, and it will be important to demonstrate this method on three-dimensional flows.
While it is straightforward to generalize this method to three-dimensional fields, e.g., by the same
vectorization approach used for two-dimensional flows, the matrices representing discretized 3D
flows can become very large. The main computational cost is due to the optimization problem, which
scales with the number of measurements and not the dimensionality of the discretized flow field;
however, the number of measurements necessary to sufficiently inform the structure of a complex
three-dimensional flow field may lead to prohibitively expensive computations.

In the examples considered here, we have shown several advantages which make sparse represen-
tation an attractive candidate for flow-field reconstruction. In particular, we find that reconstruction
from sparse representation in a library of training examples is robust against noise and leads to
physical flow-field estimates. We have shown that this framework can be modified to handle dense
sensor noise and gross measurement corruption. The method can also be extended to complex flow
fields by decomposing the spatial domain and seeking localized sparse representations. With this
flexibility, sparse representation may provide a powerful tool for estimating complex flow fields in
a range of applications.

The immersed boundary projection layer solver used to generate the cylinder wake data is
publicly available [125]; the data are available in [data Ref. 126]. The NOAA OISST v2 data are
provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA [data Ref. 127] (accessed 2018).
HYCOM data are available in [data Ref. 128].
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APPENDIX A: LOCAL RECONSTRUCTION METHOD

Here, we provide details on the kernel-based localized reconstruction method applied to the
mixing layer and Gulf of Mexico vorticity fields; for example, to produce the estimates in
Figs. 10(e) and 10(f). As described in Sec. III B, we construct a global flow-field estimate as a
weighted superposition of local reconstructions in a decomposed domain, which admits sparser
representations in the training library.

We introduce compact overlapping kernels � j, j = 1, 2, . . . , k normalized so that at each
grid location r,

∑
j � j (r) = 1. These kernels separate the global estimation problem into k local

problems:

ŝ j = arg min
s j

‖s j‖q subject to ‖y j − C� j�s j‖2 < ε.

Since the kernels are normalized, the local flow-field estimates x̂ j = � j�ŝ j can be combined to
form a global estimate x̂ = ∑

j x̂ j . The simplest such kernels are the windows used for the mixing
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FIG. 14. Locations of kernel centers for the local reconstructions in Figs. 10(e) and 10(f), shown
superimposed on the empirical mean vorticity field. The contours shown are for Gaussian kernels prior to
normalization.

layer reconstructions in Figs. 8(c) and 8(d), where each kernel has the value 1 within its window
and 0 outside.

For the Gulf of Mexico data we define 96 points r1, r2, . . . , r j, r96 as the kernel centers on a
uniform 12 × 8 grid covering the spatial domain, as in Fig. 14. Each kernel � j is constructed with
a radial Gaussian function of the distance from each grid location to the kernel center:

� j (r) = 1

N (r)
e|r−rj|2/σ 2

,

where the width σ is half the longitudinal distance between successive kernel centers. Values below
10−2 are set to zero, and the normalization factors N (r) are then calculated as the sum of the
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FIG. 15. The sparse representation problem in Eq. (7) allows for choosing the relaxation parameter ε.
(a) Average reconstruction error across the test set vs ε for the downsampled mixing layer (see Fig. 7) from
clean and noisy measurements (solid and dashed lines, respectively). (b) Sparsity of representation for the
same reconstruction problem vs ε. Relaxing the problem improves reconstruction accuracy, especially when
the measurements are noisy, but increasing ε too far can allow for solutions which are inconsistent with
measurements.
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FIG. 16. Parameter tuning for sea surface temperature field estimation. (a) Rank truncation of gappy POD
library. Sharp peaks correspond to p = r, when the number of point measurements equals the number of
retained modes and the matrix C� becomes square. The optimal truncation appears to depend on the number
of measurements but is always in the oversampled case r < p. (b) Relaxation of the sparse representation
problem. As with the mixing layer, some relaxation of the constraint can improve accuracy, but an overly
relaxed optimization problem leads to inconsistent estimates. For both plots, shaded bands indicate standard
error on the mean.

unweighted values of all kernels

N (r) =
k∑

j=1

� j (r),

so that the resulting estimates may be combined in a weighted average.
Computationally, each location r is a point on the grid, and so just as the flow-field snapshots are

arranged into column vectors, the corresponding values of � j are the entries in a sparse diagonal
matrix. The product � jx of a kernel with a discretized flow field is then nonzero only in the region
surrounding the kernel center r j .

FIG. 17. Several perspectives on the global �2 error metric. The projection onto the POD basis is the
optimal representation in the linear span of the training data. However, shifting the field by one grid step
in the streamwise direction generates an �2 error nearly the same as the POD projection. A shift of four steps
results in more than 50% error, although the fields capture exactly the same coherent structures. Whether it is
more important to capture global energy content or estimate physically accurate structures may depend on the
application.
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(a) Test field (b) Corrupted measurement

(c) Reconstructed field (d) Reconstruction error

FIG. 18. Visualization of reconstruction error for the cylinder wake from corrupted measurements (see
Fig. 5). (a) Test snapshot. (b) Example flow snapshot with corruption in 70% of grid locations. The vertical
stripe shows the measurement location. (c) Reconstructed flow field from sparse representation using corrupted
measurements shown in panel (b). (d) Errors in the flow-field estimate of panel (c), shown on the same scale as
the original field. The contours are on intervals of 0.1 between −0.5 and 0.5.

APPENDIX B: PARAMETER TUNING

Machine learning methods typically allow for tuning some set of parameters for optimal perfor-
mance. For example, increasing the regularization parameter λ in Eq. (4) can prevent overfitting to
noisy data, but beyond some optimal value the solution is prone to bias. For the sparse representation

(a) Test field (b) 0.2% sampling

(c) Sparse representation (global) (d) Gappy POD (global)

(e) Sparse representation (window) (f) Gappy POD (window)

FIG. 19. Error in the reconstruction of a mixing layer vorticity field via super-resolution (see Fig. 7). (a) The
test field is measured with (b) 10:1 downsampling and reconstructed with both sparse representations in (c) a
training library and (d) least-squares regression in a POD library. The global reconstructions are compared
with separating the domain into windows that grow linearly in the streamwise direction and reconstructing
with (e) sparse representation and (f) gappy POD. On average, the windowing approach does not lead to more
accurate reconstructions in an �2 sense than global sparse representation, although the error structures are more
localized.
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Test field Sparse representation (p = 10)

Gappy POD (p = 10, r = 2) Gappy POD (p = 500, r = 50)

(a) (b)

(c) (d)

FIG. 20. (a) Visualization of errors in estimates of sea surface temperature field using (b) sparse represen-
tation in a training library and gappy POD with (c) p = 10 and (d) p = 500 measurements. The POD libraries
were truncated to r = 2 and r = 50 modes respectively, which were empirically determined to be optimal.
Global �2 errors in all three estimates are around 0.30.

problem (7) which is central to our proposed method, the only free parameter is the relaxation ε.
A larger value of ε allows for a larger difference between the observations and the estimated flow
field, which may be useful for instance if the measurements are noisy or if the training data may
not generalize well. In these cases, relaxing the constraint can lead to a sparse solution and accurate
estimation.

The sparse representation method can be sensitive to the choice of ε. For example, Fig. 15(a)
shows the error in reconstructing a downsampled test field (see Fig. 7) with increasing relaxation.
For clean data and global reconstruction (solid blue lines), the method is only weakly dependent on
the choice of ε, whereas a careful selection of this parameter is important for reconstruction from
windows (red lines) and if measurements are noisy (dashed lines). For the windowed reconstruction,
error increases sharply beyond an optimal value of ε; Fig. 7(b) suggests that this may be because
overly relaxed constraints allow the solution to be highly sparse but generally inconsistent with
observations. We expect that an appropriate choice of ε will in general also depend on both the
magnitude of observed fluctuations and the number of measurements.

Gappy POD can also be tuned via truncation of the POD library. In this case the optimization
problem is typically the overdetermined case (3), although if there are fewer measurements than
modes in the library, the least-squares solution to Eq. (5) with q = 2 is an analogous estimation
method. We find that gappy POD performs best in the oversampled case r < p. That is, the library
is truncated to contain fewer modes than measurements. For example, gappy POD has comparable
accuracy to sparse representation for the sea surface temperature field estimates in Fig. 9, but this
accuracy is sensitive to the truncation. Figure 16(a) shows gappy POD reconstruction error vs rank
truncation r averaged across the test data for various numbers of random point measurements p.
The error peaks sharply when the measured library matrices C� become nearly square, but for any
value of p the optimal truncation is r < p.

Figure 16(b) shows reconstruction error vs relaxation parameter ε for sparse representation-based
estimates of the sea surface temperature fields for varying number of point measurements. The
points are chosen at random with a new realization for each field in the test set. In this case we do
not artificially introduce noise, although an appropriate choice of ε still improves the accuracy of
the sparse representation method.
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(a) Test field (b) Measurement locations

(c) Global gappy POD (d) Gappy POD errors

(e) Local sparse representation (f) Sparse representation errors

FIG. 21. (a) Reconstruction of Gulf of Mexico vorticity field from (b) p = 4000 random points. (c), (d) Al-
though gappy POD resolves the large-scale structures, (e), (f) the localized version of sparse representation
represents a significant reduction in error. Errors are on the same color scale as the fields. The global �2 error
in the gappy POD estimate is 0.60, while the sparse representation error is 0.37. Parameters for the estimation
are the same as described for Fig. 10.

APPENDIX C: RECONSTRUCTION ERRORS AND INTEGRAL QUANTITIES

Although the global �2 error as defined by Eq. (10) is a convenient metric for the reconstruction
accuracy, it is an incomplete description. For example, Fig. 17 explores shifting a mixing layer
vorticity field by a single pixel, which results in an �2 error comparable to the optimal representation
in the training set (via projection onto the POD basis).

It may therefore be helpful to visualize the errors in reconstruction for the various flows
investigated here. This Appendix includes plots of the reconstruction error for the cylinder wake
(Fig. 18, c.f. Fig. 5) mixing layer (Fig. 19, c.f. Fig. 7), sea surface temperature (Fig. 20, c.f. Fig. 9),
and Gulf of Mexico vorticity (Fig. 21, c.f. Fig. 10).

The sparse coefficient vector can also be used to estimate integral quantities such as the lift
coefficient. This may be thought of as a “labeled” problem, where each field in the training set
is augmented with the quantity of interest. The estimate of this quantity for the test field is then
given by the product of the sparse coefficient vector with the vector of labels. For example, Fig. 22
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FIG. 22. Estimation of the lift coefficient CL for the Re = 100 cylinder wake from the horizontal slice
measurement (green line in Fig. 5). The vertical axis shows the estimation error normalized by the rms
lift coefficient over the vortex shedding period. The sparse representation method described in Appendix C
outperforms least squares estimation over a wide range of sparse corruption levels.

compares the lift coefficient estimate for the cylinder wake using this approach against the standard
least squares prediction. The measurements are taken from the “horizontal slice” [green line in
Fig. 5(a)] with noise level σ = 0.01 and varying levels of sparse corruption. Sparse representation
outperforms least squares over a wide range of corruption levels.
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