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Modal reduction of a parametrically forced confined viscous flow
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An exact reduction of parametrically and periodically forced linear dynamical systems
to modal dynamics in low-dimensional subspaces is possible when the operators involved
commute with one another. We describe how a modal analysis may still be possible in the
noncommuting case. The approach is illustrated with the determination of neutral curves
for a stably and linearly stratified fluid in a square cavity under harmonically modulated
gravitational forcing. In this example, the noncommutation of operators in the resulting
Mathieu system is a direct consequence of the combined action of diffusion and wall
confinement effects. An ansatz for modal diffusion is proposed, which enables remarkably
predictive estimates of neutral curves via superposition of modal responses.
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I. INTRODUCTION

The dynamics of physical phenomena are often described via Newton’s second law. Restoring
forces, such as Coriolis effects in rotating flows or buoyancy forces in stratified flows, lead to
models that are analogous to coupled spring-mass systems. In the absence of friction and/or
spatial confinement, external periodic forcing results in dynamics that can be expressed as a
superposition of the modal responses of decoupled oscillators. In the context of surface waves of
a homogeneous fluid in a large container subjected to vertical oscillations of angular frequency
�, Benjamin and Ursell [1] were the first to make this observation. Their analysis, made under
the assumption of vanishing viscosity, led to a Mathieu partial differential equation (PDE) for
the free surface elevation. This PDE was reduced to scalar modal Mathieu equations, which
satisfactorily reproduced experimental results; small discrepancies were attributed to meniscus and
viscous boundary layer effects at the bottom wall of the container. Viscosity dampens the surface
oscillations, which can nevertheless be sustained via the parametric forcing if the forcing amplitude
is sufficiently large. Internal gravity waves in a fully confined and continuously stably stratified fluid
were later studied with similar outcomes [2,3].

Subsequent studies involving parametric forcing of Faraday waves [4–6], internal gravity waves
[7], and Rayleigh-Bénard convection [8] with viscous fluids in finite-sized containers subjected to
harmonic vertical oscillations showed that in order to sustain the waves, larger forcing amplitudes
are required to overcome the strong viscous dissipation in the boundary layers of the container
walls. These viscous effects are notoriously difficult to quantify. The typical ansatz −ν|k|2 for
the action of ν∇2 representing viscous diffusion, where ν is the kinematic viscosity and |k| is
the Euclidean magnitude of the wave vector k, relies on the existence of a wavelike response
that is typically associated with responses in unbounded domains or ideal (inviscid) fluids, and
grossly underestimates the viscous contributions in boundary layers. As noted in Ref. [9], even

*yalim@asu.edu
†Corresponding author: welfert@asu.edu
‡jmlopez@asu.edu

2469-990X/2019/4(10)/103903(13) 103903-1 ©2019 American Physical Society

https://orcid.org/0000-0002-9134-2078
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevFluids.4.103903&domain=pdf&date_stamp=2019-10-14
https://doi.org/10.1103/PhysRevFluids.4.103903


YALIM, WELFERT, AND LOPEZ

small viscosity can also nontrivially modify the interior flow away from boundary layers. Various
corrections based on powers of

√
ν|k|2/� have been proposed to improve comparisons between

model and experimental results [10–12], but those usually assume small ν, |k|, and/or large �, and
introduce nonlocalization not only in space but also in time due to the fractional powers of |k|2 and
�, at least for low to moderate viscosity [13,14]. The global nature of these corrections is ultimately
rooted in the noncommutativity of the differential operators involved in the damped Mathieu PDE
as a result of viscosity and confinement. The lack of operator commutativity prevents a standard
modal analysis via simultaneous diagonalization of the operators and a simple superposition of
scalar Mathieu responses.

We show how responses to scalar damped Mathieu equations can in fact be superposed in
confined configurations of viscous fluids under parametric excitation, and we obtain a reliable
predictive estimate of the instability curves over a wide range of forcing frequency, provided an
appropriate ansatz for diffusive effects is used. The proposed strategy relies on a simple ad hoc
model of modal diffusion based on data of critical forcing amplitudes at selected forcing frequencies
and viscosities, which are obtained from a numerical Floquet analysis of the full problem. Such a
strategy provides an economical alternative to a global Floquet analysis of the parametrically forced
Navier-Stokes-Boussinesq equations.

Our approach is illustrated with a study of the onset of instability of a linearly stratified fluid in
a square cavity subjected to harmonically modulated gravitational acceleration. It is closely related
to the physical experiments of Benielli and Sommeria [7], the Floquet analysis of the full problem
in Yalim et al. [15], and the numerical exploration conducted beyond criticality in Ref. [16]. The
analogy made in Ref. [7] between the stratified fluid’s response to the vertical oscillations and
that of a parametrically excited pendulum modeled by a Mathieu equation is hampered by the
modal expression used for boundary dissipation [Ref. [7], Eq. (5.5)] vanishing for horizontal wave
vectors and neglecting viscous effects at lateral walls, whose only role in their model is to quantize
these wave vectors. The discrepancies between theory and experiments were correctly attributed to
unaccounted friction due to boundary layer effects. Our results show that a proper evaluation of
these effects via an ad hoc modal dissipation model can restore the agreement over a broad range of
parameters.

II. MODEL FORMULATION

The model problem consists of a square cavity of side lengths L that is completely filled with
a fluid of kinematic viscosity ν, thermal diffusivity κ , and coefficient of volume expansion β. The
velocity boundary conditions are no-slip on all walls. The cavity sidewalls are thermally insulated
(adiabatic) while the endwalls are held at constant temperatures, TT on the top wall and TB on
the bottom wall. The nondimensional temperature is T = (T ∗ − TB)/�T − 0.5, where T ∗ is the
dimensional temperature and �T = TT − TB > 0. Gravity g acts downward. In the absence of any
other external force, the fluid is linearly stratified. The cavity is subjected to harmonic oscillations
in the vertical direction with angular frequency � and amplitude �.

The system is nondimensionalized using length scale L and time scale 1/N , where N =√
gβ�T/L is the buoyancy frequency. In a frame of reference attached to the oscillating cavity,

the nondimensional governing equations using the Boussinesq approximation are

∂t u + u · ∇u = −∇p + 1

RN
∇2u + f (t )T ez, ∇ · u = 0, ∂t T + u · ∇T = 1

σRN
∇2T, (1)

where p is the reduced pressure, ez is the unit vector in the vertical direction, and

f (t ) = 1 + α cos(ωt ) (2)

is the resulting modulated (gravity) body force. The horizontal and vertical components of the
velocity in x ∈ [−0.5, 0.5] and z ∈ [−0.5, 0.5] directions are u and w. A schematic of the
nondimensionalized configuration is shown in Fig. 1.
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f(t) = 1 + α cos(ωt)x

z

u = 0
w = 0

∂xT = 0

u = 0
w = 0
∂xT = 0

u = w = 0, T = −0.5

u = w = 0, T = 0.5

FIG. 1. Schematic showing the basic state isotherms, boundary conditions, coordinate system, and body
forcing.

The system is governed by four nondimensional parameters:

Buoyancy number, RN = NL2/ν;
Prandtl number, σ = ν/κ;
forcing frequency, ω = �/N ;
forcing amplitude, α = �2�/g.

(3)

The restriction 0 < α � 1 guarantees that the vertical acceleration of the cavity points in the
downward direction at all times, and the linearly stratified fluid remains convectively stable. Under
this assumption, it will be sufficient to consider 0 < ω � 2.5.

The static and stably stratified base state, ub = 0, wb = 0, and T = z, is an equilibrium solution
for any σ , ω, α, and RN � 0. The time evolution of small perturbations (u,w, θ ) = (u − ub,w −
wb, T − z) about this static equilibrium is governed by the nondimensionalized Navier-Stokes-
Boussinesq equations (1) linearized about the base state,

∂t u = −∂x p + 1

RN
∇2u,

∂tw = −∂z p + 1

RN
∇2w + f (t )θ,

∂tθ = −w + 1

σRN
∇2θ,

∂xu + ∂zw = 0.

(4)

The incompressibility condition yields a Poisson equation for the pressure p,

∇2 p = f (t )∂zθ, (5)

so that

Lθ = − 1

f (t )
∂z p + θ (6)

defines a bounded linear operator L that satisfies

∇2Lθ = − 1

f (t )
∂z∇2 p + ∇2θ = −∂2

z θ + ∇2θ = ∂2
x θ. (7)
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(a) inviscid case (b) viscous case

w, θ w θ

FIG. 2. Contour levels with red positive and blue negative for the perturbation vertical velocity w and
perturbation temperature θ obtained at ω ≈ √

2 for (a) the inviscid and unforced a1:1 (RN → ∞), and (b) the
viscous w and θ at RN = 2 × 104 and σ = 1 for α near onset obtained from Floquet analysis. The magnitude
of eigenmodes (w, θ ) is arbitrary, but that of θ relative to w is not.

The time evolution of w and θ can then be written as

∂t

[
w

θ

]
= A(t )

[
w

θ

]
, A(t ) =

[
1

RN
∇2 f (t )L

−I 1
σRN

∇2

]
, (8)

where I is the identity operator.

III. STABILITY OF THE PARAMETRICALLY FORCED BASE STATE

A. Inviscid case

The stability of (8) depends on the spectrum of the monodromy operator. In the inviscid limit
RN → ∞, the Laplacian terms vanish. Diagonalization of L reduces the problem of studying the
monodromy operator of (8) to the study of the system of 2 × 2 monodromy matrices

d

dt

[
wk

θk

]
= Ak(t )

[
wk

θk

]
, Ak(t ) =

[
0 f (t )λk

−1 0

]
, (9)

describing the time evolution of solutions of (8):[
w

θ

]
=

[
wk(t )
θk(t )

]
ak(x, z), (10)

where the index k = (mπ, nπ ) = m:n, with positive integers m and n. Here, ak(x, z) = cos mπ (x +
0.5) sin nπ (z + 0.5) are the eigenmodes of L, and they are solutions of the generalized eigenvalue
problems

λk∇2ak = ∂2
x ak, (11)

with boundary conditions ak(x,±0.5) = ∂xak(±0.5, z) = 0. The corresponding eigenvalues are [3]

λk = m2

m2 + n2
. (12)

Note that the perturbation vertical velocity w obtained from (10) only vanishes on the top and
bottom boundaries, which is consistent with the impermeability condition imposed at boundaries in
the inviscid case. Figure 2(a) shows the spatial structure of the inviscid mode a1:1, describing both
w and θ . In this inviscid setting, w and θ have the same spatial structure.
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Eliminating wk in Eq. (9) leads to the Mathieu equation

θ ′′
k + f (t )λkθk = 0. (13)

This equation has a rich history, dating back to Mathieu’s work on Poisson equations in elliptic
domains [17]. It has found numerous applications [18,19], and its theory is well-established [20,21].
In particular, the eigenvalues of the monodromy matrix of (9) with modulus 1 can only be ±1,
occurring at the edge of an infinite sequence of horns emanating from frequencies ω = 2λ

1/2
k /�,

with � = 1, 2, . . ., at forcing amplitude α = 0 in the stability diagram delineating stable regions
in (ω, α)-space with either subharmonic (� odd) or synchronous (� even) periodic solutions. The
stability diagram is often referred to as the Ince-Strutt, Strutt, or Strutt-Ince diagram [21].

B. Viscous case

In the viscous case (RN < ∞), a standard stability estimate using the L2 norm shows that the
global perturbation L2 energy, ‖u‖2 + ‖w‖2 + ‖θ‖2, decreases for α > 0 small enough. The onset
of instability coincides with the characteristic multipliers crossing the unit circle in the complex
plane, which has been observed numerically to occur only through ±1 in this problem. The first
occurrence of a multiplier exiting the unit disk at −1 (subharmonic response) or +1 (synchronous
response) determines two critical curves in (ω, α) space, illustrated in Ref. [15] for RN = 2 × 104

and σ = 1, and reproduced here in Figs. 3 and 4.
At ω = 1.41 ≈ √

2, the instability occurs at α ≈ 0.07 via a flip bifurcation (subharmonic
response). Contours of the perturbation vertical velocity w and the perturbation temperature θ of
the corresponding eigenmode of the monodromy operator are shown in Fig. 2(b) and illustrate how
viscosity affects the response (w, θ ) at the onset of instability, compared to the inviscid case. The
forced viscous modes w and θ both broadly resemble the inviscid mode a1:1, except that the viscous
velocity satisfies the no-slip condition w = 0 on the side boundaries. The difference in boundary
conditions for w on the sidewalls (∂xw = ∂xtθ = 0 in the inviscid case and w = 0 in the viscous
case) introduces distortions due to the formation of boundary layers—these boundary layers in w

also distort the perturbation temperature distribution in the boundary layer regions, even though
the boundary condition on θ is the same in both the viscous and inviscid setting, i.e., the sidewalls
are insulating with θx = 0. These effects lead to the loss of commutativity of the operators ∇2

and L. This prevents an exact modal reduction of (8) to a superposition of first-order Mathieu
equations (9).

An approximating modal reduction is nevertheless desirable, as it delivers considerable savings
in the computational cost of evaluating critical curves over a large range of forcing frequencies,
especially when compared to the computation of the monodromy matrix in the Floquet analysis.
A widely used approach is to continue replacing, as in the inviscid case, the action of A(t ) on the
Floquet eigenmodes by its action on the inviscid modes (10). This ansatz leads to a system of the
form (9) again, but with

d

dt

[
wk

θk

]
= Ak(t )

[
wk

θk

]
, Ak(t ) =

[ 1
RN

δk f (t )λk

−1 1
σRN

δk

]
, (14)

where

δk = −π2(m2 + n2). (15)

Elimination of wk in Eq. (14) yields the second-order equation

θ ′′
k + ckθ

′
k + gk(t ) θk = 0, (16)

where ck = −trace[Ak(t )] and gk(t ) = det[Ak(t )]. The stability diagram of this damped Mathieu
equation consists of tongues in (ω, α) space with boundaries alternately corresponding to
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FIG. 3. (a) Instability tongues of the Mathieu system associated with the m:n = 1:1 mode at RN = 2 × 104

and σ = 1 in (ω, α) parameter space. (b) Superposition of viscous Mathieu stability tongues (thin blue curves
for subharmonic and thin red curves for synchronous responses) at RN = 2 × 104 and σ = 1 associated with
modes m:n for m, n � 1. The subharmonic (thick black) and synchronous (thick red) stability boundaries
determined from the Floquet analysis of the Navier-Stokes-Boussinesq system are also shown. The tongues
accumulating at low frequencies are narrower and more difficult to estimate (gray area).

FIG. 4. Same as in Fig. 3(b), but now using the corrected diagonal coefficients (21) in Eq. (14) with γ = 20.
The black dots correspond to critical Floquet results for the viscous m:m modes with 1 � m � 8.
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TABLE I. μ� versus � for mode 1:1.

� 1 2 3 4 5 6 7 8 9 10

μ� 2.00 2.00 1.84 1.72 1.63 1.55 1.49 1.45 1.41 1.38

subharmonic and synchronous periodic solutions [22], shown in Fig. 3(a) for the mode m:n = 1:1
at RN = 2 × 104 and σ = 1. These tongues are efficiently determined, as an alternative to Floquet
analysis or other asymptotic methods typically used with small α, as the zero contour level of a
Hill continued fraction, which results from applying harmonic balance to Mathieu’s equation [21];
see Appendix A. Each tongue corresponds to a mode of instability of the linearly stratified base
state with the same 1:1 spatial response to different forcing frequencies ω� ≈ 2λ

1/2
1:1 /� = √

2/�,
slightly detuned from the inviscid values, with a minimum forcing amplitude α� ≈ μ�Q1/�

1:1 , where
Q1:1 = c1:1/λ

1/2
1:1 measures the dissipation for mode 1:1. The constants μ�, � = 1, . . . , 10, estimated

from the minimum critical amplitudes α� of the first ten tongues [visible in Fig. 3(a)] and Q1:1 ≈
2.8 × 10−3 for mode 1:1 at RN = 2 × 104 and σ = 1, are listed in Table I. The value μ1 = 2.00
relating the minimal critical amplitude α to the friction coefficient c at the principal 1:1 tongue
is well-known; for example, see Ref. [22], p. 1256. Figure 3(a) clearly illustrates that the same
spatial mode can be excited at many different forcing frequencies ω, however they require different
forcing amplitudes α to overcome viscous damping at those different frequencies. This is due to the
oscillatory boundary layers on the walls having structures and intensities that depend on both RN

and ω, and these have nonlocal effects, an issue that is well recognized [9].
The superposition of the resulting curves for all wave numbers k is shown in Fig. 3(b),

together with the subharmonic (thick blue) and synchronous (thick red) critical curves computed
via Floquet analysis in Ref. [15]. To the best of our knowledge, this figure is the first instance of
a frequency-wide model of actual stability boundaries of a base state in an Ince-Strutt diagram.
Not surprisingly, the ansatz (14), based on the action of spatial operators on inviscid modes, tends
to underestimate viscous effects in boundary layers, lowering the critical amplitude α for onset of
instability across the whole ω spectrum as a result. This is more so at ω �

√
2, for which the wave

vectors k are predominantly vertical (m � n) and are more affected by the strong boundary layers
on the sidewalls.

C. Confined viscous case

To take the additional diffusion occurring in boundary layers into account, the modal action of
∇2 is estimated via Rayleigh quotients

R(∇2,w) = (∇2w,w)

(w,w)
= −‖∇w‖2

‖w‖2
and R(∇2, θ ) = (∇2θ, θ )

(θ, θ )
= −‖∇θ‖2

‖θ‖2
, (17)

evaluated on selected viscous Floquet eigenmodes wk and θk, where (·, ·) is the L2 inner product.
Here the modes k = m:m with 1 � m � 8 are selected and evaluated at or close to the tip of the
corresponding tongues (as computed in Ref. [15] with RN = 2 × 104 and σ = 1). The results, shown
in Fig. 5, yield the fits

R(∇2,wk) ≈ δk

(
1 + 14

2m2

)
and R(∇2, θk) ≈ δk

(
1 + 1

2m2

)
, (18)

which suggest replacing δk for general modes k = m:n in Eq. (15) with an expression of the form

δk = −π2(m2 + n2)

(
1 + γ

m2 + n2

)
. (19)
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FIG. 5. Scaled diffusion ∇2/δk applied to viscous Floquet modes (a) wk and (b) θk for modes k = m:m vs
m, as determined by the Rayleigh quotients (17), together with the fits (18).

An additional correction factor to (19),

0.75 + (mn)2

(m2 + n2)2
= 0.75 + 0.25 sin2(2ϕk), (20)

where tan ϕk = n/m measures the inclination of the wave vector k = m:n, is also introduced to mod-
erate (by up to 25%) the modal diffusion for vertical and horizontal wave vectors (corresponding to
m �= n), associated with forcing frequencies away from ω = √

2. The resulting ansatz for δk,

δk = −π2(m2 + n2)

(
1 + γ

m2 + n2

)(
0.75 + (mn)2

(m2 + n2)2

)
, (21)

bears similarities with the expression of the ratio of modal boundary to bulk dissipations from
Ref. [7], Eq. (5.5) [e.g., mn/(m2 + n2) = sin2 ϕk cot ϕk]. However, (21) does not vanish for
horizontal wave vectors (m > n), whereas boundary dissipation in Ref. [7], Eq. (5.5), does, ignoring
contributions from the container’s lateral boundaries.

The superposed modal Ince-Strutt stability diagrams, recomputed at RN = 2 × 104 and σ = 1
using (21) with γ = 20, obtained by fitting critical Floquet amplitudes at the m:m modes with
1 � m � 8 [and somewhat higher than the values 14 or 1 suggested by (18)], are shown in Fig. 4.
They are in excellent agreement with the critical curves obtained via Floquet analysis for both
subharmonic and synchronous responses [15]. In particular, our model correctly identifies the rare
instances of primary synchronous responses in the lower frequency range. There is a small detuning,
particularly for lower ω, which is due to a mild dependence of L on ω; see Appendix B.

The robustness of the ansatz (21) to changes in both RN and σ was tested by comparing the critical
forcing amplitudes obtained at RN = 104 and σ = 1, RN = 4 × 104 and σ = 1, and RN = 2 × 104

and σ = 7, using the model (21) with an adjusted γ , with those obtained via Floquet analysis.
Figure 6 shows the results using γ = 15, 27, and 30.6, respectively. Again, the match is very good,
especially for wave numbers k with low m or n. The subharmonic critical curves obtained for RN =
4 × 104 and σ = 1, and RN = 2 × 104 and σ = 7, are very similar. The different values of γ are
consistent with the scaling

γ ≈ 3 + 0.12
(
σR2

N

)1/4
, (22)

reflecting the balance between momentum diffusion, quantified by RN, and thermal diffusion,
quantified by σRN. As RN increases, γ switches from being O(1) to being O(R1/2

N ). In other words,
the dissipation [diagonal coefficients of Ak(t ) in Eq. (14)] shifts from being O(R−1

N ), typical of a
viscous-dominated regime, to being O(R−1/2

N ) in the buoyancy-dominated regime. The dependence
of γ on RN (22) also yields an estimate of the forcing amplitude at the tip of the principal 1:1 tongue
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FIG. 6. Same as in Fig. 4 using corrected diagonal coefficients (21) in Eq. (14) with (a) γ = 15 at RN =
104 and σ = 1, (b) γ = 27 at RN = 4 × 104 and σ = 1, and (c) γ = 30.6 at RN = 2 × 104 and σ = 7. Only
primary subcritical responses at forcing frequencies ω � 0.3 were computed via Floquet analysis for the sake
of efficiency. The MATLAB script stability_diagram.m [23] in the Supplemental Material can be used to
recreate the modal responses. The movie movie-fig06.mp4 in the Supplemental Material [23] animates the
modal responses for σ = 1 and RN ∈ [103, 105].

at ω ≈ √
2:

αmin ≈ 2Q1:1 = 4δ1:1

RN
√

λ1:1
≈ 279

RN
+ 6.7√

RN
(23)
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FIG. 7. Scaled operator L/λk applied to viscous Floquet mode θk vs forcing frequency ω, together with the
fit (ω/

√
2)−4/3.

at σ = 1, in good general agreement with the results presented in Ref. [15], Fig. 7(b). The balance
between the two terms on the right-hand side of (23) occurs at a relatively low RN ≈ 1734, while
the last term accounts for 78% at RN = 2 × 104.

IV. CONCLUSIONS

Confinement together with viscous effects make the determination of neutral curves in large
parametric studies of fluid flows subjected to parametric forcing a nontrivial task due to the
noncommutation of operators (L and ∇2). We have shown how global neutral curves can still be
obtained via superposition of modal responses, provided a suitable model of viscous dissipation
based on interpolation of local Floquet data at the onset of instability is used to account for boundary
layer contributions. The specific dissipation model used is problem-dependent and must be adjusted
accordingly. In our study, we have considered parameter regimes where dissipation is dominated by
viscous boundary layer effects, corresponding to RN � 103. We have demonstrated that it correctly
predicts the onset of instability for 103 � RN � 105. For RN � 400, the linearly stratified base state
remains stable for all forcing amplitudes α < 1 and forcing frequencies ω, so there is no parametric
instability to test the model against. Nevertheless, the model correctly predicts the base state to be
stable for α < 1 and RN � 400.

It is expected that the interpolatory approach presented here, consisting of using selected Floquet
data to calibrate the dissipation model used and bypass restrictions due to the noncommutation of
operators, can be generalized to other systems, including three-dimensional configurations or more
general Hill-type periodic parametric forcings, at least as long as the primary bifurcation of the
base state in modal responses occurs in a similar way as it does in the full system (excluding, for
example, the possibility of “combination resonances” [22] in Mathieu PDEs, which do not occur in
the scalar version).
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APPENDIX A

Equation (16) is written

θ ′′
k + ckθ

′
k + (ak + 2qk cos ωt )θk = 0, (A1)

with

ck = − 1

RN

(
1 + 1

σ

)
δk, ak = 1

σR2
N

δ2
k + λk, 2qk = αλk. (A2)
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According to Floquet theory, the trivial state θk = 0 loses stability to a solution of the form

θk = eiμt
∑
n∈Z

θ̂k,neinωt , (A3)

with either μ = 0 (synchronous solutions) or μ = ω/2 (subharmonic solutions) [4].
Substituting (A3) into (A1) yields an infinite Hill system of linear equations for the coefficients

θ̂k,n, whose determinant

�k = det[tridiag(qk, dk,n, qk)]n∈Z, (A4)

where

dk,n = ak − (nω + μ)2 + ick(nω + μ), (A5)

vanishes. Substituting (A2) into the equation �k = 0 reduces it to a generalized eigenvalue problem
(for each μ) for the critical α at fixed ω, as was done in Ref. [4] for the Faraday problem. Instead,
(a truncated version of) �k is evaluated on a (fine) grid in (ω, α) parameter space via an LU
factorization (for each grid point), with its 0 locus obtained via interpolation. The truncation of �k

to a range −N � n � M, with M = N − 1 if μ = 0 and M = N if μ = ω/2, yields a determinant
�k,N that is guaranteed to be real due to its centro-Hermitian property [24] (N = 60 was used).
Partitioning �k,N as

�k,N = det

[
Ak,N qkeN eT

1

qke1eT
N Bk,N

]
, (A6)

with

Ak,N =

⎡⎢⎣dk,−N qk
. . .

. . .
. . .

qk dk,−1

⎤⎥⎦, e1 =

⎡⎢⎣1
...
0

⎤⎥⎦, eN =

⎡⎢⎣0
...
1

⎤⎥⎦, B =

⎡⎢⎣dk,0 qk
. . .

. . .
. . .

qk dk,M

⎤⎥⎦, (A7)

yields (assuming Ak,N and Bk,N are nonsingular)

�k,N = det(Ak,N ) det
(
Bk,N − q2

ke1eT
N A−1

k,N eN eT
1

)
= det(Ak,N ) det(Bk,N ) det

(
I − q2

kB−1
k,N e1eT

N A−1
k,N eN eT

1

)
= det(Ak,N ) det(Bk,N )

(
1 − q2

k

(
eT

1 B−1
k,N e1

)(
eT

N A−1
k,N eN

))
.

The quantity eT
N A−1

k,N eN is the trailing (bottom right) coefficient of A−1
k,N , equal to the inverse,

1/(Uk,N )N,N , of the trailing diagonal coefficient (Uk,N )N,N of the upper triangular matrix Uk,N in
the LU factorization of Ak,N . This coefficient can be determined via a recurrence

(Uk,N )0,0 = ∞,

(Uk,N )n,n = dk,n−1−N − q2
k/(Uk,N )n−1,n−1, n = 1, . . . , N,

(A8)

expressing it as a continued fraction of q2
k. As a result:

(i) If μ = ω/2, the centro-Hermitian property of �k,N implies eT
1 B−1

k,N e1 = eT
N A−1

k,N eN , so that
�k,N = 0 reduces to

|(Uk,N )N,N | = qk. (A9)

(ii) By analogy, for μ = 0, eT
1 B−1

k,N e1 is the conjugate of the trailing coefficient in the inverse of
the (N + 1) × (N + 1) matrix [

Ak,N qkeN

qkeT
N dk,0

]
,
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which is equal to the conjugate of the inverse of the coefficient (Uk,N )N+1,N+1, obtained by extending
(A8) to n = N + 1. In this case, �k,N = 0 reduces to (Uk,N )N,N (Uk,N )N+1,N+1 = q2

k, i.e.,√|(Uk,N )N,N (Uk,N )N+1,N+1| = qk. (A10)

The relations (A9) and (A10), respectively, determine the subcritical and synchronous stability
tongues of (A1), and they are implemented in the Supplemental Material MATLAB program
stability_diagram.m [23].

APPENDIX B

The action of L on the viscous modes θk cannot be directly quantified using a standard L2-norm
based Rayleigh quotient, R(L, θk ), because an explicit expression for the action of L on θk is not
directly available. Instead, we use a Rayleigh quotient based on a norm associated with −∇2:

(Lθk, θk)−∇2

(θk, θk)−∇2
= (−∇2Lθk, θk)

(−∇2θk, θk)
=

(−∂2
x θk, θk

)
‖∇θk‖2

= ‖∂xθk‖2

‖∇θk‖2
. (B1)

In the inviscid limit, this quotient reduces to λk = m2/(m2 + n2) for Floquet mode k = m:n. Viscous
effects were evaluated on the modes obtained from Floquet analysis at various forcing frequencies
ω for the case RN = 2 × 104 and σ = 1. Figure 7 shows the deviation of the Rayleigh quotients
(B1), scaled by λk, from unity (dashed line), together with a fit (ω/

√
2)−4/3. In particular, λk

underestimates (overestimates) L for ω <
√

2 (ω >
√

2) corresponding to modes k with m < n
(m > n). This discrepancy causes a small detuning of the modal tongues toward the frequency
ω = √

2, which is clearly visible at lower ω in Figs. 4 and 6.
The symmetry of L with respect to −∇2 follows from

(Lθk, θ�)−∇2 = (∂xθk, ∂xθ�) = (Lθ�, θk)−∇2 , (B2)

and (B1) shows that

‖L‖−∇2 = sup{|(Lθ, θ )−∇2 |, ‖θ‖−∇2 = 1} � 1. (B3)

In the confined case, L does not commute with ∇2. This is the reason why (8) cannot be simply
reduced to simple modal responses. Instead, ∇2L = L̂∇2, for a different symmetric linear operator
L̂. In the two-dimensional setting, L̂ = ∂x∇−2

0 ∂x provides an explicit expression for L̂, where ∇−2
0 ϕ

denotes the solution of a Poisson problem, ∇2ψ = ϕ, with homogeneous boundary conditions.
Indeed, the boundary condition ∂xθ = 0 on all walls yields

L̂∇2θ = ∂x∇−2
0 ∂x∇2θ = ∂x∇−2

0 ∇2∂xθ = ∂2
x θ = ∇2Lθ. (B4)

The system (8) can then be expressed in terms of L̂ as

∂t

[∇2w

∇2θ

]
= Â(t )

[∇2w

∇2θ

]
, Â(t ) =

[
1

RN
∇2 f (t )L̂

−I 1
σRN

∇2

]
. (B5)

However, (B5) requires more regularity on w and θ compared to (8) (the state variables are now
∇2w and ∇2θ ), hindering the numerical estimation of modal actions via Rayleigh quotients, as in
Figs. 5 and 7.

[1] T. B. Benjamin and F. Ursell, The stability of the plane free surface of a liquid in vertical periodic motion,
Proc. R. Soc. London A 225, 505 (1954).

[2] C.-S. Yih, Gravity waves in a stratified fluid, J. Fluid Mech. 8, 481 (1960).

103903-12

https://doi.org/10.1098/rspa.1954.0218
https://doi.org/10.1098/rspa.1954.0218
https://doi.org/10.1098/rspa.1954.0218
https://doi.org/10.1098/rspa.1954.0218
https://doi.org/10.1017/S002211206000075X
https://doi.org/10.1017/S002211206000075X
https://doi.org/10.1017/S002211206000075X
https://doi.org/10.1017/S002211206000075X


MODAL REDUCTION OF A PARAMETRICALLY FORCED …

[3] S. A. Thorpe, On standing internal gravity waves of finite amplitude, J. Fluid Mech. 32, 489 (1968).
[4] K. Kumar and L. S. Tuckerman, Parametric instability of the interface between two fluids, J. Fluid Mech.

279, 49 (1994).
[5] J. Wright, S. Yon, and C. Pozrikidis, Numerical studies of two-dimensional Faraday oscillations of

inviscid fluids, J. Fluid Mech. 402, 1 (2000).
[6] F. J. Mancebo and J. M. Vega, Faraday instability threshold in large-aspect-ratio containers, J. Fluid Mech.

467, 307 (2002).
[7] D. Benielli and J. Sommeria, Excitation and breaking of internal gravity waves by parametric instability,

J. Fluid Mech. 374, 117 (1998).
[8] R. M. Carbo, R. W. M. Smith, and M. E. Poese, A computational model for the dynamic stabilization of

Rayleigh-Bénard convection in a cubic cavity, J. Acoust. Soc. Am. 135, 654 (2014).
[9] E. Knobloch, C. Martel, and J. M. Vega, Coupled mean flow-amplitude equations for nearly inviscid

parametrically driven surface waves, Ann. N.Y. Acad. Sci. 974, 201 (2002).
[10] K. Kumar, Linear theory of Faraday instability in viscous liquids, Proc. R. Soc. London A 452, 1113

(1996).
[11] H. W. Müller, H. Wittmer, C. Wagner, J. Albers, and K. Knorr, Analytic Stability Theory for Faraday

Waves and the Observation of the Harmonic Surface Response, Phys. Rev. Lett. 78, 2357 (1997).
[12] J. Rajchenbach and D. Clamond, Faraday waves: Their dispersion relation, nature of bifurcation and

wavenumber selection revisited, J. Fluid Mech. 777, R2 (2015).
[13] E. Cerda and E. Tirapegui, Faraday’s Instability for Viscous Fluids, Phys. Rev. Lett. 78, 859 (1997).
[14] R. A. Ibrahim, Recent advances in physics of fluid parametric sloshing and related problems, ASME J.

Fluid Eng. 137, 090801 (2015).
[15] J. Yalim, J. M. Lopez, and B. D. Welfert, Vertically forced stably stratified cavity flow: Instabilities of the

basic state, J. Fluid Mech. 851, R6 (2018).
[16] J. Yalim, B. D. Welfert, and J. M. Lopez, Parametrically forced stably stratified cavity flow: Complicated

nonlinear dynamics near the onset of instability, J. Fluid Mech. 871, 1067 (2019).
[17] E. Mathieu, Mémoire sur le mouvement vibratoire d’une membrane de forme elliptique, J. Math.

Pures Appl. 13, 137 (1868).
[18] L. Ruby, Applications of the Mathieu equation, Am. J. Phys. 64, 39 (1996).
[19] K. L. Turner, S. A. Miller, P. G. Hartwell, N. C. MacDonald, S. H. Strogatz, and S. G. Adams, Five

parametric resonances in a microelectromechanical system, Nature (London) 396, 149 (1998).
[20] N. W. McLachlan, Theory and Applications of Mathieu Functions (Oxford University Press, Oxford,

1947).
[21] I. Kovacic, R. Rand, and S. M. Sah, Mathieu’s equation and its generalizations: Overview of stability

charts and their features, Appl. Mech. Rev. 70, 020802 (2018).
[22] A. Champneys, Dynamics of parametric excitation, in Mathematics of Complexity and Dynamical Systems,

edited by R. A. Meyers (Springer, New York, 2012), pp. 183–204.
[23] See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevFluids.4.103903 for a

Matlab script and an animation corresponding to Fig. 6.
[24] A. Lee, Centrohermitian and skew-centrohermitian matrices, Lin. Alg. Appl. 29, 205 (1980).

103903-13

https://doi.org/10.1017/S002211206800087X
https://doi.org/10.1017/S002211206800087X
https://doi.org/10.1017/S002211206800087X
https://doi.org/10.1017/S002211206800087X
https://doi.org/10.1017/S0022112094003812
https://doi.org/10.1017/S0022112094003812
https://doi.org/10.1017/S0022112094003812
https://doi.org/10.1017/S0022112094003812
https://doi.org/10.1017/S0022112099006631
https://doi.org/10.1017/S0022112099006631
https://doi.org/10.1017/S0022112099006631
https://doi.org/10.1017/S0022112099006631
https://doi.org/10.1017/S0022112002001398
https://doi.org/10.1017/S0022112002001398
https://doi.org/10.1017/S0022112002001398
https://doi.org/10.1017/S0022112002001398
https://doi.org/10.1017/S0022112098002602
https://doi.org/10.1017/S0022112098002602
https://doi.org/10.1017/S0022112098002602
https://doi.org/10.1017/S0022112098002602
https://doi.org/10.1121/1.4861360
https://doi.org/10.1121/1.4861360
https://doi.org/10.1121/1.4861360
https://doi.org/10.1121/1.4861360
https://doi.org/10.1111/j.1749-6632.2002.tb05909.x
https://doi.org/10.1111/j.1749-6632.2002.tb05909.x
https://doi.org/10.1111/j.1749-6632.2002.tb05909.x
https://doi.org/10.1111/j.1749-6632.2002.tb05909.x
https://doi.org/10.1098/rspa.1996.0056
https://doi.org/10.1098/rspa.1996.0056
https://doi.org/10.1098/rspa.1996.0056
https://doi.org/10.1098/rspa.1996.0056
https://doi.org/10.1103/PhysRevLett.78.2357
https://doi.org/10.1103/PhysRevLett.78.2357
https://doi.org/10.1103/PhysRevLett.78.2357
https://doi.org/10.1103/PhysRevLett.78.2357
https://doi.org/10.1017/jfm.2015.382
https://doi.org/10.1017/jfm.2015.382
https://doi.org/10.1017/jfm.2015.382
https://doi.org/10.1017/jfm.2015.382
https://doi.org/10.1103/PhysRevLett.78.859
https://doi.org/10.1103/PhysRevLett.78.859
https://doi.org/10.1103/PhysRevLett.78.859
https://doi.org/10.1103/PhysRevLett.78.859
https://doi.org/10.1115/1.4029544
https://doi.org/10.1115/1.4029544
https://doi.org/10.1115/1.4029544
https://doi.org/10.1115/1.4029544
https://doi.org/10.1017/jfm.2018.571
https://doi.org/10.1017/jfm.2018.571
https://doi.org/10.1017/jfm.2018.571
https://doi.org/10.1017/jfm.2018.571
https://doi.org/10.1017/jfm.2019.347
https://doi.org/10.1017/jfm.2019.347
https://doi.org/10.1017/jfm.2019.347
https://doi.org/10.1017/jfm.2019.347
https://eudml.org/doc/234720
https://doi.org/10.1119/1.18290
https://doi.org/10.1119/1.18290
https://doi.org/10.1119/1.18290
https://doi.org/10.1119/1.18290
https://doi.org/10.1038/24122
https://doi.org/10.1038/24122
https://doi.org/10.1038/24122
https://doi.org/10.1038/24122
https://doi.org/10.1115/1.4039144
https://doi.org/10.1115/1.4039144
https://doi.org/10.1115/1.4039144
https://doi.org/10.1115/1.4039144
http://link.aps.org/supplemental/10.1103/PhysRevFluids.4.103903
https://doi.org/10.1016/0024-3795(80)90241-4
https://doi.org/10.1016/0024-3795(80)90241-4
https://doi.org/10.1016/0024-3795(80)90241-4
https://doi.org/10.1016/0024-3795(80)90241-4

