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We reveal and investigate a type of linear axisymmetric helical magnetorotational
instability which is capable of destabilizing viscous and resistive rotational flows with
radially increasing angular velocity, or positive shear. This instability is double-diffusive
by nature and is different from the more familiar helical magnetorotational instability,
operating at positive shear above the Liu limit, in that it works instead for a wide range of
the positive shear when (i) a combination of axial and azimuthal magnetic fields is applied
and (ii) the magnetic Prandtl number is not too close to unity. We study this instability
first with radially local Wentzel-Kramers-Brillouin (WKB) analysis, deriving the scaling
properties of its growth rate with respect to Hartmann, Reynolds, and magnetic Prandtl
numbers. Then we confirm its existence using a global stability analysis of the magnetized
flow confined between two rotating coaxial cylinders with purely conducting or insulating
boundaries and compare the results with those of the local analysis. From an experimental
point of view, we also demonstrate the presence of this instability in a magnetized viscous
and resistive Taylor-Couette flow with positive shear for such values of the flow parameters,
which can be realized in upcoming experiments at the DRESDYN facility. Finally, this
instability might have implications for the dynamics of the equatorial parts of the solar
tachocline and dynamo action there, since the above two necessary conditions for the
instability to take place are satisfied in this region. Our global stability calculations for
the tachocline-like configuration, representing a thin rotating cylindrical layer with the
appropriate boundary conditions—conducting inner and insulating outer cylinders—and
the values of the flow parameters, indicate that it can indeed arise in this case with a
characteristic growth time comparable to the solar cycle period.
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I. INTRODUCTION

According to Rayleigh’s criterion [1], rotating flows of ideal fluids with radially increasing
specific angular momentum are linearly stable. This result has severe astrophysical consequences,
implying hydrodynamic stability of Keplerian rotation in accretion disks. Nowadays, the magne-
torotational instability (MRI) [2–4] is considered to be the most likely destabilizing mechanism for
these disks, driving radially outward transport of angular momentum and inward accretion of mass.

The standard MRI (SMRI, with a purely axial magnetic field, [2–4]), as well as the nonaxisym-
metric azimuthal MRI (AMRI, with a purely azimuthal magnetic field, [5]) and the axisymmetric
helical MRI (HMRI, with combined axial and azimuthal magnetic fields, [6]) have all been
extensively studied theoretically (see a recent review [7] and references therein). The inductionless
forms of AMRI and HMRI have also been obtained in liquid metal experiments [8–10], while
unambiguous experimental evidence for inductive SMRI remains elusive, despite promising first
results [11,12].

In contrast to Keplerian-like rotation with increasing angular momentum but decreasing angular
velocity, much less attention is usually devoted to flows with increasing angular velocity. Until
recently, such flows have been believed to be strongly stable, even under magnetic fields. However,
for very high Reynolds numbers, Re ∼ 107, they can yield nonaxisymmetric linear instability [13].
Apart from this hydrodynamic instability, there is also a special type of AMRI operating in flows
with much lower Reynolds number but sufficiently strong positive shear [14–16]. This restriction to
strong shear makes, however, this so-called Super-AMRI astrophysically less significant. One of few
positive shear regions is a portion of the solar tachocline extending ±30◦ about the Sun’s equator.
Even there, the shear measured in terms of Rossby number Ro = r(2�)−1d�/dr is only around
0.7 [17,18], much less than the so-called upper Liu limit (ULL) RoULL = 2(1 + √

2) ≈ 4.83 [19]
required for Super-AMRI. Another astrophysical system in which positive shear is expected is the
boundary layer between an accretion disk and its host star [20,21].

Given a general similarity between AMRI and HMRI and the universal nature of the Liu limits
[22,23], one might expect a similar result to hold also for Super-HMRI. However, as we report in this
paper, there exists another type of axisymmetric HMRI, which we refer to as type 2 Super-HMRI,
that operates in positive shear flows with arbitrary steepness, whereas the more familiar HMRI
operating only at high enough positive shear above the Liu limit, Ro > RoULL, is labeled type 1
Super-HMRI. The only requirements are (i) the presence of both axial and azimuthal magnetic field
components and (ii) that the magnetic Prandtl number is neither zero (the inductionless limit) nor
too close to unity. These conditions are indeed satisfied in the solar tachocline, where this instability
can possibly play an important role in its dynamics and magnetic activity. Although this requires a
detailed separate study and is out of the scope of the present paper, we have also done calculations at
the end of this paper showing the possibility of occurrence of this instability for the tachocline-like
configuration and parameters, but still remaining in the framework of cylindrical flow. The resulting
growth time (inverse of the exponential growth rate) of the most unstable mode in fact turns out to
be comparable to the solar cycle period.

In this paper, we carry out a linear stability analysis of a magnetic rotational flow in cylindrical
geometry mainly using the Wentzel-Kramers-Brillouin (WKB) short-wavelength formulation of
the underlying magnetohydrodynamics (MHD) problem [23,24], which is especially useful for
understanding the basic features and scaling properties of this instability. This local analysis is then
complemented by global, radially one-dimensional (1D) calculations of the corresponding unstable
eigenmodes with the primary aim of demonstrating the existence of this version of Super-HMRI
beyond the local WKB approximation as well as to draw a comparison with the results obtained
using this approximation. A more comprehensive global linear analysis exploring parameter space
and subsequently nonlinear analysis of this double-diffusive type 2 Super-HMRI at positive shear
will be presented elsewhere.

The paper is organized as follows. The main equations and the formulation of a problem are given
in Sec. II. The local WKB analysis of the instability is presented in Sec. III. The global stability
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analysis of a differentially rotating flow between two coaxial cylinders at positive shear both in the
narrow and wide gap cases as well as a comparison with the results of the local analysis are presented
in Sec. IV. A summary and discussion on the relevance of this new version of Super-HMRI to the
solar tachocline are given in Sec. V.

II. MAIN EQUATIONS

The motion of an incompressible conducting medium with constant viscosity ν and Ohmic
resistivity η is governed by the equations of nonideal MHD

∂U
∂t

+ (U · ∇)U = − 1

ρ
∇

(
P + B2

2μ0

)
+ (B · ∇)B

μ0ρ
+ ν∇2U, (1)

∂B
∂t

= ∇ × (U × B) + η∇2B, (2)

∇ · U = 0, ∇ · B = 0, (3)

where ρ is the constant density, U is the velocity, P is the thermal pressure, B is the magnetic field,
and μ0 is the magnetic permeability of vacuum.

Consider a flow between two coaxial cylinders at inner, ri, and outer, ro, radii, rotating,
respectively, with angular velocities �i and �o in the cylindrical coordinates (r, φ, z). Since we
are primarily interested in the flow stability in the case of positive shear, or so-called super-rotation
[15,16], the inner cylinder is assumed to rotate more slowly than the outer one, �i < �o, inducing
an azimuthal nonuniform flow U0 = [0, r�(r), 0] between the cylinders with radially increasing
angular velocity, d�/dr > 0, and hence positive Rossby number, Ro > 0. The pressure associated
with this base flow and maintaining its rotation is denoted as P0. The imposed background
helical magnetic field B0 = [0, B0φ (r), B0z] consists of a radially varying, current-free azimuthal
component, B0φ (r) = βB0zro/r, and a constant axial component, B0z, where the constant parameter
β characterizes field’s helicity.

We investigate the linear stability of this equilibrium against small axisymmetric (∂/∂φ = 0)
perturbations, u = U − U0, p = P − P0, and b = B − B0, which are all functions of r and depend
on time t and axial-vertical z coordinate via ∝exp(γ t + ikzz), where γ is the (complex) eigenvalue
and kz is the axial wave number. There is instability in the flow, if the real part (growth rate) of any
eigenvalue is positive, Re(γ ) > 0. In such cases, for a given set of parameters, we always select out
the mode with the largest growth rate from a corresponding eigenvalue spectrum.

III. WKB ANALYSIS

In this section, we use a radially local WKB approximation, where the radial dependence of the
perturbations is assumed to be of the form ∝exp(ikrr) with kr being the radial wave number. The
resulting dispersion relation, which follows from Eqs. (1)–(3) after linearizing and substituting the
above exponential form of the perturbations, is represented by the fourth-order polynomial [23,24]:

γ 4 + a1γ
3 + a2γ

2 + (a3 + ib3)γ + a4 + ib4 = 0, (4)

with the real coefficients

a1 = 2
k2

Re

(
1 + 1

Pm

)
,

a2 = 4α2(1 + Ro) + 2
(
k2

z + 2α2β2) Ha2

Re2Pm
+ k4

Re2

(
1 + 4

Pm
+ 1

Pm2

)
,
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a3 = 8(1 + Ro)α2 k2

RePm
+ 2

[
k4 + (

k2
z + 2α2β2

)
Ha2

] k2

Re3Pm

(
1 + 1

Pm

)
,

b3 = −8α2βkz
Ha2

Re2Pm
,

a4 = 4α2 k4

Pm2

[
(1 + Ro)

1

Re2 + β2 Ha2

Re4

]
+ 4α2k2

z Ro
Ha2

Re2Pm
+ (

k2
z Ha2 + k4

)2 1

Re4Pm2 ,

b4 = 4βk3
z

[
Ro

(
1 − 1

Pm

)
− 2

Pm

]
Ha2

Re3Pm
.

Henceforth, γ is normalized by the outer cylinder’s angular velocity �o and the wave numbers by
its inverse radius, r−1

o . Other nondimensional parameters are α = kz/k, where k = (k2
r + k2

z )1/2 is
the total wave number; the Reynolds number Re = �or2

o/ν; the magnetic Reynolds number Rm =
�or2

o/η, and their ratio, the magnetic Prandtl number Pm = ν/η = Rm/Re; and the Hartmann
number Ha = B0zro/(μ0ρνη)1/2 that measures the strength of the imposed axial magnetic field.
Another quantity characterizing the field is Lundquist number S = HaPm1/2, which, like Rm, does
not involve viscosity. Since we focus on positive Rossby numbers, Ro > 0, or positive shear, the
flow is generally stable both hydrodynamically, according to Rayleigh’s criterion (but see Ref. [13]),
as well as against SMRI with a purely axial field (β = 0) [24–26].

In the inductionless limit, Pm → 0, the roots of Eq. (4) can be found analytically
[19,23,24,27,28]. For positive and relatively large Ro > RoULL, one of the roots always has a
positive real part, implying instability with the growth rate

Re(γ ) =
√

2X + 2
√

X 2 + Y 2 − (
k2

z + 2α2β2
) Ha2

k2Re
− k2

Re
, (5)

where

X = α2β2(α2β2 + k2
z

) Ha4

Re2k4
− α2(1 + Ro), Y = βα2kz(2 + Ro)

Ha2

k2Re
,

which we call type 1 Super-HMRI. Our main goal, though, is to reveal that apart from this type
1 Super-HMRI at large positive shear, Eq. (4) also yields a different type of dissipation-induced
double-diffusive instability at finite Pm, which we call type 2 Super-HMRI.

Regarding the dependence on β parameter in Eqs. (4) and (5), it is readily seen that, as long as
β 	= 0, it enters the coefficients of these dispersion relations through the rescaled wave numbers,
Hartmann, Lundquist, and Reynolds numbers, k∗

z ≡ kz/β, k∗ ≡ k/β, Ha∗ ≡ Ha/β, S∗ ≡ S/β,
Re∗ ≡ Re/β2, and Rm∗ ≡ Rm/β2, in terms of which we carry out the following WKB analysis.
It is easy to check that β disappears in the polynomial Eq. (4) after substituting these rescaled
parameters (denoted with asterisks) in its coefficients.

Figure 1(a) shows the growth rate, Re(γ ), as a function of the rescaled axial wave number, as
determined from a numerical solution of Eq. (4) at finite but very small Pm = 10−6, together with
solution (5) in the inductionless limit, for fixed Ha∗ and Re∗. For the Rossby number, we take the
values lower, Ro = 1.5, 2, and higher, Ro = 6, than RoULL. Two distinct instability regimes are
clearly seen in this figure. Type 2 Super-HMRI is concentrated at small k∗

z and exists at finite Pm
both for Ro < RoULL and Ro > RoULL; i.e., it is insensitive to the upper Liu limit, but disappears for
Pm → 0 at fixed Hartmann and Reynolds numbers. By contrast, type 1 Super-HMRI, concentrated
at larger k∗

z , exists only for Ro > RoULL, and approaches the inductionless solution as Pm → 0. This
latter branch is basically an extension of the more familiar HMRI operating at negative shear, which
in the inductionless limit also satisfies Eq. (5), but at Ro < RoLLL, where RoLLL = 2(1 − √

2) ≈
−0.83 is the lower Liu limit [19,24,27].

At large Pm � 1, type 1 Super-HMRI disappears and there remains only type 2 Super-HMRI, as
shown in Fig. 2(a). The corresponding dispersion curves as a function of axial wave number have a
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FIG. 1. Panel (a) shows the growth rate Re(γ ) vs k∗
z at fixed Ha∗ = 90, Re∗ = 8 × 103, α = 0.71 (i.e.,

k∗
r = k∗

z ), and Pm = 10−6 for different Ro = 1.5 (blue), 2 (green), 6 (red). Type 2 Super-HMRI branch exists
at smaller k∗

z and finite Pm, for all three Ro values. By contrast, type 1 Super-HMRI branch at larger k∗
z appears

only for Ro = 6 > RoULL , but persists also in the inductionless limit [Eq. (5), dashed black line]. For the same
Pm, panel (b) shows the growth rate of type 2 Super-HMRI, maximized over a set of the parameters (k∗

z , Ha∗,
Re∗) and normalized by Ro1.75, vs α, while panel (c) shows the growth rate, maximized over k∗

z and α, as a
function of Ha∗ and Re∗ at Ro = 1.5 and the same Pm = 10−6.

shape similar to those at small Pm in Fig. 1(a), but now the instability occurs at order of magnitude
larger k∗

z and several orders of magnitude smaller Ha∗ and Re∗ at the same values of Ro adopted in
these figures.

Thus, type 2 Super-HMRI represents a dissipation-induced instability mode at positive shear,
which appears to require the presence of both finite viscosity and resistivity. As we will see below,
though, it does not operate in the immediate vicinity of Pm = 1; that is, it is double-diffusive in
nature, operating for both small and large Pm, but not for Pm = O(1). Just as all previous MRI
variants, this one also derives energy solely from the shear, since the imposed magnetic field is
current-free, thereby eliminating current-driven instabilities, such as the Tayler instability. Energy
is drawn from the background flow r�(r) to the growing perturbations due to the coupling between
meridional circulation and azimuthal field perturbations brought about by the imposed azimuthal
field, a mechanism also underlying HMRI at negative shear [6,29].

Our main goal is to describe the properties of this type 2 Super-HMRI. Type 1 Super-HMRI,
existing only for Ro > RoULL and persisting even in the inductionless limit Pm → 0 [19,23,24,28],
is also interesting in its own right but will not be considered here further.

Like normal HMRI at negative shear, type 2 Super-HMRI is an overstability; that is, its growth
rate comes with an associated nonzero imaginary part, ω = Im(γ ), which is the frequency of
temporal oscillations of the solution at a given coordinate and, together with axial wave number,
defines its propagation speed. Figure 3 shows these frequencies as a function of k∗

z , corresponding
to the growth rates plotted in Figs. 1(a) and 2(a). They monotonically increase with k∗

z by absolute
value, but are positive at small Pm and negative at large Pm, implying opposite propagation
directions of the wave patterns at these magnetic Prandtl numbers. Also, ω remains smaller than
the frequency of inertial oscillations, ωio = 2α(1 + Ro)1/2, and tends to the latter only at small Pm
as the solution changes from type 2 to type 1 Super-HMRI with increasing k∗

z and does not change
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FIG. 2. Same as in Fig. 1, but at Ha∗ = 5, Re∗ = 0.1, α = 0.71 in panel (a) and Pm = 100 in all panels.
Type 2 Super-HMRI branch exists at higher k∗

z than those at small Pm, while type 1 Super-HMRI branch is
absent. In panel (b), the maximum growth rate now exhibits the scaling with Rossby number, Ro1.18, different
from that at small Pm. In panel (c), the maximum growth occurs now at orders of magnitude smaller Ha∗

m and
Re∗

m than those at small Pm in Fig. 1(c) at the same Ro = 1.5.

afterward. This reflects the fact that type 1 Super-HMRI represents weakly destabilized inertial
oscillations, like the normal HMRI at negative shear [19].

To explore the behavior of type 2 Super-HMRI further, we first vary α as well as the rescaled
Hartmann and Reynolds numbers. The growth rate, maximized over the last two numbers and k∗

z ,
increases linearly with α and scales as ∝Ro1.75 at small Pm = 10−6 [Fig. 1(b)] and as ∝Ro1.18

at large Pm = 100 [Fig. 2(b)], while its dependence on Ha∗ and Re∗, when maximized over k∗
z

and α, is shown in Fig. 1(c) at Pm = 10−6 and in Fig. 2(c) at Pm = 100 with Ro = 1.5 < RoULL

(when type 1 Super-HMRI is absent) in both cases. The most unstable region is quite localized,
with the growth rate decreasing for both small and large Ha∗ and Re∗, implying that this instability
relies on finite viscosity and resistivity; i.e., it is indeed of double-diffusive type. The overall shape
of the unstable area in (Ha∗, Re∗) plane does not change qualitatively at other Pm and Ro; the
unstable region always remains localized and shifts to larger Ha∗ and Re∗ with decreasing Pm.
In particular, the maximum growth rate, γm, occurs for (Ha∗

m, Re∗
m) ≈ (700, 9 × 104) when Pm is

small [Fig. 1(c)], but for orders of magnitude smaller (Ha∗
m, Re∗

m) = (2.54, 0.23) when Pm is large
[Fig. 2(c)]. The actual values of the characteristic vertical wave number, Hartmann and Reynolds
numbers for type 2 Super-HMRI at different β are obtained by simply multiplying the values of
rescaled quantities k∗

z , Ha∗, Re∗ given in Figs. 1 and 2 (as well as those in Fig. 4 of the following
analysis) by β or β2, respectively. For example, the largest growth rate at Pm = 10−6 actually occurs
at (Ham, Rem) = β(Ha∗

m, Re∗
mβ ) ≈ β(700, 9 × 104β ). These latter values can, in turn, be compared

with the global stability analysis presented below as well as with magnetic Taylor-Couette (TC) flow
experiments.

We next consider variation with Pm at fixed Ro = 1.5 < RoULL, so that type 1 Super-HMRI is
excluded. Figure 4 shows the growth rate γm, maximized over a set of parameters (α, k∗

z , Ha∗, Re∗)
as well as the associated Ha∗

m and Re∗
m, at which this maximum growth is achieved, as a function of

Pm. It is seen that for Pm � 10−2, the growth rate is practically constant, γm = 0.043, while Ha∗
m

and Re∗
m increase with decreasing Pm as the power laws Ha∗

m ∝ Pm−1/2 and Re∗
m ∝ Pm−1. So, in
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FIG. 3. Imaginary part of the eigenvalues, that is, frequency ω = Im(γ ), at small Pm = 10−6 (a) and large
Pm = 100 (b) corresponding, respectively, to the growth rates shown in Figs. 1(a) and 2(a) at the same Ro =
1.5 (blue), Ro = 2 (green), Ro = 6 (red), and α = 0.71. Dashed lines correspond to the frequency of inertial
oscillations, ωio = 2α(1 + Ro)1/2, for these parameters. Note that at small Pm the frequencies are positive,
while at large Pm they are negative [−Im(ω) is plotted in panel (b)], implying opposite propagation directions
of the wave patterns at these magnetic Prandtl numbers.

this small-Pm regime, type 2 Super-HMRI is more appropriately described in terms of Lundquist
and magnetic Reynolds numbers, since these are S∗

m = Ha∗
mPm1/2 = 0.7, Rm∗

m = Re∗
mPm = 0.091,

and thus independent of Pm. These scalings with S and Rm, being independent of Pm at Pm → 0,
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m
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FIG. 4. Panel (a) shows the growth rate, γm, of type 2 Super-HMRI, optimized over a set of parameters
(α, k∗

z , Ha∗, Re∗) and represented as a function of Pm, at fixed Ro = 1.5. Panels (b) and (c) show the
corresponding Ha∗

m and Re∗
m, respectively. For both Pm  1 and Pm � 1, γm tends to constant values.

The rescaled Hartmann and Reynolds numbers vary as Ha∗
m ∝ Pm−1/2 and Re∗

m ∝ Pm−1 for Pm  1, and
as Ha∗

m ∝ Pm1/3 and Re∗
m ∝ Pm−1/4 for Pm � 1. Panels (b) and (c) are compensated by these factors to

more clearly highlight these scalings. The dashed lines are at Pmc1 = 0.223 and Pmc2 = 4.46, marking the
Pm = O(1) region where no instability exists.
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FIG. 5. Panel (a) shows the lower (Pmc1, blue) and upper (Pmc2, red) stability boundaries of type 2 Super-
HMRI vs Ro. The vertical dashed line denotes the Liu limit RoULL = 4.83. Panel (b) illustrates that these
boundaries are in fact related by Pmc1 = 1/Pmc2. Note that this instability exists for both smaller and larger Ro
and in fact is insensitive to the upper Liu limit.

are similar to those of SMRI, and imply that this instability also does not exist in the inductionless
limit, which would require S∗, Rm∗ → 0, and hence S, Rm → 0, if Ha∗ and Re∗ are to remain finite.

With increasing Pm, beyond Pm ∼ 0.01, γm rapidly decreases, and eventually the instability dis-
appears at the first critical value Pmc1 = 0.223, with corresponding (Ha∗

m, Re∗
m) = (2.018, 0.071)

and the rescaled wave number k∗
zm = 2.4 × 10−3. It reappears again for larger Pm > 1 at the second

critical value Pmc2 = 4.46, with (Ha∗
m, Re∗

m) = (2, 0.046) and k∗
zm = 5 × 10−3, comparable to those

at Pmc1. Further increasing Pm, for Pm � 10, γm eventually approaches a constant value 0.29. The
corresponding rescaled Hartmann and Reynolds numbers again follow the power-law scalings, now
Ha∗

m ∝ Pm1/3 and Re∗
m ∝ Pm−1/4.

Note that while we have only presented the Ro = 1.5 case in order to demonstrate the behavior
of the instability with Pm, other values of Rossby number yield qualitatively similar behavior
and scalings of γm, Ha∗

m, Re∗
m. Thus, the type 2 Super-HMRI exists over a broad range of

magnetic Prandtl numbers, provided that viscosity ν and resistivity η are such that the immediate
neighborhood of Pm = 1 is avoided, and Pm < Pmc1 < 1 or Pm > Pmc2 > 1.

Figure 5(a) shows the unstable regions of type 2 Super-HMRI in (Ro, Pm) plane. For all Ro,
the two bounding curves of marginal stability where γm = 0 satisfy Pmc1 < 1 and Pmc2 > 1, and
are related via Pmc1Pmc2 = 1, as seen in Fig. 5(b). For high shear (Ro → ∞), the stability strip
around Pm = 1 increasingly narrows, so that most Pm values are unstable, whereas for Ro → 0,
the stable strip widens to include all Pm. This is readily understood, because shear is the only
energy source (just as it is for SMRI, AMRI, and HMRI), and clearly there can be no instability at
all for Ro = 0, which corresponds to solid-body rotation. Note finally how Pmc1 and Pmc2 stability
curves are completely unaffected by the Liu limit at RoULL = 4.83, which is only relevant to type 1
Super-HMRI. Hence, type 2 Super-HMRI continues to exist even for Ro < RoULL.

Having described the properties of type 2 Super-HMRI using the WKB analysis, we should
now address the question of validity of this approach. A basic condition for the local WKB
approximation to hold is that the radial wavelength, λr , of the perturbations must be much smaller
than the characteristic radial size, ro, of the system over which the equilibrium quantities vary,
i.e., λr  ro. In terms of the radial wave number kr = 2π/λr , this condition becomes rokr � 1,
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or in nondimensional units used here kr � 1. From the above analysis [see Figs. 1(a) and 2(a)], it
appears that the rescaled wave numbers typical of this instability are relatively small, k∗

r ∼ k∗
z �

0.1 − 1. Recalling that kr = βk∗
r , it follows that WKB approach is strictly applicable only at large

β � 1/k∗
r � 10, i.e., at dominant background azimuthal magnetic field. However, we will see in the

global linear analysis below that this mode of instability is in fact not restricted only to large β and
can even exist at smaller β ∼ 1, but in this case the WKB approach is questionable and should be
applied with caution.

IV. GLOBAL ANALYSIS

After the radially local WKB analysis, we now investigate type 2 Super-HMRI in the global case.
The problem reduces to a 1D (along radius) linear eigenvalue problem in a viscous and resistive
rotational flow between two coaxial cylinders threaded by helical magnetic field, as outlined in
Ref. [6]. Hence, the main equations are the same as those in that paper and are obtained by
linearizing Eqs. (1)–(3) about the above equilibrium, with the only difference being that now the
imposed rotation profile �(r) increases with radius corresponding to outer cylinder rotating faster
than the inner one (super-rotation). The boundary conditions are no slip for the velocity and either
perfectly conducting or insulating for the magnetic field. As in Ref. [6] (see also Refs. [27,29]),
the radial structure of the quantities are expanded in Chebyshev polynomials, typically up to
N = 30–40. The governing equations and boundary conditions then reduce to a large (4N × 4N)
matrix eigenvalue problem, with the real parts of eigenvalues being growth rates of the eigenmodes
and imaginary parts their frequencies (see also Ref. [30] for the details of the numerical scheme).
In this paper, the global 1D analysis serves two main purposes: first, to compare with the results
of the above WKB analysis in the regime where the latter holds, i.e., at high β � 10 and a small
gap width between the cylinders, δ ≡ ro − ri  ro, when the equilibrium quantities do not change
much with radius across the gap. Such an analysis will allow us to ascertain the existence of type
2 Super-HMRI also in the global setup and to characterize influence of the boundary conditions
(conducting, insulating) for the magnetic field imposed on the cylinders. Second, with a view to
detecting this instability in the upcoming liquid sodium TC experiments at the DRESDYN facility
[31], we look for it at a larger gap width and smaller β ∼ 1, a regime where WKB approximation
becomes questionable, but, on the other hand, which is more relevant to experimental conditions.
We start our global linear stability analysis with the first case.

A. Narrow-gap case

One of the main difficulties when comparing local and global analysis of HMRI and AMRI in
a magnetic TC flow is that the local Rossby number, which defines these instabilities and to which
they are therefore sensitive [19,23,24], varies with radius, even in the narrow gap case. On the other
hand, it is assumed to be radially constant in the WKB treatment, as other equilibrium variables are.
So, there is some uncertainty in matching Rossby numbers in the local and global analysis [14]. To
circumvent this problem and facilitate comparison with the WKB analysis, following Ref. [32], we
impose a power-law radial profile of angular velocity with a constant positive Rossby number,

�(r) = �o

(
r

ro

)2Ro

(6)

(outer cylinder’s �o = 1 in our units) as a background flow between the cylinders instead of the
usual TC flow profile. The gap is assumed to be narrow with the ratio of inner to outer cylinders’
radii η̂ = ri/ro = 0.85. The Rossby number is chosen smaller than the upper Liu limit, Ro = 3.5 <

RoULL, thereby excluding type 1 Super-HMRI in the global case too and allowing us to focus only
on the type 2 Super-HMRI branch (the results are similar also at smaller Ro).

From the WKB analysis above, we have seen that for a given value of the growth rate, the
associated wave numbers are proportional to the helicity parameter β. As a result, in order to confine
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type 2 Super-HMRI within the gap extent in the global case and at the same time remain in the
domain of validity of the WKB approximation, its radial wavelength should be at least comparable
to or smaller than the gap width and, consequently, much smaller than the outer cylinder radius ro.
In terms of the radial wave number, this condition becomes kr � δ−1, which in our nondimensional
units turns out to be large kr � roδ

−1 = (1 − η̂)−1 � 1, because the gap is narrow η̂ ≈ 1 (similarly
increases with β also the vertical wave number kz). In terms of the rescaled wave numbers used in
the WKB analysis, we get βk∗

r � (1 − η̂)−1 = 6.67, with which we can estimate from Figs. 1(a)
and 2(a) that in order to get such high wave numbers we arrive on the same constraint that β should
be large, β � 100 (for the adopted values of Ro and Pm). It also follows from Figs. 1(c) and 2(c)
that due to the above scaling with β, the Hartmann and Reynolds numbers, for which the instability
grows most, are accordingly also fairly high: Ha ∼ 104, Re ∼ 109 for small Pm = 10−6 and Ha ∼
100, Re ∼ 103 for large Pm = 100. In order to avoid the numerical difficulties in our 1D eigenvalue
code when both axial wave number and Reynolds number are such high (kz � 10 and Re ∼ 109),
we take higher Pm = 10−3 in these global calculations at the narrow gap instead of Pm = 10−6 used
in Fig. 1. This, however, does not change the regime of the instability, because according to Fig. 4,
we are still in the same asymptotic regime of low Pm  1, where the growth rate is determined by
S and Rm. As a result, the adopted Pm = 10−3 yields lower values of Ha ∼ 103 and Re ∼ 106 for
the same growth rate, which is computationally not as challenging. Such numerical problems do
not arise for Pm = 100, where Re is three orders of magnitude lower, so we keep this value of the
magnetic Prandtl number in the global analysis for the case when it is high and the gap is narrow.

Figures 6 and 7 present the results of the global calculations in the narrow gap case. Plotted
here is the growth rate and frequency of type 2 Super-HMRI as a function of kz at conducting
and insulating boundary conditions for, respectively, small Pm = 10−3 and large Pm = 100 and
various pairs of (Ha, Re). For comparison, we also show the solutions of the WKB dispersion
relation [Eq. (4)] at a fixed radial wave number kr0 = π (1 − η̂)−1 in these figures. This choice
of the radial wave number when comparing local results with 1D global ones is dictated by the fact
that global eigenfunctions (see below) usually extend almost over the whole domain between the
cylinders and do not change sign in the radial direction within this domain (see also Refs. [14,25])
[33]. It is seen that in all these cases both the frequency and growth rate of the instability exhibit
generally a qualitatively similar dependence on the axial wave number as in the local analysis,
with comparable maximum growth rates and corresponding kzm; however, there is a noticeable
quantitative difference between the small- and high-Pm regimes—the influence of the boundary
conditions on the frequency and growth rate and hence deviations from the WKB results are larger
at small Pm. The boundary conditions cause the dispersion curves for the growth rate to somewhat
shift toward lower kz, while those for the frequencies shift toward larger kz relative to those in the
local case. Besides, depending on Ha and Re, conducting boundaries can lead either to increase or
decrease of the growth rate compared to its WKB value, whereas insulating boundaries always
reduce the growth rate about three times compared to those for the conducting ones for fixed
Hartmann and Reynolds numbers. As for the frequencies, they are quite close to each other for both
boundary conditions and, at a given kz, smaller than those in the local case. By contrast, for large
Pm, the growth rate and frequency are essentially the same (dispersion curves are indistinguishable)
for conducting and insulating boundaries (for this reason, Fig. 7 shows only the blue curves that
represent both the boundary conditions) and quite close to their respective values from the WKB
analysis, although with increasing Ha and Re the deviation from the local analysis becomes more
noticeable, especially for the growth rate at smaller kz [Fig. 7(c)]. This behavior with Pm is also
consistent with previous studies on Super-AMRI at positive shear, indicating generally higher
critical onset values of Hartmann and Reynolds numbers and, for given values of these numbers,
smaller growth rates for insulating boundaries than those for conducting ones at smaller Pm, but
almost identical critical values of Ha and Re and growth rates for both these boundary conditions at
large Pm [16,34].

To better understand and interpret this behavior of type 2 Super-HMRI in the global case, we
computed the associated spatial eigenfunctions. The structure of these eigenfunctions for the radial
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FIG. 6. Growth rate, Re(γ ) [panels (a), (b), (c)], and frequency, ω = Im(γ ) [panels (d), (e), (f)], vs
kz in the global case with the narrow gap η̂ = 0.85 and power-law angular velocity profile with constant
Ro = 3.5 < RoULL in the presence of conducting (blue) and insulating (red) boundary conditions imposed
on the cylinders. In all panels, β = 100, Pm = 10−3, while (Ha, Re) = (2000, 2 × 106) in panels (a) and
(d), (Ha, Re) = (2800, 3 × 106) in panels (b) and (e), and (Ha, Re) = (3200, 3.5 × 106) in panels (c) and
(f). Black dashed curve in each panel is accordingly the growth rate or frequency resulting from the local
WKB dispersion relation [Eq. (4)] for the same values of the parameters corresponding to that panel and a
fixed kr0 = π/δ, where δ = 1 − η̂ is the gap width in units of ro. It is seen that in the local and global cases,
the shape of the dispersion curves is qualitatively the same, with comparable growth rates, frequencies, and
corresponding wave numbers; however, the boundary conditions tend to shift the growth rates toward lower
axial wave numbers, while the frequencies toward larger wave numbers relative to those in the local case. Also,
insulating boundaries lower the growth rate about three times. As for the frequencies, they are close to each
other for both these boundaries and smaller than those in the local case at a given kz.

and azimuthal components of the velocity and magnetic field in the (r, z) plane at small and large
Pm, both for the conducting and insulating boundary conditions, are shown in Figs. 8–10. The values
of axial wave numbers in each figure are chosen such that to get the largest growth rate for given
values of the remaining parameters in Figs. 6(b) and 7(b), i.e., kzm = 24 for conducting and kzm = 23
for insulating boundaries at small Pm = 10−3, while at large Pm = 100, we take kzm = 141, which is
the same for both the boundary conditions. First of all, we note that despite differences in structure,
these eigenfunctions appear quite similar to those of the more familiar HMRI and AMRI in a TC
setup with negative shear (e.g., Refs. [5–7,35,36]), extending over most part of the radial extent of
the flow. They do not display any strong concentration in the vicinity of only the inner or outer
radial boundaries, which would otherwise mean that the instability mode is induced due to those
boundaries. Thus, although the radial boundaries, either insulating or conducting, affect the growth
rate, especially at small Pm (Fig. 6), they are not the main cause or driver of type 2 Super-HMRI. It
is the combination of shear, helical magnetic field and dissipation that gives rise to this instability.
In this regard, it is already known that the type of radial boundary conditions for the magnetic field
also plays an important role in the dynamics of more extensively studied “relatives”—axisymmetric
and nonaxisymmetric AMRI at negative shear [29,32,34], whose basic physics can be understood
also within the local WKB analysis [19,22–24,27].

It is seen in these figures that the eigenfunctions markedly differ in structure depending on the
magnetic Prandtl number and boundary conditions. At Pm = 10−3, they appear to have comparable
axial and radial length scales, which are of the same order as the radial size of the gap, with the radial
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FIG. 7. Same as in Fig. 6, but at large Pm = 100 with (Ha, Re) = (200, 2000) in panels (a) and (d),
(Ha, Re) = (400, 4000) in panels (b) and (e), and (Ha, Re) = (800, 8000) in panels (c) and (f). Note that
in this case the growth rates and frequencies [plotted is −ω = −Im(γ )] are nearly indistinguishable for
conducting and insulating boundary conditions, in contrast to the small-Pm regime depicted in Fig. 6. Black
dashed curve in each panel is again the growth rate or frequency resulting from the WKB dispersion relation
[Eq. (4)] with kr0 = π/δ and the same values of the parameters corresponding to that panel. For the growth
rate, the difference between the local and global dispersion curves increases with increasing Hartmann and
Reynolds numbers mainly at smaller kz � 10 [panel (c)], whereas for the frequencies these curves are quite
close to each other. Overall, the agreement between the WKB and 1D analysis at large Pm = 100 is much
better than that at small Pm = 10−3 in Fig. 6.

scale of the velocities being somewhat smaller than that of the magnetic field (Figs. 8 and 9). This
implies that (i) the effective radial wave numbers for these components are slightly different, which
can explain the deviation from the WKB result seen in Fig. 6, as the velocity and magnetic field
perturbations should have a common radial wave number in the local case (although formally the
condition for the WKB approximation—ro is larger than the radial length scale of the perturbation—
is satisfied) and (ii) the boundary conditions on the cylinders do play a role in determining the
structure of the eigenfunctions and therefore can modify the growth rate of the instability. Indeed,
it is seen in Figs. 8 and 9 that the insulating boundaries introduce more smaller scale features in the
eigenfunctions, especially in the velocity ones, compared to those in the presence of the conducting
boundaries, which apparently leads to the difference in the corresponding growth rates in Fig. 6.

The situation is different in the case of large Pm = 100 shown in Fig. 10 in that the axial length
scale of the eigenfunctions is much smaller than the radial one, which is again comparable to the
gap width, i.e., kzm � λ−1

r ∼ δ−1 (for the ease of comparison, the same range in z is used in all
panels in Figs. 8–10). It is seen from this figure that unlike the case of small Pm, now the structure
of the velocity and magnetic field eigenfunctions and hence their effective radial wave numbers
are very similar. Since this effective radial wave number turns out to be much smaller than kzm,
to a zeroth-order approximation the eigenfunctions can be assumed to be radially independent and
vary only along z. In this case, however, calculating the growth rate, one arrives at the same WKB
dispersion relation [Eq. (4)] (when kr  kz, α ≈ 1). This implies that actually the WKB regime is
better fulfilled at large Pm and those higher kz, at which the instability reaches a maximum growth,
and hence specific boundary conditions do not affect its growth and frequency. This can also explain
the better agreement between the dispersion curves from the WKB and global analyses in Fig. 7 than
that in Fig. 6. As a result, the structures of the eigenfunctions are also similar for both conducting
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FIG. 8. Eigenfunctions of the radial and azimuthal velocity and magnetic field for type 2 Super-HMRI in
the global case as a function of (r, z) at small Pm = 10−3, the narrow gap η̂ = 0.85, and conducting boundary
conditions on the cylinders. The parameters (β, Ro, Ha, Re) are the same as those in Fig. 6(b) and the axial
wave number is chosen to be kzm = 24, at which the growth rate for the given values of these parameters reaches
a maximum (peak on the blue curve in that panel).

and insulating boundaries. For this reason, we show only the case with the conducting boundaries
in Fig. 10, leading to nearly identical dispersion curves in Fig. 7.

This comparative local and 1D global analysis of type 2 Super-HMRI, for the conducting and
insulating boundary conditions, in the narrow gap case, allowed us, first of all, to clearly demonstrate
the existence of this double-diffusive instability also in the global setup of a differentially rotating
dissipative flow with positive shear threaded by helical magnetic field. We have shown that the basic
dependence of its growth rate and frequency on the flow parameters and axial wave number can still
be understood and reproduced qualitatively within the local WKB approach. This indicates that type
2 Super-HMRI, like HMRI at negative shear, is a genuine instability intrinsic to the flow, tapping
free energy of differential rotation (shear), and is not induced or driven by the radial boundaries
on the confining rotating cylinders, although it can still be modified by these boundaries. We have
seen above that the quantitative differences between the results of the WKB and global analyses
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FIG. 9. Same as in Fig. 8, but for insulating boundary conditions on the cylinders. The main parameters
are again the same as in Fig. 6(b), but now the axial wave number is chosen to be kzm = 23, corresponding to
the largest growth rate for the given values of these parameters (peak on the red curve in that panel) and the
boundary conditions.

and some influence of specific radial boundary conditions on the growth rate and structure of the
eigenfunctions are more noticeable at small magnetic Prandtl numbers but diminish at large Prandtl
numbers, because when increasing this number the eigenfunctions tend to vary much more along
the axial z direction than along the radial direction. Consequently, the WKB approximation holds
much better in the latter case.

B. Wide-gap case

Having explored type 2 Super-HMRI in the local and narrow-gap global cases, we now look for it
in the case of a wide gap. As noted above, in this subsection, the primary goal of these calculations
is to identify this instability in a TC flow setup commonly employed in laboratory experiments,
which in the present case has a radially increasing angular velocity (positive shear) profile. For
this purpose, following Refs. [15,16,34], where the related Super-AMRI is studied in a TC flow at
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FIG. 10. Same as in Fig. 8, but for large Pm = 100 and conducting boundary conditions. The parameters
(β, Ro, Ha, Re) are the same as in Fig. 7(b) and the axial wave number is kzm = 141, corresponding to the
maximum growth rate (peak on the blue curve in that panel) for the given values of these parameters. For
the sake of comparison of the eigenfunction structures and length scales with those at small Pm, the z axis has
the same range as in Figs. 8 and 9. At large Pm, the eigenfunctions in the presence of insulating boundaries are
in fact nearly identical to the ones for the conducting boundaries shown here at the same values of the main
parameters and hence we do not plot those eigenfunctions.

positive shear, we adopt here one of the radial profiles for the angular velocity used in those papers,
which is different from expression (6) at constant Ro. Specifically, the inner cylinder is assumed to
be stationary, �i = 0, while the outer cylinder rotates at �o, achieving a radially increasing angular
velocity profile between the cylinders with the largest positive shear for a given rotation rate of the
outer cylinder,

�(r) = �o

1 − η̂2

(
1 − r2

i

r2

)
,
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FIG. 11. Growth rate Re(γ ) vs kz for the TC flow with the wide gap, η̂ = 0.5, and the inner cylinder at
rest. Panel (a) focuses on Pm  1, with solid lines having fixed β = 1, S = 4, and Rm = 20 but different Pm,
dot-dashed line β = 2, S = 8, Rm = 80, Pm = 10−5, and dashed line β = 3, S = 12, Rm = 180, Pm = 10−5.
Panel (b) focuses on Pm � 1, with solid lines having fixed β = 1, Ha = 1600, and Re = 8 × 104 but different
Pm, dot-dashed line β = 0.4, Ha = 640, Re = 1.28 × 104, Pm = 500, and dashed line β = 0.5, Ha = 800,
Re = 2 × 104, Pm = 500.

where for the ratio of the inner to outer cylinders’ radii we take the fixed value η̂ = 0.5 relevant
to the TC devices in the PROMISE and DRESDYN experiments [9,31]. We take β ∼ 1 in these
calculations for the wide gap, since it is rather costly to achieve large β in experiments due to the
very high axial currents required. In this wide-gap case, we impose conducting boundary conditions
for the magnetic field on the cylinders. Note also that at β = 1 the rescaled parameters are equal to
their actual counterparts: k∗

z = kz, Ha∗ = Ha, Re∗ = Re, which is more convenient, and allows us
to directly compare the results at wider gap with the local ones presented in Figs. 1 and 2.

Figure 11 shows the growth rate Re(γ ) as a function of the wave number kz for both small
and large Pm, clearly demonstrating the presence of type 2 Super-HMRI also at a wide gap in the
magnetic TC flow with radially increasing angular velocity. For β = 1, the instability is concentrated
mainly at small kz � 1 for Pm  1 and shifts to larger kz � 10 for Pm � 1 as it does in the local
analysis [Figs. 1(a) and 2(a)]. Note also that here the solutions explicitly depend on β, since the
radial coordinate appears in the governing equations [6], unlike in the local analysis where β

effectively scales out. However, as seen in Fig. 4, qualitatively the expected scalings with β are
still followed, with Ha and Re (or S and Rm) as well as kzm increasing with β.

Note also in Fig. 11(a) how three solid curves, corresponding to small Pm, converge as Pm
decreases. This is consistent with the previous local analysis result that the relevant defining
parameters in this case are Lundquist, S, and magnetic Reynolds, Rm, numbers, since they are
kept fixed for these three curves. Figure 12 focuses further on this small magnetic Prandtl number
case, as it is more relevant to TC experiments employing liquid metals (gallium, sodium) with
Pm ∼ 10−6–10−5 [8–10], and shows how the growth rate, maximized over kz, varies with S and
Rm at fixed β = 1. Just as in Fig. 1(c) of the local analysis, the instability is again localized in
the (S, Rm) plane, with the overall maximum growth rate, γm = 4.8 × 10−3, occurring at Sm = 5.2
and Rmm = 25 (Ham = 5.2 × 103 and Rem = 2.5 × 107). The minimum, or critical values for the
instability to first emerge are Sc ≈ 0.3 and Rmc ≈ 0.9. These values are well within the capabilities
of the new TC device at HZDR [31], offering a realistic prospect for experimental realization and
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FIG. 12. Growth rate for the TC flow with the positive shear and wide gap, maximized over kz and
represented in the (S, Rm) plane, at fixed Pm = 10−6 and β = 1. As in the local equivalent [Fig. 1(c)], the
unstable region is localized in (S, Rm) plane, reaching a maximum at Sm = 5.2 and Rmm = 25.

detection of type 2 Super-HMRI. However, since at β ∼ 1 type 2 Super-HMRI occurs at smaller
kz [Figs. 11(a)], as far as the experimental detection is concerned, optimization with respect to β

is required in order to ensure that the largest critical kz,max of the instability, corresponding to the
smallest wave number λz,min = 2π/kz,max, still fits into the device, that is, λz,min � Lz, where Lz

is its vertical size. Such an optimization procedure and a more detailed analysis addressing the
experimental manifestation of this instability will be presented elsewhere.

Although the results at wider gaps are qualitatively similar to those at local ones, there are
noticeable quantitative differences in that the local analysis yields about an order of magnitude
higher growth rate, but lower axial wave number and Hartmann number and about two orders of
magnitude lower Reynolds number for the instability. This mismatch is expected, since in this case
of β ≈ 1, as mentioned above, the WKB approximation is inapplicable. The radial and axial length
scales of the eigenfunctions are comparable to the gap width as well as to the radial size of the flow
system, λz ∼ λr ∼ δ = ri = 0.5ro) and therefore the equilibrium appreciably varies over the whole
radial extent of the mode. By contrast, the local WKB analysis better applies in the narrow-gap case,
η̂ → 1, because the eigenfunctions vary mostly only over the gap width (Figs. 8–10), which is much
less than ro and hence the radial variation of the equilibrium quantities are small across this distance.
Another reason for the differences in the growth rates between the local and the global wide gap
cases is that a finite distance between the cylinders also excludes (cuts off) very small radial wave
numbers (α → 1), which correspond to larger growth rates at β ∼ 1 in the WKB analysis [see
Fig. 1(b)].

The primary purpose of these 1D global calculations for the narrow and wide gaps, supple-
menting the local analysis, has been to demonstrate the existence of this double-diffusive type
2 Super-HMRI at positive shear in the global setup too. A more comprehensive global linear
analysis of this instability, exploring the dependence of its growth rate on the flow parameters
(η̂, β, Re, Ha, Pm), will be presented elsewhere. We also plan to explore the effects of boundary
conditions, conducting versus insulating, in more detail at wide gap η̂ = 0.5, since, as we have seen
in the narrow-gap case, they can lead to quite different onset criteria and growth rates of type 2
Super-HMRI, as it generally happens for MRI-type instabilities in TC flows (see, e.g., Refs. [7,34]).
Such a study will be important for setting up a series of tailored TC experiments with radially
increasing angular velocity at the DRESDYN facility, aiming at detecting type 2 Super-HMRI.
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V. SUMMARY AND DISCUSSION

In this paper, we have uncovered and analyzed a type of double-diffusive axisymmetric HMRI,
labeled type 2 Super-HMRI, which exists in rotational flows with radially increasing angular veloc-
ity, or positive shear of arbitrary steepness threaded by a helical magnetic field—a configuration
where magnetorotational instabilities were previously unknown. The only prerequisites are that
Pm 	= 1 and the imposed magnetic field includes both axial and azimuthal components. First,
we identified this instability using the radially local WKB analysis and subsequently ascertained
its existence via 1D global linear stability analysis by solving a boundary value problem with
conducting or insulating boundary conditions on the rotating cylindrical walls containing the flow.
In the global setup, we separately considered the cases of narrow gap and large azimuthal field,
in order to compare them with the results of the WKB analysis, and a wide gap and moderate
azimuthal field, which is more relevant to experiments. The comparative analysis in the narrow-gap
case indicates that although the global and local WKB results are qualitatively similar, there are
quantitative differences in the growth rates and associated axial wave numbers mostly at small
magnetic Prandtl numbers, since the radial and axial length scales of the modes are comparable to
each other and to the gap width, and hence boundary conditions appear to modify the growth rate.
By contrast, in the case of large Prandtl numbers, axial length scale of the mode is much smaller
than the radial one (which is again comparable to the gap width) and consequently the influence of
the boundaries is not important and the agreement with the WKB analysis is much better. In any
case, the radial extent of the mode is always comparable to the gap width between the cylinders;
i.e., it is concentrated within the bulk of the flow and not near either of the boundaries, indicating
that type 2 Super-HMRI is in fact intrinsic to the flow system and is not induced due to specific
boundary conditions. In this way, the global stability analysis also confirms that this instability is a
real one and not just an artifact of the WKB approximation.

From an experimental perspective, in the wide-gap case, we have also demonstrated the presence
of type 2 Super-HMRI in a magnetized viscous and resistive TC flow with positive shear, helical
magnetic field, and such values of η̂, β, Ha, Re, Pm, which can be well achieved in a liquid metal
laboratory. This promising result of the global stability analysis can, in turn, be a basis for future
efforts aiming at the detection of this instability and thereby providing an experimental evidence for
its existence. This will also allow us to make comparison with theoretical results. Building on the
findings of this study, future work will explore in greater detail the parameter space and the effect
of boundary conditions on type 2 Super-HMRI, which are more relevant to those present in TC flow
experiments.

Applicability to the solar tachocline

MRI has already been discussed in relation to the solar tachocline in several studies [17,37–40],
showing that it can arise at middle and high latitudes, where the shear of the differential rotation is
negative. The resulting small-scale MRI turbulence is thought to prevent coherent magnetic dynamo
action in these regions of the tachocline, thus explaining the rare occurrence or absence of the
sunspots at these latitudes.

The double-diffusive type 2 Super-HMRI, on the other hand, may arise and potentially have
important implications for the dynamics and magnetic activity of the low-latitude, near-equatorial
region of the solar tachocline, since necessary conditions for the development of this instability
are realized there. Indeed, in this part of the tachocline, we have (i) the positive radial shear
of differential rotation with Ro ∼ 0.1–1 [17,18], (ii) small magnetic Prandtl numbers Pm ∼ 0.01
[41–43], (iii) very high Reynolds numbers (inverse of often-used Ekman number), Re ∼ 1011–1014

[18,42,44], which are, of course, too challenging to use in theoretical and numerical studies, so
lower values Re � 106 are usually adopted instead (e.g., Refs. [43,45]), and (iv) helical magnetic
field. Regarding the magnetic field, MHD models of the solar tachocline (e.g., Refs. [43,46,47] and
references therein) also indicate that poloidal magnetic field in the tachocline should be relatively
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FIG. 13. Growth rate of type 2 Super-HMRI vs kz for a power-law radial profile of the angular velocity
with Ro = 0.7 and a very narrow gap η̂ = 0.94, which are close to those of the solar tachocline. The boundary
conditions are conducting at the inner and insulating at the outer walls, as often used in solar tachocline studies.
The other parameters are taken as follows (see text): β = 500, Pm = 0.01, Ha = 2500, and Re = 1.5 × 106.
As in Fig. 6, black dashed line shows the WKB result for these parameters, but at much higher radial wave
number kr0 = π (1 − η̂)−1 ≈ 52.4, corresponding to a narrower gap.

large in order to produce a thin tachocline layer and therefore have large Hartmann numbers
Ha ∼ 103, while the toroidal magnetic field should be even stronger, several orders of magnitude
higher than the poloidal one, resulting in very large β values. In practice, theoretical and numerical
studies often use β ∼ 102–103 (e.g., Refs. [48,49]), which in our case would ensure that the mode
is confined within a fairly thin layer of the tachocline, which has a typical ratio of the inner to outer
radii η̂ ≈ 0.9–0.97 [50].

To demonstrate that the type 2 Super-HMRI can indeed arise in the tachocline-like configuration
described above and thus to get a flavor of its amplification efficiency and characteristic wave
number in this case, in Fig. 13 we show the growth rate as a function of kz obtained from an
analogous 1D global stability analysis as in the narrow-gap case of Sec. IV, assuming a power-law
radial profile for the angular velocity [Eq. (6)] with smaller Ro = 0.7, narrower gap η̂ = 0.94,
and the values of the remaining parameters also of the same order as those quoted above for the
tachocline. As distinct from the above analysis, now we impose the boundary conditions often
used in tachocline studies, namely conducting at the inner and insulating at the outer radius,
mimicking, respectively, the conducting radiative interior and insulating convection zones in the
Sun (e.g., Refs. [45,46,51]. It can be seen from this figure that the largest growth rate is ≈10−3,
or in dimensional variables ≈10−3 �o, and therefore the corresponding growth time is ≈103 �−1

o .
Taking into account that the Sun’s angular velocity of rotation in the near-equatorial region of the
tachocline is about �o ≈ 2π × 445 nHz = 88.2 yr−1 [52], for the characteristic growth time of this
instability we get ≈11 yr, which is surprisingly close to the solar cycle period. This suggests that
type 2 Super-HMRI can be quite relevant to the magnetic activity in the tachocline and generally in
the Sun.

Although these calculations regarding the applications to the solar tachocline are simplistic, still
remaining within the cylindrical rotational flow, they are nevertheless encouraging and motivate us
to investigate in more detail the possible role of type 2 Super-HMRI in the dynamics, transport
processes, and dynamo action in the tachocline using its more realistic model involving spherical
(shell) geometry, radially and meridionally varying angular velocity (those parts where shear is
positive, Ro > 0) and magnetic field distribution and boundary conditions. Such a comprehensive
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study will allow us also to characterize in depth the potential implications of type 2 Super-HMRI in
the dynamical processes in the tachocline. In particular, this instability could also resurrect the idea
of a subcritical solar dynamo. Its axisymmetric (m = 0) nature can help to overcome the difficulties
that have been identified [53] in getting the so-called Tayler-Spruit dynamo [54] to form a closed
dynamo loop from the combination of the nonaxisymmetric (m = 1) Tayler instability and the m =
0 �-effect. Finding out whether this scenario is actually realized requires a further dedicated study
using these more realistic tachocline models and is a subject of future work. In this connection, we
would like to mention that an analogous mechanism for explaining solar magnetic cycles was put
forward in Ref. [55], where the combined effect of differential rotation and axisymmetric current-
driven instability can cause equatorward propagating reversals of the large-scale azimuthal field in
the tachocline and convection zone, as is observed in the Sun, without relying on a classical α effect
of mean-field dynamo theory.
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