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We utilize the incompressible, Hall-magnetohydrodynamics (MHD) model for con-
ducting fluids to investigate the effect of Hall current on the stability of an impulsively
accelerated, perturbed density interface, or contact discontinuity (CD) separating two fluids
in the presence of a background magnetic field. This is used as a simple model, in a
conducting fluid, of a Richtmyer-Meshkov type flow that is characterized in a neutral fluid
by a shock-wave-density-interface interaction. Two versions of the Hall-MHD equations
are explored. In the first, the ions are treated as an incompressible fluid but the electron gas
retains its compressibility, while for the second version the incompressible limit for both
species is invoked. The linearized equations of motion are first formulated for a sinusoidal
interface perturbation and then solved as an initial-value problem using a Laplace transform
method with general numerical inversion but with analytical inversion for some limiting-
parameter cases. While the field equations are identical for both Hall-MHD models, the
CD-jump conditions differ leading to qualitatively similar but quantitatively different CD
dynamics. For both models, the presence of the magnetic field is found to suppress the
incipient interfacial growth associated with neutral-gas, Richtmyer-Meshkov instability
(RMI). When the ion skin depth is finite, the vorticity dynamics that drive the suppression
of the RMI differ markedly from the ideal MHD, RMI flow. On the interface, the Hall-
MHD description allows the presence of a tangential slip velocity which leads to finite
circulation deposition. Away from the interface, vorticity is produced by the perturbed
magnetic fields and transported to infinity by a dispersive wave system. This leads to decay
of the velocity slip at the interface with the effect that interface growth remains bounded
but distorted by damped oscillations associated with the ion cyclotron effect. The flow
behavior for several limits of the ion skin depth and the Larmor radius is explored. Specific
comparisons with the results from both models against ideal MHD are presented.

DOI: 10.1103/PhysRevFluids.4.103902

I. INTRODUCTION

First introduced by Markstein [1], before it was studied theoretically by Richtmyer [2] and
experimentally by Meshkov [3], the Richtmyer-Meshkov instability (RMI) refers to the growth of
perturbations to an interface separating neutral fluids of different densities, typically due to a shock
wave traversing the interface. The RMI is pertinent to a wide range of applications, including stellar
evolution models in astrophysics [4], shock-flame interactions in combustion systems [5], mixing
phenomena in supersonic jet engines [6], and more as surveyed in the review of Brouillette [7]. A
richer literature is motivated by inertial confinement fusion (ICF), where a spherically converging
shock is driven into a target capsule containing fuel, generating, in principle, conditions at the center
sufficient to initiate fusion. The RMI, however, produces mixing between the capsule material and
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FIG. 1. (a) Geometry and initial condition for compressible RMI with an external magnetic field. (b) The
incompressible flow model that mimics the shock with an impulsive acceleration.

the fuel within, limiting final compression and hot-spot production, and thus the ability to achieve
energy output [8].

The extreme temperatures required for ICF implosion inevitably causes rapid ionization of the
involved materials, which then leads to interaction between the conducting fluids and magnetic fields
that are imposed or self-generated [9–12]. In order to model the coupled evolution of plasmas and
magnetic fields, several theoretical descriptions have been considered. Samtaney [13] and Wheatley,
Samtaney, and Pullin [14,15] employed the single-fluid ideal magnetohydrodynamic (MHD) system
to show that the growth of the RMI is suppressed in the presence of a magnetic field normal to the
interface. Cao et al. [16] and Wheatley et al. [17] demonstrated that the suppression also occurs for
a tangentially applied magnetic field, under the MHD scheme. Srinivasan and Tang [18] adopted
the Hall-MHD model to examine the magnetic field generation and growth for the gravity induced
Rayleigh-Taylor instabilities (RTI). More recently, Bond et al. [12] investigated computationally the
RMI without initial magnetic field using the ideal two-fluid plasma equations. In order of decreasing
complexity, Shen et al. [19] showed that the ideal two-fluid plasma equations, the Hall-MHD
and regular MHD models, are connected via a series of limiting processes with respect to the
appropriately scaled parameters including the speed of light, the ion skin depth, and ion-to-electron
mass ratio.

The present study concentrates on the Hall-MHD system, which is a reduced single-fluid model
applicable in the regime where the speed of light is large compared to particle thermal speeds
and the electron mass is negligible compared to the ion mass. Such system is categorized as a
magnetohydrodynamic model for its property of charge neutrality due to effectively infinite speed of
light [19]. Nevertheless, the Hall-MHD model captures some features of the more general two-fluid
plasma equations over small length scales, such as the Larmor radius and skin depth for ions, that
are missing in the ideal MHD equations. Under the Hall-MHD framework, we are interested in
the effect of a magnetic field on the RMI flow resulting from a shock wave accelerating a density
interface with a single-mode sinusoidal perturbation in amplitude. This is illustrated in Fig. 1(a),
where the 2D interface defines a contact discontinuity (CD) between fluids of densities ρ1 and ρ2,
that is to be processed by an incident normal shock of Mach number M, traversing in the same
direction of an external uniform magnetic field of strength B. Cartesian coordinates are assigned so
that the unperturbed interface lies in the x, y plane and the single-mode perturbation of wavelength
� and amplitude η0 varies its magnitude along the x direction.

A more convenient approach, enabling analytic solutions, is to consider an incompressible model
for the mass and momentum transport that mimics the shock driven acceleration by an impulse
[14,20]. Since the electrons are not responsible for the mass transport in Hall-MHD, we consider
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incompressible flow for the ions throughout this paper. The impulse is depicted in Fig. 1(b), where
the leading-order effect of the shock is approached by the acceleration, V0δ(t ), where V0 matches the
postshock interface velocity that would result in a full RM flow and δ(t ) is the Dirac delta function
of time t . The dynamic response to such an impulse is investigated using two models: first the
incompressible ion, compressible electron (IICE) Hall-MHD, and second the incompressible ion,
incompressible electron (IIIE) Hall-MHD.

This paper is structured as follows: Section II first derives the general solutions to the linearized
IICE Hall-MHD equations, using a weak formulation. The Rankine-Hugoniot conditions for a
contact discontinuity specific to the Hall-MHD system are then discussed in order to uniquely close
the problem. Section III explores the suppression mechanism for the RMI due to the presence of
the magnetic field by examining the vorticity dynamics and performing asymptotic analysis for
the IICE system. The alternative IIIE Hall-MHD model is introduced and analyzed in Sec. IV.
Illustrative results for the interface behavior and flow profiles are given for both models in Sec. V,
before conclusions are drawn in Sec. VI.

II. INCOMPRESSIBLE ION COMPRESSIBLE ELECTRON (IICE) HALL-MHD

A. Governing equations

We begin with the flow model where the density interface perturbed by a single sinusoidal mode
is impulsively accelerated to speed V0 in the z direction, due to the forcing given by

f = [ρ1 + H (z)(ρ2 − ρ1)]V0δ(t )ẑ, (1)

where H (z) is the Heaviside function and ẑ is the unit vector in z direction. This leads to a convenient
noninertial reference frame that has acceleration V0δ(t )ẑ. A connection with a shock-generated
Richtmyer-Meshkov flow can be made by identifying the present impulsive velocity V0 with the
velocity imparted to the CD by a shock-CD impact. This can be analyzed by the solution to a
suitable Riemann-type problem.

Unless otherwise specified, all variables are henceforth made dimensionless by choosing length
scale �, velocity scale V0, magnetic field scale B, charge scale the proton charge e, mass scale the
ion mass mi, and mass density scale ρ1. These also lead to the derived reference quantities including
the time scale �/V0, the particle number density scale ρ1/mi, the pressure scale ρ1V 2

0 , the electric
field scale V0B, and the electric current scale eρ1V0/mi. This normalization scheme arises naturally
from the geometry and initial conditions of the present problem, but it differs from the two-fluid
plasma RMI study by Bond et al. [12], where the physical Larmor radius and Debye length are used
to deduce reference scales for the magnetic field and fluid density.

As a result, one obtains the following nondimensional ideal Hall-MHD equations [19] that govern
the evolution of the initial impulse for incompressible ions and compressible electrons,

∇ · u = 0, (2a)

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇p + 1

dL
j × B + f − ρδ(t )ẑ, (2b)

∂ pe

∂t
+

(
u − j

ρ

)
· ∇pe + γ pe∇ ·

(
u − j

ρ

)
= 0, (2c)

∂B
∂t

+ ∇ × E = 0, (2d)

E + u × B = j × B
ρ

− dL

ρ
∇pe, (2e)

∇ × B = β

2dL
j, (2f)

∇ · B = 0, (2g)
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where u = (u, v,w) is the flow velocity, ρ is the mass density, j is the electric current density, p is
the total ion and electron pressure, pe is the electron pressure, γ is the specific heat ratio, E is the
electric field, and B is the magnetic field. Two dimensionless parameters are introduced, namely the
normalized Larmor radius dL and the energy ratio β, defined as

dL = V0mi

eB�
, β = 2μ0ρ1V 2

0

B2
. (3)

The Larmor radius dL is the normal radius of the helix along which an ion moves about background
magnetic field lines while β measures the ratio of kinetic to magnetic energy. Following Shen [19],
it is useful to define one more related parameter, the normalized ion skin depth dS , given by

dS = dL

√
2

β
, (4)

which is independent of the applied magnetic field strength. Moreover, the regular MHD equations
are retrieved by taking the limit of dS → 0 of the Hall-MHD system [19]. Clearly for any fixed
β, the MHD limit is equivalently achieved by taking dL → 0. The limit β → ∞ recovers strictly
hydrodynamic flow.

B. Linearized system

We first obtain a base flow solution to (2) that corresponds to the impulsive acceleration of an
unperturbed interface. This base flow has no x, y dependence and, owing to the choice of reference
frame, the only nonzero vector is the external constant magnetic field. Denoted by the bar symbol,
the base flow is thus given by

ū = j̄ = Ē = 0, B̄ = ẑ,

ρ̄(z) = ρ1 + H (z)(ρ2 − ρ1),

p̄(z, t ) = p0, p̄e(z) = pe0 ,

(5)

where p0 and pe0 are the constant background total pressure and electron pressure, respectively.
For the perturbed interface, the density profile is expressed as

ρ = ρ̄(z − h), (6)

where h(x, t ) is the position of the contact discontinuity and h � 1 is required to ensure a small
perturbation for which linear theory applies. As a result, Eqs. (2) can be linearized around the base
flow by perturbing all flow fields using the form

ξ (x, z, t ) = ξ̄ (z) + ξ ′(x, z, t ), (7)

where ξ generically represents the scalar pressures p and pe, or the vector components of u and
B; ξ ′ is the corresponding perturbation of small magnitude. In this formulation we assume no y
dependence since the density interface is only perturbed in the x direction without loss of generality.

Using (2f), j is immediately eliminated in terms of B. Likewise, taking the curl of (2e) and
substituting into (2d) eliminates both E and pe, since ρ is constant in each fluid (z �= h). We note
that these reductions are independent of linearization. Therefore, p̄e can be viewed as a decoupled
quantity that does not directly affect the magnetofluid dynamics in either fluid. However, its behavior
in the vicinity of the interface does play a role in the CD jump conditions, which will be discussed
subsequently in Sec. II D. For this consideration, the perturbed electron pressure, p′

e, is explicitly
allowed to be discontinuous across the interface by writing

p′
e(x, z, t ) = p′

e1
+ H (z − h)

(
p′

e2
− p′

e1

)
. (8)
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As a result, the Hall-MHD system (2) linearizes to give

∂u′

∂x
+ ∂w′

∂z
= 0, (9a)

ρ
∂u′

∂t
+ ∂ p′

∂x
= 2

β

(
∂B′

x

∂z
− ∂B′

z

∂x

)
, (9b)

ρ
∂v′

∂t
= 2

β

∂B′
y

∂z
, (9c)

ρ
∂w′

∂t
+ ∂ p′

∂z
= (ρ2 − ρ1)[H (z) − H (z − h)]δ(t ), (9d)

∂B′
x

∂t
= ∂u′

∂z
+ 2dL

βρ

∂2B′
y

∂z2
, (9e)

∂B′
y

∂t
= ∂v′

∂z
− 2dL

βρ

∂

∂z

(
∂B′

x

∂z
− ∂B′

z

∂x

)
, (9f)

∂B′
z

∂t
= ∂w′

∂z
− 2dL

βρ

∂

∂z

(
∂B′

y

∂x

)
, (9g)

∂B′
x

∂x
+ ∂B′

z

∂z
= 0, (9h)

where B′
x,y,z are the three components of B′. In particular, a simple auxiliary equation for p′

e follows
from (2a) and (2f),

∂ p′
e

∂t
= 0. (10)

Contrasting the strictly two-dimensional MHD case studied by Wheatley et al. [14], here the
velocity and magnetic fields must allow nonzero components in the y direction, namely v′ and B′

y,
respectively, for Eqs. (9) to admit nontrivial solutions. Nonetheless, both v′ and B′

y in (9) decouple
from the system as dL → 0, and hence the linearized equations converge to those of the MHD case
in the limit, as expected [see Eqs. (1)– (5) of Ref. [14]].

To proceed, we make the ansatz that the solutions we are seeking have the following single
Fourier-mode form,

ξ ′(x, z, t ) = ξ̃ (z, t )eikx, (11)

where i is the imaginary unit and k is the nondimensional wave number, which takes the value
k = 2π since a fixed wavelength of � (dimensional) is used for reference length. The contact is
located at z = h(x, t ), where

h(x, t ) = η(t )eikx, (12)

and η(t ) is the perturbation amplitude.
After substituting (11) into (9), the temporal Laplace transform,

L[ξ̃ (t )] =
∫ ∞

0
ξ̃ (t )e−st dt, Re(s) > 0, (13)

is further applied in the region z < 0 and z > h, where the impulsive forcing vanishes in (9d). The
initial conditions are taken at t = 0−, just prior to the impulse, when the velocity and magnetic field
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perturbations are zero. As a result, we obtain for each fluid in the region subscripted by i = 1 or 2 a
system of ordinary differential equations (ODEs) in the Laplace space given by

ikUi + dWi

dz
= 0, (14a)

sρiUi + ikPi = 2

β

(
dHxi

dz
− ikHzi

)
, (14b)

sρiVi = 2

β

dHyi

dz
, (14c)

sρiWi + dPi

dz
= 0, (14d)

sρiHxi = ρi
dUi

dz
+ 2dL

β

d2Hyi

dz2
, (14e)

sρiHyi = ρi
dVi

dz
− 2dL

β

(
d2Hxi

dz2
− ik

dHzi

dz

)
, (14f)

sρiHzi = ρi
dWi

dz
− 2dL

β
ik

dHyi

dz
, (14g)

ikHxi + dHzi

dz
= 0, (14h)

where U, V, W, Hx, Hy, Hz, and P are the Laplace transforms for ũ, ṽ, w̃, B̃x, B̃y, B̃z, and p̃,
respectively.

Importantly, substituting the Fourier ansatz (11) of p′
e into (10) implies that for all z �= h and

t > 0,

p̃e(z, t ) = p̃e(z, 0−) = 0. (15)

Therefore, the electron pressure field remains constant, i.e.,

pe = pe0 . (16)

C. General solution

Equations (14) can be reduced to a single sixth order ODE for Wi, given by

Fi

[(
d2

dz2
− k2

)
Wi(z)

]
= 0, (17)

where Fi, i = 1, 2, is the operator defined for an arbitrary function of z as follows:

Fi = 4
(
1 + d2

Ls2
) d4

dz4
− 4s2

(
k2d2

L + βρi
) d2

dz2
+ s4β2ρ2

i . (18)

The fact that (17), derived for the present Hall-MHD model, is of order six is fundamentally different
from the regular MHD case where its corresponding ODE for Wi is fourth order [see Eq. (12)
in Ref. [14]]. Importantly, an order reduction cannot be realized by taking the limit dL → 0 of
(17), where the highest derivative in F persists. However, limdL→0 F does factorize to produce
a repeated root, rendering the ODE for Wi associated with the regular MHD model a subset of
(17) and therefore sufficiently satisfied. This increased order of the present Hall-MHD model is a
direct consequence of the velocity and magnetic fields having a self-generated y component, whose
significance is discussed also in Sec. II D, where the physical interface boundary conditions required
for the Hall-MHD equations are addressed.
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The general solution to (17) is composed of six linearly independent exponentials with coeffi-
cients to be determined from appropriate boundary conditions, a procedure that inevitably requires
knowledge of higher derivatives of Wi. However, as we will see later, it is not straightforward to
access derivatives of Wi from the interface boundary conditions. Therefore, we take a different
approach to solve Eq. (14).

Using the definition of F , it is easy to verify that (14) implies the following relations:

Fi

[
sHzi − dWi

dz

]
= 0, (19)

Fi[sHxi − ikWi] = 0, (20)

Fi[Hyi] = 0, (21)

Fi

[
sρi

dWi

dz
+ k2Pi

]
= 0. (22)

Equation (22), as a consequence of (20) and (21), immediately gives

Qi ≡ sρi
dWi

dz
+ k2Pi = Aie

−μiz + Bie
μiz + Cie

−λiz + Die
λiz, (23)

where Ai, Bi, Ci, Di are coefficients to be determined and

λi =

√√√√ s2
(
βρi + k2d2

L

) + dL

√
s4

(
2βk2ρi − β2s2ρ2

i + k4d2
L

)
2d2

Ls2 + 2
,

μi =

√√√√ s2
(
βρi + k2d2

L

) − dL

√
s4

(
2βk2ρi − β2s2ρ2

i + k4d2
L

)
2d2

Ls2 + 2
,

(24)

are the eigenvalues of the ODE system. Here we choose the branch of the square root that returns
positive real part. The boundedness of Qi at z = ±∞ immediately requires that A1 = B2 = C1 =
D2 = 0.

Next, we observe that substituting (14d) into (23) yields

d2Pi

dz2
− k2Pi = −Qi, (25)

while using (14a)–(14c) and (14h), together with (23), leads to

d2Hzi

dz2
− k2Hzi = β

2
Qi. (26)

Therefore, taking the general expression for Qi found in (23), Pi and Hzi can be solved exactly to
give

Pi(z) = Eie
−k|z| + Ii, Hzi(z) = Fie

−k|z| − β

2
Ii, (27)

where Ei and Fi are new coefficients to be determined and Ii are the following particular integrals:

I1 = B1eμ1z

k2 − μ2
1

+ D1eλ1z

k2 − λ2
1

, I2 = A2e−μ2z

k2 − μ2
2

+ C2e−λ2z

k2 − λ2
2

. (28)

Substituting (23) and (27) into (19) suggests that the coefficients Ei and Fi are necessarily related,

k2Ei + s2ρiFi = 0. (29)
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With exact solutions for Pi and Hzi now found, all other variables follow directly from (14),
giving

Wi(z) = − 1

sρi

dPi

dz
, Ui(z) = i

k

dWi

dz
, Vi(z) = i

(
sHzi − dWi/dz

)
ksdL

,

Hxi(z) = i

k

dHzi

dz
, Hyi(z) = 1

s

dVi

dz
− 2dL

sβρi

(
d2Hxi

dz2
− ik

dHzi

dz

)
. (30)

D. Interface jump conditions

With general solutions to Eqs. (14) to hand, the task remains to determine the six unknown
coefficients A2, B1, C2, D1, F1, F2. This requires a dedicated discussion of the appropriate jump
conditions across the contact discontinuity. For an adiabatically compressible Hall-MHD flow,
Hameiri [21] derived in detail the general solvability conditions to support both shocks and
CDs. Unlike the regular MHD model, the Hall-MHD shock jump conditions could be nonlocal,
depending on the topology of the discontinuity surface and magnetic field. However, for the present
investigation with planar density interface and a uniform magnetic field applied normal to the
interface, Hameiri’s global solvability constraints reduce to the usual Rankine-Hugoniot conditions,
obtained by Rosenau et al. [22], from a set of local conservation laws. We adapt the derivation in
the following.

The Hall-MHD evolution equations (2) can be formulated weakly in integral form as a system of
conservation laws. In addition to (2a) and (2g), which are already in the divergence form, Eq. (2b)
in the laboratory frame is equivalent to

∂ (ρu)

∂t
+ ∇ ·

[
ρuu +

(
p + 1

β
B2

)
I − 2

β
BB

]
= 0. (31)

It was remarked earlier that the electron pressure cannot affect the flow dynamics in each fluid
[21–23]. However, taking the curl of (2e) formally turns (2d) into

∂B
∂t

+ ∇ ·
[

uB − Bu + B j − jB
ρ

]
= dL∇ ×

(∇pe

ρ

)
, (32)

where the body force term is generally nonzero. However, under the present IICE model where the
electron pressure is constant [see Eq. (16)], the body force vanishes across the entire flow domain.
This holds particularly at the interface z = h, where ∇ρ diverges. The general consequences of both
ρ and pe being discontinuous will be further discussed in Sec. IV B.

To proceed, for an incompressible CD, where the normal flow velocity across the surface vanishes
in the interface-stationary reference frame, one must have, across the surface, conservation of mass,
momentum, and magnetic fluxes resulting from integrating (2a), (31), (32), and (2g) over a shrinking
volume that encloses the surface of discontinuity. This yields the following Rankine-Hugoniot
conditions:

�un� = 0, (33a)�(
p + 1

β
B2

)
n̂ − 2

β
BnB

�
= 0, (33b)

�
n̂ × j × B

ρ
− Bnut

�
= 0, (33c)

�Bn� = 0, (33d)

where the square brackets denote the difference in quantity between two sides of the interface,
i.e., �ξ� = ξ2 − ξ1. The subscript “n” indicates the vector component normal to the surface and the
subscript “t” indicates the two components tangential to the surface.
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It immediately follows from (33) that, provided the magnetic field is not parallel to the interface,
i.e., Bn �= 0, both the pressure, p, and magnetic field, B, must be continuous across the CD, whereas
the tangential components of current jt and velocity ut can both jump discontinuously, forming a
current sheet and shear layer at the interface. This result contrasts the properties of a regular MHD
model, where ut must also be continuous if Bn �= 0. It is also noted that the continuity of B validates
the use of volume integration of Eq. (32) in order to obtain the correct jump condition, because the
magnetic flux to be conserved remains uniformly bounded within the integral domain [21].

For our impulsively accelerated flow, the as yet unknown coefficients in Eqs. (27) can now be
determined using (33). This is achieved by first linearizing (33) around the base flow given in
Eqs. (5) and (6), before the temporal Laplace transform is applied. As a result, the complete set
of jump conditions across the interface [at z = h(x, t ) = η(t )eikx] follows:

�W �z=0 = 0, (34a)

�Hz�z=0 = 0, (34b)

�Hx�z=0 = �Hy�z=0 = 0, (34c)�
U + 2dL

βρ

dHy

dz

�
z=0

= 0, (34d)

�
V − 2dL

βρ

(
dHx

dz
− ikHz

)�
z=0

= 0, (34e)

�P�z=0 = η0(ρ2 − ρ1). (34f)

In particular, the pressure jump condition is obtained by integrating Eq. (9d) over the forcing
region, 0 < z < h(x, t ), and retaining terms of leading order in h to yield

p̃2(0, t ) − p̃1(0, t ) = (ρ2 − ρ1)δ(t )η(t ), (35)

whose Laplace transform then leads to (34f).
Although Eqs. (34) appear to be overspecified for only six unknown coefficients, Eqs. (34b)

and (34d) can be shown as linearly dependent. Therefore, by substituting (27), (30), and (29) into
(34), one finds the unique solution to the vector [A2, B1, C2, D1, F1, F2] as functions of s; hence
Eqs. (14) are fully solved. The exact expressions for these coefficients are tedious, and are therefore
omitted for brevity.

In the limit dL → 0, Eqs. (34) recover all the jump boundary conditions for the regular MHD
system, except that two new constraints are imposed on Hy and V , which are the two components
in the y direction that decouple in the MHD equations. This is precisely the reason that Eq. (17) is a
sixth-order ODE, as opposed to its fourth-order MHD counterpart.

III. ANALYSIS

The interface response to the impulsive acceleration is the present model for the Richtmyer-
Meshkov instability in a Hall-MHD flow. For the present incompressible ion model, because the
density interface is a material surface, the time derivative of its perturbation amplitude must equal
the normal flow velocity at the interface [see Eq. (12)], that is,

dη

dt
= L−1[W (z = 0; s)], (36)

where L−1 denotes the inverse Laplace transform, formally given by the Bromwich integral,

L−1[G(s)] = 1

2π i

∫ r+i∞

r−i∞
G(s)etsds, (37)
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where r ∈ R is greater than any real part of the singularities of the function G(s). Consequently, the
interface amplitude is calculated as

η(t ) = η0 + L−1

[
W (0; s)

s

]
. (38)

Using the exact solution for either W1 or W2, it can be verified that the initial interface growth
rate is

dη

dt

∣∣∣∣
t=0+

= η0kA, (39)

where A ≡ (ρ2 − ρ1)/(ρ2 + ρ1) is the Atwood number. This initial growth rate is the same as in
both the MHD [14] and the hydrodynamic [2] cases, a result which is expected since the initial
generation of baroclinic vorticity cannot be affected by the presence of the magnetic field. This is
better understood in terms of circulation and vorticity dynamics discussed in the next section.

A. Vorticity dynamics

Owing to the boundary conditions (34d) and (34e), the tangential velocity obtained from the
Hall-MHD description is allowed to slip through the interface, which implies circulation generation,
particularly in the x, z plane. To leading order, the circulation over a half wavelength (recalling
� = 1, k = 2π ) deposited at the interface is given by

�0 = [U2(0) − U1(0)]
∫ �/2

0
eikxdx = 2iU

k
, (40)

where U ≡ U2(0) − U1(0). Analogous to (39), the initial circulation evaluates as

γ0(t = 0+) = L−1[�0(s)](t = 0+) = 4η0A, (41)

as in the MHD case [15]. However, since �0(s) �= 0 for arbitrary s in general, the circulation
deposited does not instantly leave the interface for the Hall-MHD model, as it does in the MHD
case. This property strongly affects the suppression mechanism due to the magnetic field for the
Richtmyer-Meshkov instability, as will be seen later.

By taking the curl of the momentum equation (2b), the evolution of vorticity, ω = ∇ × u, after
the initial impulse, is governed by

∂ω

∂t
+ (u · ∇)ω = (ω · ∇)u + ∇ρ × ∇p

ρ2
+ 2

βρ
[∇ × (∇ × B × B)], (42)

where the baroclinic term explains the initial circulation generated during the impulsive accelera-
tion. Away from the interface, we impose the same linearization (7) and perturbation (11) to rewrite
the vorticity amplitude in the form

ω̃ =
(

−∂ ṽ

∂z
, −ikw̃ + ∂ ũ

∂z
, ikṽ

)
. (43)

Equation (42) then becomes

∂ω̃

∂t
= 2

βρ

(
−∂2B̃y

∂z2
, −ik

∂B̃z

∂z
+ ∂2B̃x

∂z2
, ik

∂B̃y

∂z

)
. (44)

Using (9e)–(9g), together with (43), and differentiating (44) with respect to t gives a forced wave
equation for the vorticity vector in the smooth regions of the flow,

∂2ω̃

∂t2
= 2

βρi

∂2ω̃

∂z2
+ 4dL

β2ρ2
i

(
∂4B̃
∂z4

− k2 ∂2B̃
∂z2

)
. (45)

103902-10



IMPULSE-DRIVEN RICHTMYER-MESHKOV INSTABILITY …

In the MHD limit, where dL → 0, the forcing term vanishes and the vorticity propagates in each
side of the interface according to the wave equation, with normalized Alfvén speeds vA = √

2/(βρi )
[19], for i = 1, 2, respectively.

Since circulation is only generated at the interface at t = 0+ for the MHD flow before it is
instantly carried away by the Alfvén waves, it is implied that the total circulation, integrated over
the z axis, must be conserved over time, as found by Wheatley et al. [15]. In contrast, for the
present Hall-MHD flow, where dL > 0, the forcing term in Eq. (45) is generally nonzero. Indeed,
introducing Hall current produces a magnetic field [18], as can be seen from (9e)–(9g), written
compactly as

∂B′

∂t
= ∂u′

∂z
− 2dL

βρ
∇ × (∇ × B′ × ẑ), (46)

which now has a nonzero y component. Additionally, we have shown previously that there is always
circulation accumulated on the interface. Therefore, the conservation of total circulation is not
expected, which resembles a feature observed numerically for the two-fluid RMI flow [12].

B. Asymptotic analysis

In this section we explore analytically the behavior of the IICE Hall-MHD flow solution found
in Sec. II C for limiting values of the Larmor radius dL and the energy ratio β.

1. Small Larmor radius: The MHD limit

It was previously shown in Sec. II C that the dL → 0 limit of the linearized incompressible Hall-
MHD system (14) contains the governing equations for the MHD flow [14], and in Sec. II D that
the Hall-MHD jump conditions include all those of the MHD equations in this limit. Therefore,
the Hall-MHD solutions obtained in Eq. (30) must converge to those in the MHD case. Indeed
it is verified that, for any fixed β > 0, the substitution of dL = 0 into the exact expressions for
coefficients [A2, B1, . . . , F2] produces a removable singularity. The limiting expression for W at the
interface is given by

lim
dL→0

W (0; s) = η0k[4k2(r − √
r)vA2 + 2k(

√
r − 1)2s − √

2β(r − 1)s2]

4k3rv2
A2

+ 4k2rvA2 s + 2k(r − 2
√

r − 1)s2 − √
2β(r + 1)s3

, (47)

where the normalization r ≡ ρ2/ρ1 = ρ2 is used and vA2 = √
2/βρ2 is the Alfvén speed in the

region i = 2. This result agrees with the MHD solutions found by Wheatley et al. [14]. More
interestingly, the y components of the velocity and magnetic fields which are missing in the MHD
description decay identically in the limit

lim
dL→0

Vi(z; s) = lim
dL→0

Hyi(z; s) = 0. (48)

This result validates the strictly two-dimensional flow assumption made by the MHD model [14,15].
The success of recovering the MHD solution at leading order as dL → 0 usually suggests a first

order Hall-MHD correction to the regular MHD theory for small values of dL. Nonetheless, the
existence of a uniformly valid correction is contradicted by the exponential exponents associated
with the general solutions, given in Eqs. (24). Specifically, these exponents (λi and μi) have singular
points located at s = ±i/dL; therefore, when expanded as power series around dL = 0, the radius of
convergence of the series decreases to zero as Im(s) becomes large. Consequently, a uniformly valid
approximation of the exponents that is linear in dL cannot exist along the entire Bromwich contour
as would be required for accurate calculation of the inverse Laplace transform.

2. Small plasma beta limit

Here, we turn our attention to a different flow region where the hydrodynamic forces are
dominated by the electromagnetic forces, which corresponds to the asymptotic limit of β → 0.
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Such a limit may be approached while keeping either dS or dL fixed. In the former route where
β → 0 with dS fixed, all field variables in (30) decay asymptotically as

Wi, Vi ∼ O(β1/2), Ui, Hxi , Hyi , Hzi ∼ O(β ), (49)

suggesting that increasing the external magnetic field eventually inhibits all dynamical motions in
both flow regions separated by the density interface. In particular, the interface amplitude decays
inversely proportional to the applied magnetic field strength for strong field, in agreement with the
MHD theory [14].

However, the second route of taking β → 0 while keeping dL fixed produces a nontrivial solution.
In this case, the eigenvalues, λi, μi, and consequently all the coefficients, [A2, B1, . . . , F2], can be
Taylor expanded about β = 0 to give the leading order expressions:

A2 = η0k2(ρ1 − ρ2)2ρ2

ρ2
1 (α + 1) + 2ρ2ρ1(α − 1) + ρ2

2 (α + 1)
,

B1 = η0k2ρ1(ρ1 − ρ2)2

ρ2
1 − 2ρ2ρ1 + ρ2

2 + α2(ρ1 + ρ2)2 ,

C2 = η0k2ρ2
(
ρ2

2 − ρ2
1

)
ρ2

1 (α2 + α) + 2ρ2ρ1(α2 − α) + ρ2
2 (α2 + α)

, (50)

D1 = η0k2ρ1
(
ρ2

1 − ρ2
2

)
ρ2

1 (α2 + α) + 2ρ2ρ1(α2 − α) + ρ2
2 (α2 + α)

,

E1 = E2 = F1 = F2 = 0,

where α ≡
√

d2
Ls2 + 1.

It then follows from Eq. (30) that, in the Laplace space, the limiting magnetic field perturbations
are identically zero, i.e., Hx = Hy = Hz = 0, while the flow velocities, U and W , are given by

U1,2(z) = ± iη0A k d2
Ls

α(A2 + α)
exp

(
−k dLs

α
|z|

)
, (51)

W1,2(z) = η0A k dL

A2 + α
exp

(
−k dLs

α
|z|

)
. (52)

Thus, using the Laplace final-value theorem, both velocities in the time domain converge to zero.
More specifically, at z = 0, these expressions can be inverse transformed to give the x, z-plane
circulation and the interface growth rate, using Eqs. (41) and (36), respectively,

γ̂0 = cos(φT ) + 1

A2

[
φ sin(φT ) − sin(T ) + [cos(T ) − cos(φT )] ∗ J1(T )

T

]
, (53)

d η̂

dt
= cos (φT ) − A2 sin (φT )

φ
+ sin(φT )

φ
∗ J1(T )

T
, (54)

where γ̂0 ≡ γ0/(4η0A), φ ≡ √
1 − A4, T ≡ t/dL , η̂ ≡ η(Aη0k)−1, J1 is the first order Bessel

function of the first kind, and ∗ denotes the convolution integral defined as

f (T ) ∗ g(T ) =
∫ T

0
f (τ )g(T − τ )dτ. (55)

Similarly, using Eq. (38), the limiting interface amplitude in the time domain is given by

η̂(t ) − η̂0

dL
= φ sin(φT ) − A2[1 − cos(φT )]

φ2
+ 1 − cos(φT )

φ2
∗ J1(T )

T
, (56)
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whose long-time behavior follows directly from (52),

lim
t→∞ η(t ) = η0

(
1 + A k dL

A2 + 1

)
. (57)

In the zero β limit with dL fixed, Eqs. (53)–(56) clearly show oscillatory behavior of the flow
occurring on a time scale T , that is completely specified by the nondimensional Larmor radius
dL. This phenomenon differs significantly from the regular MHD case. For instance, unlike the
MHD theory where the growth rate of the interface amplitude decays monotonically towards zero,
the limiting Hall-MHD model exhibits sinusoidal fluctuations with a decaying envelope, which
eventually converges as t → ∞, as seen in Eq. (54). We will see in Sec. V that such behavior can
be extrapolated to solutions obtained for nonzero β.

To explain these periodic motions, the dispersive nature of the Hall-MHD equations is consid-
ered. In particular, the Hall-MHD system captures what is missing in the regular MHD description,
the ion cyclotron resonance, whose frequency is inversely proportional to dL [19,24], naturally
reflecting the new time scale T . Therefore, when the dimensional Larmor radius of the ions is
comparable to the geometric length scale, namely, dL ∼ O(1), the ion gyromotion around the
overwhelming magnetic field lines becomes significant, as clearly manifested in the time domain
solutions derived in this section, where time is more appropriately scaled by the cyclotron frequency
and length is more suitably normalized by the Larmor radius.

3. Large Larmor radius limit

Inspired by the cyclotron frequency dependency discovered above, we look here for the
asymptotic solution opposite to the MHD description, that is, the dL → ∞ limit for any constant
time, T = t/dL, which is rescaled according to the cyclotron frequency. Specifically, this limit is
calculated by first applying the change of Laplace variable, s �→ σ/dL. Exact expressions of the
eigenvalues, λi and μi, hence all coefficients, [A2, B2, . . . , F2], derived from Eq. (34) as functions
of σ , are then expanded in power series of ε ≡ 1/dL around ε = 0. Here, an effective distinguished
limit is implied with t → ∞, while holding T constant. Otherwise, convergent solutions cannot be
found for the original time t , as dL → ∞.

Surprisingly, in the infinite Larmor radius limit with appropriate time rescaling, we obtain exactly
the same expressions for all coefficients as those given in Eq. (50), except for F1 and F2, whose
asymptotic forms are found in the following:

F1(σ ) = Aβ η0 ρ1(α + A2 − A σ )

2(A − 1)(α + A2)
, F2(σ ) = Aβ η0 ρ1(α + A2 + A σ )

2(1 − A)(α + A2)
, (58)

where α = √
σ 2 + 1, as before. Therefore, the interface circulation deposit γ0 and the rescaled

perturbation growth η/dL (as a function of T ) in this case are the same as those of the zero plasma
beta limit, derived in Eqs. (53) and (56), respectively. Furthermore, nontrivial solutions in the
Laplace space to the magnetic field perturbations Hx,y,z appear in the dL → ∞ limit; for example,
at the interface, one has

Hz(z = 0; σ ) = A2 β η0 ρ1(α − σ + 1)

2(A − 1)(α + A2)
. (59)

However, the corresponding inverse transform of (59) in the cyclotron time scale (L−1 : σ �→ T )
again yields a vanishing physical field B̃z(T ) = O(1/dL ), due to the change of variable s = σ/dL.

Finally, we remark on the commonalities between the zero beta limit and the infinite Larmor
radius limit of the Hall-MHD theory. In both cases, the ion skin depth, dS , defined in Eq. (4),
approaches infinity, giving the same interface growth and circulation behavior that differs from
the MHD prediction, which corresponds to the zero ion skin depth limit of the Hall-MHD model.
Moreover, the magnetic field perturbations vanish in both cases, at a rate of O(β ) as β → 0 or at a
rate of O(1/dL ) in the cyclotron time scale as dL → ∞.
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IV. INCOMPRESSIBLE ION INCOMPRESSIBLE ELECTRON (IIIE) HALL-MHD

In this section, we propose a different Hall-MHD model which further assumes that the electrons
also behave like an incompressible fluid, consistent with the ions. This leads to a subtle change in the
CD jump conditions which then results in interface behavior different than that analyzed previously
for the IICE model.

A. Governing equations and general solutions

Although the Hall-MHD system is effectively a one-fluid model, it nevertheless allows a
reconstruction of separate ion and electron velocity field, ui,e, respectively. Recalling mi = 1 and
e = 1 under the present nondimensionlization scheme, the species flow fields are given by [19,21]

ui = u, ue = u − j
ρ

. (60)

Therefore, the additional incompressible electron’s assumption immediately gives the continuity
condition in terms of the current j,

∇ ·
(

j
ρ

)
= 0, (61)

at the cost of losing the dynamic equation for electron pressure, as (2c) in the IICE model. For
completeness, the full set of governing equations in the impulsively accelerated frame is now given
by

∇ · u = 0, ∇ ·
(

j
ρ

)
= 0,

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇p + 1

dL
j × B − ρδ(t )ẑ + [ρ1 + H (z)(ρ2 − ρ1)]δ(t )ẑ,

∂B
∂t

+ ∇ × E = 0, E + u × B = j × B
ρ

− dL

ρ
∇pe,

∇ × B = β

2dL
j, ∇ · B = 0.

(62)

Importantly, it is noted that, using system (62) in the smooth flow regions with constant density,
the electron pressure pe is indeterminate and the electric field E is found up to a gauge. Indeed, we
can define modified variables,

E∗ = E − ∇ f , p∗
e = pe + ρ f

dL
, (63)

using an arbitrary scalar function f ∈ C1(R3) to verify that Eqs. (62) are identically satisfied by the
modified variables E∗ and p∗

e . For E to be uniquely invertible, both of its curl and divergence are
needed. However, ∇ · E is related to a small degree of charge separation that is not prescribed in
Hall-MHD [19].

Nonetheless, pe, E, and j here can be conveniently eliminated as for the IICE model, leaving
Eq. (61) automatically satisfied. The resulting simplified system thus becomes identical to Eqs. (9),
subject to the same linearization around the base flow given in Sec. II B. Therefore, on each side
of the perturbed interface, the general solutions to the flow velocity and magnetic fields derived in
Sec. II C are not affected by the additional treatment of incompressible electrons here. Similarly, the
vorticity transport mechanism described in Sec. III A applies the same for both of the IICE and IIIE
models.
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B. Modified interface jump conditions

Losing the determinacy of pe in the IIIE model has not yet played a part in the flow dynamics
in each fluid away from the density interface. However, as shown in Eq. (32), its behavior near
the interface was crucial for the conservation of magnetic flux. Without an independent evolution
equation for pe in the present model, one cannot reach the constant electron pressure solution found
in (16) for the IICE model. In this case, the forcing term in (32) could be evaluated using (6) and
(12) to yield

b ≡ ∇ ×
(∇pe

ρ

)
=

[
ρ1 − ρ2

ρ2
δ(z − η eikx )

(
∂ pe

∂x
+ ikη eikx ∂ pe

∂z

)]
ŷ, (64)

where ŷ is the unit vector in y direction. Further applying (8) and (11) and integrating across the
interface then gives∫ h+

h−
b · ŷ dz = 2ik(ρ1 − ρ2)

(ρ1 + ρ2)2

[
p̃e1 (0−, t ) + p̃e2 (0+, t )

]
eikx + O(η), (65)

where H (0) = 1/2 for the Heaviside function is chosen.
Consequently, the conservation of magnetic flux across the interface as given in (33c) must be

modified to incorporate the finite contribution from the body force. To leading order, Eq. (34e)
should change into�

V − 2dL

βρ

(
dHx

dz
− ikHz

)�
z=0

= 2ikdL(ρ1 − ρ2)

(ρ1 + ρ2)2
L

[
p̃e1 (0−, t ) + p̃e2 (0+, t )

]
eikx, (66)

which now serves as a constraint on pe, which is indeterminate in the present IIIE model.
Since (66) cannot be used effectively as a boundary condition in order to determine the

coefficients [A2, B1, C2, D1, F1, F2], closure must be established from the continuity condition
(61), which is exclusive to the IIIE model and is nontrivial only across the interface, giving�

jn
ρ

�
=

�
1

ρ

∂By

∂x

�
= 0. (67)

Therefore, as density jumps over CD, the normal component of current density has to vanish. In the
Laplace space, this implies at leading order

�Hy�z=0 = 0. (68)

Equation (67) effectively states that penetration of current across a density interface is prohibited,
a direct consequence of both the ions and electrons being incompressible. The reason is that all
charged particles for the IIIE model must move at the same velocity as the CD for the latter to
evolve as a material surface. In contrast, for the previous IICE model, the electrons are free to move
across the CD without violating conservation of mass in Hall-MHD.

C. Asymptotic flow field

Combining Eqs. (34a)–(34c), (34f), and (68) gives a linear system that uniquely determines the
coefficients [A2, B1, C2, D1, F1, F2] for the IIIE model. The complete solution differs from that
discussed in Sec. II D. We present its asymptotic form in the same limits as discussed in Sec. III B.

First, it is no surprise that, for a fixed energy ratio β, taking the dS → 0 limit recovers the regular
MHD solution (see Sec. III B 1) in the IIIE model as well. Indeed the distinguishing boundary
condition (68) is already met in the regular MHD model, where the vector fields are genuinely two
dimensional in the x, z plane.

Here we focus on the large skin depth limit (dS → ∞), opposite to the regular MHD description,
achieved via (a) taking β → 0 while holding dL fixed or (b) letting dL → ∞ while keeping β finite.
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Analogous results to those obtained in Secs. III B 2 and III B 3 follow as

A2 = η0k2ρ2(ρ2 − ρ1)

(ρ1 + ρ2)(α + 1)
, B1 = η0k2ρ1(ρ1 − ρ2)

(ρ1 + ρ2)(α + 1)
,

(69)

C2 = η0k2ρ2(ρ2 − ρ1)

(ρ1 + ρ2)(α2 + α)
, D1 = η0k2ρ1(ρ1 − ρ2)

(ρ1 + ρ2)(α2 + α)
,

and

F1 =
{

0, β → 0,

Aβη0ρ1(α+1−Aσ )
2(A−1)(α+1) , dL → ∞,

F2 =
{

0, β → 0,

Aβη0ρ1(Aσ+α+1)
2(1−A)(α+1) , dL → ∞,

(70)

where σ = dLs, α = √
σ 2 + 1, and A = (ρ2 − ρ1)/(ρ2 + ρ1) is the Atwood number, as before. This

leads to the limiting in-plane flow field as dS → ∞ in the Laplace space given by

U1,2(z) = ± iη0Akd2
Ls

α(1 + α)
exp

(
−kσ

α
|z|

)
, (71)

W1,2(z) = η0AkdL

1 + α
exp

(
−kσ

α
|z|

)
. (72)

Interestingly, these expressions share the same limits of Eqs. (51) and (52) as A → 1, suggesting
that the IICE and IIIE models converge when both the skin depth and density ratio become large
(dS → ∞, ρ2/ρ1 → ∞). In this case, the inverse transform (L−1 : σ → T ) at the interface can be
calculated in closed form using binomial expansion to yield

γ̂0 = L−1

[
σ

α + α2

]
= 1 − T 1F2

(
1

2
; 1,

3

2
; −T 2

4

)
(73)

and

d η̂

dt
= L−1

[
1

1 + α

]
= 1F2

(
−1

2
;

1

2
, 1; −T 2

4

)
− T, (74)

η̂ − η̂0

dL
= L−1

[
1

σ (1 + α)

]
= T 1F2

(
−1

2
; 1,

3

2
; −T 2

4

)
− T 2

2
, (75)

where 1F2 is the generalized hypergeometric function [25] and, again, T = t/dL, γ̂0 = γ0/(4η0A),
and η̂ = η(Aη0k)−1.

V. NUMERICAL RESULTS

The time-dependent behavior of the velocity, vorticity and magnetic fields, interface growth, and
other quantities of interest is retrieved from the s-dependent expressions given in Eqs. (27) and (30),
for both the IICE and IIIE models, by applying the inverse Laplace transform. For general parameter
values of the Larmor radius dL and the energy ratio β, this is performed numerically for a given time,
t , using the multiprecision Talbot method [26], originally proposed by Talbot [27]. The algorithm
involves deforming the Bromwich contour [see Eq. (37)] using the parametrization

s(θ ) = 2N

5t
θ (cot θ + i), −π < θ < π, (76)

where N is the truncation number used in the trapezoidal rule to numerically evaluate the deformed
integral. N also specifies the number of precision decimal digits in a symbolic environment, such
as mathematica®, where the Talbot algorithm is implemented. Convergent results are obtained
by gradually increasing N up to N = 300. Particularly, the numerical solutions for the limiting
parameters match those given by the exact asymptotic expressions available in Secs. III B and IV C.
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FIG. 2. Growth rate of the density interface perturbation, dη/dt = w̃(0), as a function of the Larmor radius
dL: (a) convergence towards the MHD limit (dL = 0, dashed) as dL decreases, represented in original time t ,
and (b) convergence towards the large dL asymptote (dashed) as dL increases, represented in the rescaled time
T = t/dL . In both cases, the energy ratio and the Atwood number are fixed at β = 2 and A = 0.5, respectively.

It is noted that since η0 appears as a common factor of all quantities of interest, unity is assumed
for its value in all the subsequent numerical results without loss of generality. Further, representative
results are shown for the case ρ2 > ρ1, or equivalently 0 < A < 1, in the following.

A. IICE results

We first establish the characteristic properties of the incompressible ion, compressible electron
(IICE) Hall-MHD description by presenting an illustrative solution in comparison with its various
limiting cases, including the regular MHD theory.

1. Growth of the interface perturbation

The interface perturbation growth is first shown to establish the suppression of RMI due to a
perpendicularly applied magnetic field. Figure 2 illustrates the decaying growth rate of the density
interface perturbation for all ranges of the Larmor radius dL, from the MHD limit where dL = 0
is shown in (a), to the infinite dL limit shown in (b), with a fixed energy ratio β. The damped
oscillation, analyzed in Sec. III B for large dL, whose period depends on the ion cyclotron frequency,
is also observed when dL is finite. This characteristic feature distinguishes the Hall-MHD equations
from the regular MHD system, where fluctuations do not occur.

Integrating the growth rate w̃ over time leads to the magnitude of the interface perturbation,
demonstrated in Fig. 3. When measured over the original time scale t , the effect of finite dL to
the growth of the density interface perturbation is twofold, as shown in Fig 3(a). First, it causes
oscillations of increasing frequencies as dL decreases, provided that dL > 0, rendering the MHD
description, which exhibits monotonic growth, a singular limit as dL → 0. Second, interface growth
in the Hall-MHD model still saturates in the long term, as in the MHD case, but now to a level that
increases without bound with increasing dL.

More revealing observations are made when the rescaled units for time and length are used,
as given in Fig. 3(b). It is evident that the oscillation frequencies collapse to a state dictated by
the ion cyclotron, extrapolating the large dL analysis as a convergent limit for increasing dL (see
Sec. III B 3).
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FIG. 3. Amplitude of the interface perturbation as a function of the Larmor radius dL , in the incompressible
ion compressible electron (IICE) Hall-MHD model. In (a), the original time unit t and length unit η0 are used
for decreasing values of dL = 0.4, 0.2, 0.1 (solid lines) and dL = 0 (the MHD limit, dashed line). In (b),
rescaled time T = t/dL and length η/dL are used with dL varying from 0.1 to infinity (dashed). For all series,
the energy ratio and the Atwood number are fixed at β = 2 and A = 0.5, respectively.

Additionally, Figs. 2(b) and 3(b) both confirm that the Hall-MHD model is most sensitive to
the Larmor radius only when the ion skin depth is small, i.e., 0 < dS � 1. Therefore, the large
dL asymptotes obtained in Eqs. (54) and (56) are very good approximations if the Larmor radius
significantly exceeds the initial perturbation wavelength for a fixed energy ratio β.
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FIG. 4. Amplitude of the interface perturbation as a function of energy ratio β for (a) fixed Larmor radius
dL = 1 and (b) fixed ion skin depth dS = 1. The IICE model with an Atwood number of A = 0.5 is used
throughout. Convergence towards the small β limit (dashed line) is shown with decreasing β = 200, 20, 2
(solid lines) in (a), whereas convergence towards zero interface growth is shown by further reducing β =
2, 0.2, 0.02 in (b).
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FIG. 5. Normal velocity profile from the IICE model, w̃(z, t ), for t = 0+, 0.5, 1, 2, in (a)–(d), respectively.
The Hall-MHD solutions, obtained for β = 2, dL = dS = 0.1, and A = 0.5, given by the solid lines, are
compared to the regular MHD solutions of the same energy ratio and Atwood number, shown as dashed lines.

Next, we illustrate in Fig. 4 the effect of changing energy ratio β on the interface growth. This
is performed with dL fixed in 4(a) and dS fixed in 4(b). The former may be physically achieved by
decreasing the upstream fluid density and the latter by increasing the applied magnetic field strength.
In both cases, as in the MHD study [14], increasing β in the Hall-MHD solution ultimately recovers
the hydrodynamic RMI growth that is unbounded. However, the effect of decreasing β differs in the
two cases shown. When the Larmor radius dL is fixed, the interface growth is bounded below by the
limiting β = 0, dS = ∞ asymptote given in (56), where partial suppression of the RMI, predicted
by Eq. (57) in the long term, is achieved at most, whereas, when the ion skin depth dS is fixed,
complete suppression of the RMI occurs at a rate the same as in MHD, i.e., η(∞)/η0 ∼ O(β1/2),
while the oscillation frequency increases proportional to dL ∝ β−1/2.

2. Velocity profile

Away from the interface, the normal flow velocity profile w̃(z, t ) is compared between the Hall-
MHD and regular MHD models directly in Fig. 5, where the evolution of the velocity profile is
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FIG. 6. Normal velocity profiles from the IICE model, w̃(z, t = 0.5), for increasing strength of the applied
magnetic field, with varying β = 2, 0.2, 0.02 and constant dS = 1, A = 0.5.

shown at four sequential instants of time. At t = 0+, the initial velocity distribution resulting from
the impulsive acceleration is identical for the Hall-MHD and MHD systems, a purely hydrodynamic
result, as shown in Fig. 5(a). Nonetheless, owing to its dispersive nature [19], the propagation of the
initial impulse in the Hall-MHD system, demonstrated in Figs. 5(b)–5(d) for t > 0, exhibits highly
oscillatory patterns along the normal axis, which differs markedly from the MHD prediction where
the Alfvén waves are responsible for carrying away the velocity peak in each fluid region [14,15].
Furthermore, it is clear that the fast waves associated with the Hall-MHD model are able to produce
rotational flow ahead of the Alfvén wave fronts, which limits the propagation of information in the
MHD description.

Increasing the applied magnetic field strength in this case has a twofold effect on stabilizing the
interface growth, as shown in Fig. 6, where three velocity profiles are compared at one instance for
different values of β. As β decreases, first, oscillations of the interface growth rate after the decay
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FIG. 7. Effect of increasing applied magnetic field in the IICE model on the circulation deposition at the
interface, γ0, as β is decreased using β = 2, 0.2, 0.02 with constant dS = 1, A = 0.5 over (a) the original time
scale t and (b) the cyclotron time scale T = t/dL .
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FIG. 8. Effect of increasing ion skin depth in the IICE model on the circulation deposition at the interface,
γ0, for constant A = 0.5. (a) Increase dS via decreasing energy ratio β = 100, 2, 0, while holding dL = 1
fixed. (b) Increase dS via increasing Larmor radius dL = 0.1, 0.5, ∞, in rescaled time T = t/dL , while holding
β = 2 fixed. In both cases, the dashed line represents the same asymptotic limit of dS = ∞.

of the initially impulsively generated peak are suppressed; second, all of the induced disturbances
are carried away at a faster speed by the Alfvén waves in both upstream and downstream flows [see
Eq. (45)].

3. Circulation and vorticity

We now explore the IICE Hall-MHD model distribution of circulation and vorticity. First, as
discussed in Sec. III A, the discontinuity of tangential velocity across the density interface gives rise
to a vortex sheet where circulation is deposited, contrasting the regular MHD model that supports
a no-slip condition across the interface. The evolution of the accumulated circulation, γ0, derived
from Eq. (40), is plotted for decreasing β with dS fixed using both time scales t , and T , in Fig. 7.
Over the original time scale t , decreasing β captures more cycles of decaying oscillations over
a finite initial window of time, so that in the β → 0 limit all fluctuations of finite amplitude are
packed into an infinitesimally short period of time immediately after the initial impulse, leaving
γ0 = 0 for all t > 0+. This is an example of nonuniform convergence at t = 0. More is revealed
when the scaled time T is used in 7(b): curves obtained for different β all seem to collapse. This
is indeed expected because substituting β = 2d2

L/d2
S into (40) yields an expression of the form

�0/dL = f (dS; σ ), where the known function f does not depend on β. Therefore, this universal
curve for all β > 0 encodes the entire decaying history of γ0 over the infinitesimal time window of
t as β → 0 shown in 7(a).

Having established that the shape of γ0(T ) only depends on dS (for a fixed A), Fig. 8 plots its
convergence to the dS → ∞ limit obtained in (53) through either decreasing β as presented in (a) or
increasing dL as depicted in (b). It is clear that the decaying rate of the oscillation envelope is maxi-
mized at the limiting solution. Nevertheless, as in the case for the interface growth presented earlier,
the convergence of circulation deposition towards the large dS limiting value is fast. For moderate
values of β and dL, the asymptotic limit provides reasonable approximation to the true solution.

Away from the interface, because the y component of vorticity in the continuous flow domain is
governed by the forced wave equation [see Eq. (45)], rotational flow is no longer confined to a region
defined by the two Alfvén wave fronts in each fluid, as in the MHD system. This is demonstrated in
Fig. 9, where the vorticity profile excluding z = 0 is plotted for two instants of time.
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FIG. 9. Vorticity profile ω̃y(z, t ) at two time instants obtained using the IICE model: t = 0.1 (solid) and
t = 0.2 (dashed). Both solutions are obtained for dL = 0.1, β = 2, and A = 0.5.

Therefore, the total circulation in the x, z plane, calculated by integrating the vorticity component
ωy over the infinite band {(x, z) : z ∈ R, x ∈ (0,�/2)}, given by

γ (t ) = γ0(t ) + i

π

∫
R\{0}

ω̃y(z, t ) dz, (77)

is nonconservative over time. For example, as seen in Figs. 8(b) and 9, it is numerically verified
that γ (0.2) > γ (0.1), implying that circulation is generated by the magnetic forcing during that
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FIG. 10. Amplitude growth of the interface perturbation, η/η0, predicted by the IICE model (solid lines)
and the IIIE model (dashed lines). Comparisons are made for varying dS = 0.1, 1, 10, with β = 2 fixed in (a),
and for changing β = 0.2, 2, 20, with dS = 1 fixed in (b). All series are obtained in the cyclotron time scale T
for fluids with A = 0.5.
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of the IIIE model (dashed lines), as A → 1. The dS = ∞ asymptotic behavior of (a) the renormalized
interface growth η̂ and (b) the renormalized circulation deposition γ̂0 are plotted as functions of increasing
A = 0, 0.5, 0.8, 1. Similar comparisons are made for finite dS = 1 corresponding solutions for η and γ0 in
(c) and (d), respectively. β = 2 is used throughout.

period of time. It is stressed that the total circulation collects a point mass contribution γ0 at the
interface z = 0, at any instant. In comparison, the regular MHD model cannot sustain circulation at
the interface, nor does it inject additional vorticity into the flow after the initial baroclinic generation.

B. IIIE results and model comparison

Finally, we show results obtained using the incompressible ion incompressible electron (IIIE)
Hall-MHD model and make a comparison against the IICE system to show that the key features are
qualitatively similar in both models.

The growth of the interface amplitude predicated by the two models is first illustrated in Fig. 10
as a function of dS and β, where the cyclotron frequency rescaling applies effectively in both cases. It
is seen that the IIIE model consistently gives a smaller interface growth, through fluctuations whose
amplitude dampens significantly quicker over each cycle. These differences however diminish as
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FIG. 12. Comparison of normal velocity profile between the IICE (solid line) and IIIE (dashed line) flow
models for high density ratio, A = 0.98, at time t = 0.5 in (a) and t = 1.5 in (b). dS = 0.1 and β = 2 are held
fixed in all cases. The vertical lines indicate the position of Alfén wave fronts associated with the MHD model
traveling at speed vAi in the fluid region i = 1, 2, left or right to the interface.

either dS or β is decreased, as both models converge to the respective common limit of MHD theory,
or the no-motion solution due to strong magnetic field.

In Fig. 11, a series of the interface characteristics obtained from both systems are shown to
converge as the Atwood number A approaches unity. Figures 11(a) and 11(b) evidence the analysis
of Sec. IV C that, in the large dS limit, the IICE and IIIE models coincide when A = 1. This property
is extrapolated to hold for finite dS as well in Figs. 11(c) and 11(d), where the interface amplitude
η and circulation deposition γ0 are shown to be dependent on A in both models, however with
their difference diminishing as A is increased. It should also be clarified that particularly η is an
increasing function of A, as shown in 11(c), which does not contradict 11(a) where the renormalized
η̂ is plotted in order to illustrate the full range of variability.

Nevertheless, the convergence of interface statistics between the IICE and IIIE models as A
increases does not generalize to the continuous regions of the flow, for finite dS . This is demonstrated
in Fig. 12, where the normal velocity profile w̃(z) is computed at a high Atwood number A = 0.98
(equivalently ρ2/ρ1 = 100) and dS = 1, for both models. The vorticity transport in the light fluid
side (left) is clearly different between the two models in a region close to the corresponding Alfvén
wave front. The heavy fluid side, however, including the neighborhood of the interface, appears
insensitive to the model used for the electrons.

VI. CONCLUSIONS

We have examined the behavior of an impulsively accelerated perturbed interface separating
conducting fluids of different densities, in the presence of a magnetic field that is parallel to the
acceleration, using the Hall-MHD equations. Assuming the ions form an incompressible fluid,
two impulsive models are proposed, first with a compressible electron flow and second with an
incompressible electron flow. These models are analytically approached as linearized initial-value
problems that accommodate all three components of the velocity and magnetic fields. By applying
the appropriate jump conditions across contact discontinuity for each model, the resulting flow fields
demonstrate that, in both cases, the growth of the interface perturbation is limited by the imposed
magnetic field, establishing suppression of the RMI when the ion skin depth (or the Larmor radius)
is significant compared to the perturbation wavelength. In such flow regimes inaccessible to the ideal
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MHD theory, oscillations associated with the ion cyclotron effect are imposed onto the entire flow
domain, substantially altering the vorticity dynamics displayed by the ideal MHD model that drives
the suppression of the RMI. Most significantly, the jump conditions in the Hall-MHD case permit
circulation deposition on the interface, which is precluded in ideal MHD when a magnetic field
penetrates the interface. Together with a continuous vorticity production away from the interface
due to the magnetic contribution to the vorticity equation, the total circulation in the domain is
no longer a conserved quantity. Furthermore, the dispersive nature of the Hall-MHD equations
also drastically affects the transport of vorticity, which is no longer confined to the Alfvén fronts
propagating outwards from the interface, as in the ideal MHD case.

By varying the nondimensional Larmor radius, the ion skin depth, the energy ratio (β), and the
fluid density ratio (or the Atwood number), it is found that the hydrodynamic RM flow limit is
recovered when β is large and the MHD limit is attained when dS (or dL) is small. Further there
exists a large dS limit that is opposite to the MHD system, where solutions at the interface converge
rapidly for dS greater than order unity. Lastly, the two somewhat different models (IICE and IIIE)
are compared to show qualitatively similar results across the entire parameter space.
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