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The dissolution of minerals into water becomes significant in geomorphology when
the erosion rate is controlled by the hydrodynamic transport of the solute. Even in the
absence of an external flow, dissolution itself can induce a convective flow due to the
action of gravity. Here we perform a study of the physics of solutal convection induced
by dissolution. We simulate numerically the hydrodynamics and the solute transport in a
two-dimensional geometry, corresponding to the case where a soluble body is suddenly
immersed in a quiescent solvent. We identify three regimes. At a short timescale, a
concentrated boundary layer grows by diffusion at the interface. After a finite onset time,
the thickness and the density reach critical values, which starts the destabilization of
the boundary layer. Finally, the destabilization is such that we observe the emission of
intermittent plumes. This last regime is quasistationary: The structure of the boundary layer
and the erosion rate fluctuate around constant values. Assuming that the destabilization of
the boundary layer occurs at a specific value of the solutal Rayleigh number, we derive
scaling laws for both fast and slow dissolution kinetics. Our simulations confirm this
scenario by validating the scaling laws for both onset and the quasistationary regime. We
find a constant value of the Rayleigh number during the quasistationary regime, showing
that the structure of the boundary layer is well controlled by the solutal convection. We
apply the scaling laws previously established to the case of real dissolving minerals. We
predict the typical dissolution rate in the presence of solutal convection. Our results suggest
that solutal convection could occur in more natural situations than expected. Even for
minerals with a quite low saturation concentration, the erosion rate would increase as the
dissolution would be controlled by the hydrodynamics.
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I. INTRODUCTION

Erosion induced by dissolution and the associated morphogenesis are of particular interest
in a geological context. Dissolution is often the dominant erosive process in an area covered
by a dissolvable mineral like limestone in karst regions and produces remarkable patterns such
as scallops or rillenkarren [1,2]. The three most common dissoluble rocks are salt [halite or
sodium chloride (NaCl)], gypsum (CaSO4 and 2H2O), and limestone (calcite and CaCO3), whose
solubilities in water are, respectively, about 360 g/l, 1.5 g/l, and 2.5 mg/l. It can be inferred that
dissolution of these rocks occurs on very different timescales (five orders of magnitude). With the
hypothesis of fast kinetics of dissolution, the dissolution rate is often assumed to be controlled by
solute transport rather than dissolution kinetics [3,4]. The erosion velocity decreases with the solute
concentration at the dissolving interface to vanish when it reaches the saturation concentration. Then
diffusive and advective transport of the solute control the erosion dynamics. Inside the ground, if
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the rock is porous or fractured, water flows into underground rivers, dissolving progressively the
rock and creating dissolution cavities. Complex three-dimensional networks of caves are formed
in limestone karst areas, evolving on a timescale typically between 10 000 and 100 000 yr [5].
Understanding the dissolution dynamics of the subsoil is of particular importance to prevent or
predict the collapse of large void cavities created by water drainage, leading to the formation of
sinkholes [6]. This risk is in particular present where a gypsum stratum is close to the surface, like
in Île de France [7].

In nature, hydrodynamic flows enhance solute transport. These flows are often imposed exter-
nally, like in the case of an underground river digging a cave. Nevertheless, solute flows can occur
without external forcing: buoyancy forces caused by differences in solute concentration can generate
a convective flow. Literally analogous to thermal convection, where the density variations are caused
by fluid thermal expansion, solutal convection can be triggered by evaporation [8,9] or freezing [10]
of salt water or dissolution. Solutal convection induced by dissolution is mostly studied in porous
media especially in the context of CO2 sequestration [11–14]. It can also appear in dissolution
cavities filled with water [15,16]. A question of geophysical interest consists in wondering if an
external flow is always necessary to achieve considerable erosion of rocks.

Shaping of bodies dissolving in quiescent water due to solutal convection has been reported in
several works. Most of them report the formation of patterns. To our knowledge, J. Schürr reports
the first observation of these patterns in 1904 during his Ph.d. thesis [17,18] at Clermont-Ferrand
(France) under the supervision of Bernard Brunhes. Subsequent studies have been performed from
a chemical engineering perspective [19,20] or in a pharmaceutical context [21]. In a geophysical
context, Tait and Jaupart [22,23] and then Kerr [24] studied the solutal convection to address
precipitation or dissolution in magma chambers. Quantitative measurements of dissolution mass flux
and surface patterning were performed with NaCl, KBr, and KCl [25–27] horizontal crystals. This
work has been extended recently to inclined bodies [28–30]. Tait and Jaupart [22] and subsequent
works infer scalings built on a constant solutal Rayleigh number.

We emphasize that immersing suddenly a dissoluble block into water does not correspond to
the classical Rayleigh-Bénard problem. Neither the concentration nor the flux at the boundaries
is stationary forced. The standard methods of linear stability analysis cannot be used to predict
the onset of the instability. Several theoretical approaches have been proposed to tackle the
time-dependent convective instability [31–40], but they rely on strong hypotheses and on arbitrary
criteria defining the onset. Although the solutal convective instability corresponds to a nonstationary
Rayleigh-Bénard problem, the global dissolution flux is experimentally found to be constant with
time [25,29]. The dissolution rate is set by the size of the concentration boundary layer at the
dissolving interface, as it is for the temperature boundary layer in turbulent thermal convection. The
experimental investigation of this layer remains challenging due to its small size (about 100 μm)
and the high concentration gradients, preventing the use of optical techniques.

Here we investigate, by means of numerical simulations, the solutal convection induced by
dissolution. At short timescales, we study the development of the boundary layer and the onset
of the instability. At longer times, we evidence the establishment of a quasistationary regime and
focus on the structure of the associated concentration field. We derive and verify simple scaling
laws predicting the onset parameters and the dissolution flux in the regimes where the dissolution
is limited by the hydrodynamic transport or by the chemical kinetics. The paper is organized as
follows. We detail in Sec. II the theoretical framework used in this study and we derive the associated
scaling laws. In Sec. III, for reference, we measure experimentally the onset time of the instability
for salt dissolving in saline water. The core of the paper is then dedicated to a two-dimensional
numerical simulation of convection. We develop the numerical model in Sec. IV. In Sec. V we
detail the temporal evolution of the instability and discuss three distinct regimes. We perform a
parametric study of the quasistationary regime in Sec. VI and verify the derived scaling laws. We
discuss the possible emergence and growth of dissolution patterns in Sec. VII. In Sec. VIII we
address the relevance of the solutal convection induced by dissolution for a natural environment.
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II. THEORETICAL FRAMEWORK AND SCALING LAWS

The physical problem of erosion induced by dissolution studied here can be understood as
an advection-diffusion problem in the fluid, coupled with a moving solid boundary due to the
dissolution [1]. In the following, we discuss the theoretical framework and the validity of the
different hypothesis for the typical case of NaCl salt (referred to in the following as salt) dissolving
in an aqueous solution.

A. Interface boundary condition at the solid-liquid interface

The dissolution reaction imposes at the solid-liquid interface a solute flux. Considering first-order
kinetics, this mass flux � is considered to be proportional to the difference between the solute mass
concentration at the solid-liquid interface ci and the saturation mass concentration cm, � = α(cm −
ci ), where α is the dissolution rate coefficient (always positive) modeling the chemical kinetics of
dissolution [41]. We assume a linear relation between the density ρ and mass concentration c of the
solution, valid when only one chemical species is in the solution, c = cm(ρ − ρ0)/(ρm − ρ0), with
ρ0 the density of the liquid in the absence of solute and ρm the density of the liquid at saturation. We
also note that, especially for fast dissolving minerals, the kinetics of the chemical solvation reactions
have not been precisely documented, at least experimentally. Molecular dynamics simulations at the
microscopic scale show a constant dissolution rate of NaCl crystal in the limit of infinitely diluted
solvent [42].

The dissolution of the solid results in the receding of the interface

−ρsvd · n = α(ci − cm), (1)

where vd is the dissolution velocity, n the normal vector to the interface directed outward from
the liquid, and ci the concentration at the interface. The conservation of the concentration at the
interface reads

−ρsvd · n = −civd · n − D∇c|i · n + ciui · n, (2)

where ui is the liquid velocity at the interface. The kinematic condition of nonpenetration is written

ui · n = vd · n(1 − χ ), (3)

where χ is the expansion factor, the ratio between the volumes the solute occupies in the liquid
phase and the solid phase. In the quasistatic regime (when χ � ρs

ci
), and expressed as a function of

the fluid density ρ, Eqs. (1)–(3) are rewritten

−ρs
ρm − ρ0

cm
vd · n = α(ρi − ρm) = −D∇ρ|i · n, (4)

where D is the diffusion coefficient of the solute in the liquid. The quasistatic approximation
is reasonable for most practical geological cases. For salt, the saturation concentration is cm =
315 kg m−3, the saturation density is ρm = 1200 kg m−3, and the density of the solid salt crystal
is ρs = 2163 kg m−3. Then ρs/cm ∼ 10 while χ � 1. The dissolution rate depends on the value
of the density ρi at the interface, which is modified by advection by the hydrodynamic flow in
the liquid phase. We neglect the Gibbs-Thomson effect, which increases the dissolution velocity at
high curvature (curvature radius smaller than 1 μm) [43,44]. The dissolution process goes with the
release or absorption of heat energy because of the change in enthalpy. The dissolution of salt in
water is endothermic, which could limit the dissociation rate and affect the concentration saturation
value and other involved parameters that are temperature dependent. However, the energy balance
is taken to be incidental because first the thermal diffusivity in water is 100 times larger than the
mass diffusion coefficient and second because we consider a very large volume of solution acting
as a thermostat.

Considering that the characteristic spatial scale of the problem is the concentration boundary
layer thickness δ, the mass balance equation (4) is rewritten α(ρm − ρi ) ≈ D

δ
(ρi − ρb), where ρb is
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the initial density of the solution (bath). From there the effective density difference �ρeff created in
the boundary layer reads

�ρeff ≡ ρi − ρb ≈ Da

1 + Da
�ρ, (5)

where �ρ is the maximum density difference �ρ ≡ ρm − ρb and Da is the dimensionless Damköh-
ler number Da = αδ/D, which compares the dissolution rate coefficient α and a characteristic
diffusion velocity D/δ. When the Damköhler number is large, the dissolution is limited by the
diffusion and the concentration at the interface is close to the saturation concentration and �ρeff ≈
�ρ. On the contrary, when the Damköhler number is small, the dissolution is limited by the
chemical kinetics. Therefore, the concentration at the interface is close to the bath concentration
and �ρeff ≈ Da�ρ. The coefficient α is not precisely known for most fast dissolving minerals.
However, in the case of dissolution of salt in water, using a disk rotating experiment and
assuming a first-order dissolution kinetics, Alkattan et al. [41] find α = 5.0 ± 0.4 × 10−4 m s−1

at a temperature T = 25 ◦C. For such a value of α, our simulation will show that Da ∼ 10, so the
concentration at the interface is close to the concentration at saturation.

B. Scalings for the solutal convection induced by dissolution

1. Onset of convection instability

When putting a block in contact with a solution, the blocks starts dissolving. In a first step,
the concentration boundary layer charged in solute grows by diffusion until it reaches a critical
thickness δonset at t = tonset. At this point, the boundary layer becomes unstable due to the gravity
action because the concentrated solution is denser. A buoyancy instability develops as shown in our
simulations (see Sec. IV). This is analogous to the Rayleigh-Bénard instability where concentration
replaces temperature.

The classic theoretical approach to describe the convective instability [45] under the action of
the gravity acceleration g relies on the Boussinesq approximation, i.e., the variations of the density
with the solute concentration are neglected except for the weight of the fluid particle. Moreover,
it supposes that the diffusion coefficient D and the kinematic viscosity ν do not depend on the
solute concentration. With these hypotheses, the convective flow between two horizontal plates
separated by a distance 	 occurs in the stationary regime when the Rayleigh number Ra = �ρeffg	3

ηD
exceeds a critical value [22,45], with η = ρbν the dynamic viscosity. The given value depends
on the boundary conditions Rac = 27π4/4 ≈ 657.5 for free-surface boundaries, Rac = 1708 for
solid walls, and Rac = 1101 for mixed conditions. The corresponding wavelengths at the instability
threshold are 2.8	, 2.0	, and 2.3	, respectively [45]. In our situation, the geometry is semi-infinite
and the phenomenon is not stationary with a priori nonconstant concentration at the boundaries. At
t = 0, the dissolving material is put in contact with the solution, and the initial concentrations and
velocity fields are null.

A naive criterion of convection onset consists in basing the Rayleigh number on the boundary
layer thickness δonset as a characteristic length scale. It follows that

δonset ≈ Ra1/3
c

(
ηD

�ρeffg

)1/3

, (6)

λonset ≈ γ δonset, (7)

where γ is the prefactor linking λ to δonset. As the boundary layer grows by diffusion during the first
step, the onset time of convection scales as tonset ≈ δ2

onset/D, which gives

tonset ≈ Ra2/3
c

(
η

�ρeffg
√

D

)2/3

. (8)
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Some theoretical works addressed the question of the prefactors. For example, a semianalytical
work based on the propagation theory [36,37,46], where part of the dynamics of the base state is
taken into account, predicts tonset = 7.53(η/�ρg

√
D)2/3. Later in this article, we perform the full

numerical simulation of the problem.
Note that for the practical case of salt dissolution, some of the above hypotheses are questionable.

The Boussinesq approximation is valid when the density variations are small, i.e., when (ρm −
ρb)/ρb � 1. For salt (ρm − ρb)/ρb ≈ 0.2. Moreover, the dynamic viscosity η increases with c from
1.002 × 10−3 to 1.990 × 10−3 Pa s (saturated solution) [47]. The diffusion coefficient is almost
independent of concentration with a maximal variation of 7% [48].

2. Quasistationary regime of solutal convection

After the onset, the instability develops and concentrated plumes are intermittently emitted in the
vicinity of the interface. The solute flux at the interface reaches a constant value on average (see
[27,29] and Sec. IV). We refer to this regime as the quasistationary regime of solutal convection.

In the Rayleigh-Bénard problem, the thermal flux is usually written as a diffusive flux through
the gap of distance h times the Nusselt number Nu, which is the ratio between the actual flux and the
pure diffusive flux. For large gaps it has been found that the Nusselt number scales as Ra1/3, where
Ra is the Rayleigh number based on the gap size h [49]. This results in a thermal flux independent
of the gap size h but controlled by the boundary layer thickness δ. By analogy, as previously done
[25,27], one can derive a scaling law in the quasistationary regime for the dissolution rate. From
Eq. (4), the mass flux of dissolved solute � scales like D(ci − cb)/δqs, where δqs is the thickness of
the boundary layer in the quasistationary regime. On this length scale, one can obtain a new value

of the Rayleigh number in the quasistationary regime Raqs = �ρeffgδ3
qs

ηD . It follows that

� ≈ (Raqs)−1/3 cm

ρm − ρ0

(
gD2�ρeff

η

)4/3

. (9)

Note that the same expression can be found by equating an advective and a diffusive flux [50].

3. Asymptotic laws

Considering the case of fast dissolution kinetics (Da � 1) or slow dissolution kinetics (Da � 1),
we derive a set of simple scalings from Eqs. (6)–(9) that we compare with our numerical simulations
in Sec. VI: For the fast dissolving case Da � 1 and �ρeff ≈ �ρ,

δonset ≈ Ra1/3
c

(
ηD

�ρg

)1/3

, (10a)

λonset ≈ γ Ra1/3
c

(
ηD

�ρg

)1/3

, (10b)

tonset ≈ Ra2/3
c

(
η

�ρg
√

D

)2/3

, (10c)

� ≈ (Raqs)−1/3

(
gD2

η

)1/3
cm

ρm − ρ0
�ρ4/3, (10d)

and for the slow dissolving case Da � 1 and �ρeff ≈ Da�ρ,

δonset ≈ Ra1/4
c

(
D2η

α�ρg

)1/4

, (11a)

103801-5



JULIEN PHILIPPI et al.

101 102

Δρ (kg m−3)

100

101

t e
m

(s
)

(b)
∝ Δρ−2/3

FIG. 1. (a) Shadowgraph image of solutal convective flow. A salt block is put in contact with fresh water
and the image is taken 1.25 s after the contact. A graduation corresponds to 1 mm. (b) Emission time tem of the
first plume as a function of the density difference �ρ = ρm − ρb, by adjusting the maximal density to ρm =
1195 kg m−3. The straight line indicates the scaling tem = K (η/�ρg

√
D)2/3 with the fitted value K = 12.8.

λonset ≈ γ Ra1/4
c

(
D2η

α�ρg

)1/4

, (11b)

tonset ≈ Ra1/2
c

(
η

α�ρg

)1/2

, (11c)

� ≈ α
cm

ρm − ρ0
�ρ. (11d)

In the case of salt (Da � 1), the scaling law for the flux � in the quasistationary regime (10d) has
been observed experimentally by Sullivan et al. with a Rayleigh number Raqs = 133 [25]. Cohen
et al. also evidenced this scaling law with Raqs = 94 [29]. We propose in the next section to test
experimentally with salt the scaling law for tonset.

III. EXPERIMENT: ONSET TIME OF THE CONVECTIVE INSTABILITY FOR SALT

Before addressing the numerical simulations of solutal convection induced by dissolution, which
constitutes the major part of this work, we present briefly a few experimental results. Here we put a
fast dissolving ionic crystal salt NaCl (Da � 1) in contact with a water bath at an initial time t = 0.
The block is a rectangular cuboid of 5 × 5 × 2 cm3 made of commercial Himalayan pink salt [51].

The water surface is risen progressively and the initial time is detected by the establishment of a
meniscus. Later on, we observe the emission of plumes concentrated in the solute. We systematically
measure this time tem as a function of �ρ (by varying the concentration of the bath). We visualize
the concentration field using a shadowgraph imaging technique. This setup enhances the variations
of the optical index, which depends on the solute concentration. This experiment is challenging for
small and large �ρ and the accuracy is about 20%. At low salt concentration, the hydrodynamic
flow due to the motion of the interface perturbs the measurement. For salt concentration close to the
saturation, the optical index contrast is weak.

For pure water, the average tem is found to be equal to 0.95 s. Typically, 0.5-mm-wide plumes
sink with a velocity of 15 mm s−1. The shadowgraph in Fig. 1(a) shows a complex structure of
entangled plumes corresponding to a turbulent regime of solutal convection. When increasing the
concentration of the bath, the emission time increases. For ρb = 1187 kg m−3, we measure an
emission time tem = 10.5 s.
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The emission time of the first visible plumes tem exceeds the onset time tonset of the convective
flow. However, we expect these two timescales to scale similarly. Figure 1(b) shows tem as a function
of �ρ; tem follows indeed the scaling law derived for tonset [Eq. (10c)]. The best fit gives

tem = 12.8(η/�ρg
√

D)2/3 (12)

when the maximal density is adjusted to ρm = 1195 kg m−3. The volumetric mass of a saturated
solution of salt in pure water was measured to be 1194.1 kg m−3 at 25 ◦C and 1199.1 kg m−3 at
15 ◦C [52].

We take the other parameters to be equal to their value at the concentration of saturation at
20 ◦C: D = 1.61 × 10−9 m2 s−1 [47] and η = 1.99 × 10−3 Pa s [47]. This is consistent with a large
Da number and a boundary layer of saturated solution.

The characteristic timescale tem of emission of filaments is thus measurable experimentally and
follows the scaling derived for the onset time. However, direct measurements of the onset time
tonset and of the typical thickness δ of the concentration boundary layer appear to be unreachable
experimentally. Computer simulations are required to access these quantities.

IV. NUMERICAL MODEL

We simulate the development of the instability at early times and the quasistationary dissolution
that follows. These simulations enable us to gain access to small times and small distances. They
confirm the physical scenario of solutal convection and the associated scaling laws (see Sec. II B 3).
They enable us to determine the prefactors that are useful for quantitative predictions.

Furthermore, we can study the transition between the two regimes: the diffusion limited regime
and the regime limited by the chemical kinetics. The latter regime, experimentally challenging, due
to the long timescales associated, has never to our knowledge been explored so far.

To compute this problem in an efficient way, we have performed numerical simulation of
the solutal convective instability with a simplified model. We only solve the coupled equations
governing the problem in a two-dimensional domain representing the liquid phase. We assume
that the characteristic time of motion of the solid interface is much larger than the hydrodynamic
timescale.1 Therefore, the solid interface at the top of the liquid domain is fixed in the simulations
while being a source of solute flux.

We solve simultaneously the incompressible Navier-Stokes equations with the Boussinesq
approximation and the advection-diffusion equation for solute concentration. We numerically solve
the advection-diffusion equation for the solution density instead of the concentration of solute,
which corresponds to a linear relationship between these two quantities. The corresponding set
of equations reads

∂ρ

∂t
+ (u · ∇)ρ = D�ρ,

ρb

(
∂u
∂t

+ (u · ∇)u
)

= −∇p + νρb�u + ρg, ∇ · u = 0,

where u, p, and ρ are the velocity, pressure, and density fields, respectively, and ν is the kinematic
viscosity. The boundary conditions for velocity and density are (i) a Dirichlet boundary condition
u = 0 for the velocity field at the top and at the bottom of the liquid domain because walls are rigid
and static and (ii) a Neumann boundary conditions for the density field given by the flux boundary
conditions at the solid surface (4) and a no-flux boundary condition at the bottom of the domain.

1This assumption is stronger than the quasistatic approximation detailed in Sec. II. Both our experiments and
the results of our simulations show that it is reasonable, especially for the study of the flow instability.
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FIG. 2. Representation of the numerical domain with the appropriate boundary conditions.

The latter are written

D∇ρ|z=0 = −α[ρ(z = 0) − ρm]n,
∂ρ

∂z

∣∣∣∣
z=−H

= 0,

where n is a unit vector pointing outward from the fluid domain. On the left and right sides of the
domain, we impose periodic boundary conditions for the velocity and the density fields. Figure 2
displays the geometry of the model.

Using D/α as the characteristic length, D/α2 as the characteristic time, and ρb as the character-
istic density, the pertinent dimensionless quantities are written

x = (x, z) = D

α
x̄, t = D

α2
t̄, ρ = ρbρ̄, u = αū, p = −ρbgz + ρbα

2 p̄.

The governing equations in their dimensionless form become

∂ρ̄

∂ t̄
+ (ū · ∇̄)ρ̄ = �̄ρ̄, (13)

∂ū
∂ t̄

+ (ū · ∇̄)ū = −∇̄ p̄ + Sc�̄ū − (ρ̄ − 1)g∗ez, ∇̄ · ū = 0, (14)

where Sc = ν/D is the Schmidt number and g∗ = gD
α3 . Note that we moved the hydrostatic part of

the pressure in the gravitational term. The flux boundary condition at the solid surface now reads

∇̄ρ̄ = −[ρ̄(z̄ = 0) − ρ̄m]n, (15)

where ρ̄m = ρm

ρb
is the dimensionless saturation density.

The numerical dimensionless set of equations has been implemented in FREEFEM++ [53,54]
and solved with the finite-element methods. The features of our numerical scheme are detailed in
Appendix A. Appendix B shows the convergence of the code for several typical runs (see Fig. 12).

With the idea to simulate a semi-infinite domain, we make sure that the height H of the domain
is high enough to avoid interactions between the plumes and the bottom boundary. We checked that
the results do not depend on H . We have also chosen the width L of the domain in order to obtain an
aspect ratio which enables us to correctly determine the characteristic wavelength of the instability
but with reasonable computational costs.
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FIG. 3. (a) Snapshots of the simulation (for the case of salt) at different times corresponding to the three
regimes discussed in the main text: t = 0.9 s (diffusive regime), t = 2.6 s (instability regime), and t = 3.6 s
(plume regime). Each color represents a dimensionless isodensity (see the color scale). (b) Quantitative density
profiles at corresponding times. The graph represents the dimensionless density ρ(x) for a fixed distance from
the interface (z = −20 μm).

V. THE THREE REGIMES OF SOLUTAL CONVECTION

The numerical simulations succeed in reproducing in two dimensions the solutal convective
phenomenon observed when a solvable body is suddenly plunged into a water tank, which is by
essence nonstationary. Qualitatively, we can identify in the simulations three successive regimes:
(i) the diffusive propagation of the concentration front (t < tonset), (ii) the growth of the instability
(tonset < t < tem), and (iii) the emission of plumes and the quasistationary regime of dissolution
(t > tem).

Snapshots of the density field in Fig. 3(a) and video in [55] show these successive regimes for
a typical run. These three successive regimes of dissolution are observable when looking at the
density field, the density profile, and the solute flux at the interface �. Vertical density profiles as
shown in Fig. 4(a) are obtained by averaging horizontally the density field. The density decreases
monotonically from its maximum value at the interface to the value of the outer bath. We define the
characteristic thickness of the boundary layer as δ ≡ 2�zhalf , where �zhalf is the width of the profile
at half maximum. The mass flux � of solute entering the fluid phase through the top boundary is

� = − cm

ρm − ρ0
α[〈ρ(z = 0)〉x − ρm]. (16)

The wavelength λonset and onset time tonset determinations are explained in Appendix C. Figures 3
and 4 represents the data for a typical simulation computed with parameters corresponding to
the dissolution of salt in pure water (�ρ/ρb = 0.2, ν = 10−6 m2 s−1, D = 10−9 m2 s−1, and
α = 10−4 m s−1). The dimensionless density can vary from 1 for fresh water to 1.2 for water
saturated in salt.

We detail now the three regimes.
(i) Diffusive regime t < tonset. At a short timescale t = 0.2 s, the density at the interface has

increased up to 1.13 at the interface and decreases to the value of the outer bath on a characteristic
length scale δ = 24.5 μm. Later on at t = 0.9 s, the isodensity curves are still parallel to the interface
(Fig. 3), which means that diffusion overcomes gravity. The density profile and the solute flux follow
the purely diffusive solution which has been solved analytically by Crank. The concentration field
(4) (see [56]) reads

c(z, t ) = cm

{
erfc

(
− z

2
√

Dt

)
− exp

[
− α

D
z +

( α

D

)2
Dt

]
erfc

(
− z

2
√

Dt
+ α

D

√
Dt

)}
. (17)
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FIG. 4. (a) Spatial density profiles. Blue lines show the result of the numerical simulation for t = 0.2 s and
t > 10 s; the latter is an average in the quasistationary regime. The blue area shows the fluctuation (standard
deviation) around the mean profile. These numerical profiles are compared to the analytical diffusive solutions
(17) (dashed green lines). From bottom to top, t = 0.2, 10, and 50 s. The diffusive theoretical profile describes
perfectly the numerical profile at t = 0.2 s, but the two profiles differ at later times, in the quasistationary
regime. (b) Characteristic thickness δ of the concentrated boundary layer as a function of time (δ ≡ 2�zhalf ,
where �zhalf is the width of the density profile at half maximum). (c) Dissolution flux � at the interface as a
function of time. The blue line indicates the results of the simulation (averaged spatially along the interface),
while the dotted green line corresponds to the analytical one-dimensional diffusion solution [obtained via
Eq. (17)]. (d) Time evolution of the wavelength determined by autocorrelation, from the first minimum (green
dots) and the first maximum (blue dots). (e) Corresponding score S computed as the relative weight of the
first peak versus the central peak. (f) Standard deviation σ of the horizontal density profile at the characteristic
distance z0 from the interface where 〈ρ(z0)〉x = 0.8〈ρ(0)〉x (see Appendix C).

103801-10



SOLUTAL CONVECTION INDUCED BY DISSOLUTION

(ii) Growth of the instability (tonset < t < tem). At a given time that we define as tonset, the diffusive
boundary layer becomes thick enough and starts to destabilize because of gravity. The isodensity
curve deforms (see Fig. 3 for t = 2.6 s) with an initial wavelength λ = 260 μm. The amplitude of
this density perturbation σ (see Appendix C) exponentially grows in time [Fig. 4(f)].

The solute flux at the interface in Fig. 4(c) moves away from the diffusion solution, showing that
the convection has started. However, the convective flow is not yet fully developed.

During the growth of the instability, the solute front still diffuses and the thickness of the
boundary layer increases. As a result, the wavelength may also increase with time. This is
particularly true for simulations at large viscosity as shown in Fig. 13 in Appendix C.

(iii) Emission of plumes and quasistationary regime (t > tem). Finally, the boundary layer
destabilizes up to the emission of hydrodynamic plumes at t = tem. Plumes sink with a characteristic
mushroom-shaped head [see t = 3.6 s in Fig. 3(a)]. Then the horizontal density profile shows sharp
and strong variations along the x axis [Fig. 3(b)]. The standard deviation of the horizontal density
profile σ has reached a maximum and fluctuates in time [Fig. 4(f)].

Plumes are dynamic, move along the interface, and the emission is intermittent. The locations of
the plumes at a given time also appear erratic. We measure the characteristic time τplume between two
successive convective plumes [Figs. 5(b) and 5(c)]. For salt in pure water, we measure 〈τplume〉t =
1.4 s ± 0.4 s. This value is very close to the value of tonset, which is the time for the development of
the concentration boundary layer before convection. The video in [55] shows the complex motion of
plumes, which sink with a typical velocity of 1 cm s−1, consistent with typical experimental values
(see Ref. [29] and Sec. III).

At the emission t = tem, the thickness of the boundary layer is maximum. Because the emission
of this first plume is almost synchronized, the thickness of the boundary layer falls to a minimum. As
a consequence, the concentration gradient in the boundary layer and the dissolution flux increases
to a maximum (Fig. 4).

Then, despite the intermittency of plume emissions, the density profile reaches a quasistationary
regime with fluctuations around a mean value [see Fig. 4(a)]. Thus, the characteristic thickness of
the boundary layer and the solute flux reach quasistationary values; for the case of salt in pure
water, δ = 69 ± 4 μm and � = 2.7 ± 0.1 g s−1 m−2. We expect the fluctuations to decrease for a
wider system. This regime is of particular importance as it controls the global dissolution dynamics
and likely the emergence of patterns when the interface dissolves. This result is consistent with the
experiments where a constant dissolution velocity is observed [27,29].

We note that the last regime could be observed due to the finite height of the simulation domain,
because of the accumulation of solute at the bottom. However, we always make sure to keep the
simulation far from this limit.

Figure 5(a) is a spatiotemporal diagram corresponding to the case of salt in pure water. It displays
the evolution of the density at a fixed z, just at the end of the boundary layer, as a function of time t
and position x.

First, the density increases homogeneously [regime (i)] until density perturbation appears (light
spots in the diagram). They grow [regime (ii)], with a characteristic wavelength until the emission
of plumes. The latter are intermittent, i.e., they interact, merge, and die and then new plumes arise
[regime (iii)].

VI. SCALING LAWS

In the preceding section we validated our numerical method with the example of salt dissolution
in fresh water. We described the main features of solutal convection induced by dissolution. In the
following, we confirm the scaling laws drawn in Sec. II B 3. First, we investigate the fast dissolution
regime and look at the dependences on the density difference �ρ and the viscosity ν. Then we focus
on the dependence on the dissolution rate coefficient α and explore the transition between the fast
and the slow dissolution regimes.
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FIG. 5. (a) Spatiotemporal diagram of the density field plotted at z = −100 μm. The lateral boundaries
are not visible here, as the full size of the simulation was 1 cm. For times smaller than about 1.8 s, the density
boundary layer has not yet reached the distance of observation z = −100 μm and the convection onset does not
appears in this diagram. (b) Time evolution of the density at a particular point (x0 = 65 μm taken arbitrarily) far
enough from the interface to probe the hydrodynamic convective plumes (z0 = −100 μm). The stars indicate
the sharp peaks in concentration characteristic of the plumes. (c) Histogram of the durations between two
successive plumes at z0 = −100 μm for various values of x0. From this distribution, we characterize the time
between two plume emissions by its median and standard deviation: τ̃plume = 1.4 s ± 0.4 s.

A. Fast dissolution regime

1. Effect of density difference �ρ

We start our investigation by testing the effect of density contrast �ρ = ρm − ρb on the
characteristics of the instability. Simulations are performed, keeping all parameters equal to the
case of the salt except the saturation density ρm, which we tune from ρm = 1.001ρb to ρm = 2ρb.

Figure 6(a) display the wavelength λonset as well as the boundary layer thickness δonset.
Figure 6(b) shows the onset time tonset. For both cases, the theoretical scaling predictions (see
Sec. II B 3) are recovered with power laws displaying exponents −1/3 and −2/3 for λonset or δonset

and tonset, respectively. The prefactor for tonset is comparable to the one found in the experiment
for tem. We find tonset = 29.5(η/�ρg

√
D)2/3, which has the same order of magnitude but is larger

than tem measured in experiments with salt [Eq. (12)]. This disagreement for the prefactor could be
explained by non-Boussinesq or three-dimensional effects, which are not completely negligible in
the experiment of salt dissolution in water.

Figure 6(d) shows the relation between the wavelength λonset and the thickness of the bound-
ary layer δonset at the onset. As expected, both quantities are proportional (Sec. II). We find
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FIG. 6. Influence of density difference �ρ. (a) The wavelength at the onset λonset (�) and boundary layer
thickness at onset δonset (◦), (b) the onset time tonset , and (c) the quasistationary dissolution flux � are plotted as
a function of density difference �ρ. Data are well fitted with the scaling of Eqs. (10b), (10a), (10c), and (10d),
respectively. (d) Linear scaling between the wavelength and the thickness of the concentration boundary layer
at onset (the proportionality factor is 3.25). The brightness of the symbol indicates the value of �ρ according
the scale given in the inset (in kg m−3).

λonset ≈ 3.25δonset, which is comparable to the available estimations in the literature. The classic
result for Rayleigh-Bénard problem between two plates separated by a distance δ with mixed
boundary conditions (nonslipping at one wall and slipping at the other) is indeed λ ≈ 2.3δ. For the
Rayleigh-Taylor instability of a viscous film of thickness δ above an inviscid fluid and in the limit
of vanishing surface tension, one finds λ ≈ 2.96δ [57,58]. Another analysis of the Rayleigh-Taylor
instability between two viscous fluids of the same dynamic viscosity also gives a similar result:
λ ≈ 3.71δ [50,59]. Note, however, that the prefactor depends slightly on the way δonset is measured.

Figure 6(c) shows the dissolution flux � averaged over time in the quasistationary regime as a
function of the density contrast; � scales like �ρ4/3 [Eq. (10d)]. Indeed, in this fast dissolution
regime, the density at the interface is close to the density of saturation.

2. Effect of viscosity

Here simulations are performed by keeping all parameters equal to the case of the salt except
the kinematic viscosity, which we tune from ν = 10−8 m2 s−1 to ν = 3 × 10−5 m2 s−1. Contrary to
the other results of the paper, the simulated domain is 2 cm wide and 2 cm high in order to avoid
the saturation of the wavelength we observe when the domain is too small. Figures 7(a) and 7(b)
show λonset and tonset as functions of the kinematic viscosity. For both cases, the theoretical scaling
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FIG. 7. Influence of the kinematic viscosity ν. (a) Wavelength λ and (b) onset time tonset as a function of the
kinematic viscosity ν. Data are well fitted with the scalings for fast dissolution kinetics Da � 1 of Eqs. (7) and
(8), respectively. Also shown are snapshots of plumes shortly after tonset for (c) ν = 10−5 m2 s−1 and t ≈ 2tonset

and (d) ν = 10−7 m2 s−1 and t ≈ 5tonset . For both cases, the scale is the same indicated by the 5-mm scale bar.
Isovalues for ρ

ρb
are indicated by the color code.

predictions (see Sec. II B 3) with the 1/3 and 2/3 exponents for λonset and tonset, respectively, are in
good agreement with the numerical simulations.

The shape and the dynamics of plumes depend drastically on the Schmidt number Sc. This is
qualitatively evidenced in Figs. 7(c) and 7(d), where the plumes at high Sc are much thinner than
the plumes at low Sc, which are more diffuse. However, the robustness of the scalings confirms that
the main physics (onset values and dissolution rate) depends on the thickness of the boundary layer
but is not sensitive to the detail of the mixing outside the boundary layer.

B. Dissolution rate coefficient α

Here we investigate the role of chemical kinetics of dissolution and the transition between
the dissolution kinetics limited regime (Da � 1) and the diffusion limited regime (Da � 1) by
varying the dissolution rate coefficient α while keeping constant all other parameters, which
correspond to salt dissolution in water. In particular, the saturation density is kept constant and
equals ρm = 1.2, although α and ρm are often correlated. Fast dissolving species have indeed a
large saturation concentration and reciprocity. Figure 8 shows the thickness δonset of the boundary
layer, the wavelength λ, and the time tonset at the onset of the instability together with the solute
flux � as a function of the dissolution rate coefficient α. For large values of α (here when
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FIG. 8. Influence of the dissolution rate coefficient α. (a) The wavelength at the onset λonset (�) and
boundary layer thickness at onset δonset (◦), (b) the onset time tonset , and (c) the dissolution flux � are plotted
as a function of the dissolution rate coefficient α. For α < 10−5 m s−1, data are well fitted with the scaling
of Eqs. (11b), (11a), (11c), and (11d), respectively. For a high value of α, the data become independent of α.
In (c), the crossover value αc ≈ 1.5 × 10−5 m s−1 between the slow and the fast dissolving cases is obtained
by fitting the two asymptotic regimes. (d) Linear scaling between the wavelength and the thickness of the
concentration boundary layer (the proportionality factor is 3.6). The brightness of the symbol indicates the
value of α according the scale given in inset (in m s−1).

α � 1.5 × 10−5 m s−1), the dissolution process is independent of α. This corresponds to the
dissolution limited regime where the concentration at the interface is close to the saturation value
[Fig. 9(a)]. For smaller values of α, the dissolution rate plays a role. The diffusion expels the solute
more rapidly than it is produced by the dissolution, so the density ρi at the interface decreases when
α decreases [see Fig. 9(a)]. The buoyancy decreases jointly with the concentration at the interface,
so the thickness of the unstable boundary layer increases with the time to develop the instability
when α (and ρi) decreases. In the limit of vanishing α we observe the concentration at the interface
to be asymptotically close to the concentration of the outer bath, as predicted in Sec. II B 2. Then
only the dissolution rate and the saturation concentration control the solute flux at the interface,
which is proportional to α, as predicted in Eq. (11d). The instability in the fluid is still observed but
does not play a role in the global solute flux; however, it will play a role in the pattern formation,
as discussed in the next section. In the limit of small α we observe good agreement with the scaling
laws we propose, i.e., λonset ∝ α−1/4, δonset ∝ α−1/4, and tonset ∝ α−1/2 [Eqs. (11)]. In Fig. 8(d) we
verify the expected proportionality between the thickness of the boundary layer and the wavelength
at the onset, with λonset 
 3.6δonset. In the quasistationary regime, we find that the temporally and

103801-15



JULIEN PHILIPPI et al.

10−7 10−5 10−3

α (m s−1)

100

200

300

400

δ q
s
(μ

m
)

(a)
10−2 10−1 1 10 102

Da

1.0

1.1

1.2

ρ
qs i

10−2 10−1 100 101 102

Da

10

100

528

1000

R
a

(b)

FIG. 9. (a) Evolution of the thickness of the boundary layer δqs as well as the interface density ρ
qs
i , both

measured and averaged in the quasistatic regime, as a function of the dissolution rate coefficient α. A fit of these
data has been plotted as a dotted line by solving the system (19) described in the text. The Rayleigh number
has not been fitted but simply taken as the average value measured (Ra = 528), and we see that the match is
very good. (b) Calculation of the Rayleigh number from the measured parameters ρi and δ as a function of the
Damköhler number.

spatially averaged thickness of the boundary layer is slightly smaller than the onset value, as it is
depicted in Fig. 10, where δqs 
 0.83δonset for runs with both variable α and variable �ρ.

Extrapolating the scaling laws for the flux � in the two regimes (low and high Da), we find a
transition for the value αc ≈ 1.5 × 10−5 m s−1, for the set of parameters of salt dissolving in water.
Calculating the Damköhler number with δqs, we find the value of the critical Damköhler number at
the transition: Dac ≈ 1.2.

C. Constant Rayleigh number independent of α

The flow instability is controlled by the competition between diffusion and gravity to transport
the solute. In the quasistationary regime the effective solutal Rayleigh number

Raqs = �ρeffgδ3
qs

ηD
, (18)
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FIG. 10. Comparison of the thickness of the boundary layer at onset δonset and in the quasistationary regime
δqs for various values of α (blue circles) and �ρ (green squares). The dashed line represents the best linear fit
δqs ≈ 0.83δonset .
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computed with the interface density ρ
qs
i and the boundary layer thickness δqs, is found to be constant

and independent of the Damköhler number as shown in Fig. 9(b), where Raqs = 528 ± 89. However,
the boundary condition at the solid-liquid interface is not fixed but is controlled by the competition
between diffusion and chemical kinetics (expressed by the Damköhler number). The concentration
at the interface and the thickness of the boundary layer are determined so that they correspond to a
constant Rayleigh number. This observation is obtained as an average of the system size. At smaller
scale the situation is dynamic: At a given value of x near the dissolving interface the boundary
layer thickness increases by diffusion. Once the concentrated boundary layer becomes unstable
when δ > δonset, the subsequent emission of plumes makes its thickness decrease suddenly below
the threshold of instability. Therefore, in the quasistationary regime and for an average size of the
dissolving body, the structure of the boundary layer (ρqs

i and δqs) corresponds to a constant Rayleigh
number because the average thickness of the boundary layer remains δqs close to δonset, as shown in
Fig. 4(b) or 10.

The Damköhler number Da is not known a priori, but one can compute ρi and δ from boundary
conditions, knowing that the Rayleigh number is constant. The coupled equations read

Ra = ρi − ρb

ρb

g

νD
δ3,

α(ρm − ρi ) = D

δ
(ρi − ρb).

(19)

We solved this system as a function of α with Raqs = 528. The computed result is displayed as
dotted lines in Fig. 9(a). The agreement is remarkable despite the approximation ∂/∂z ≈ 1/δ, which
confirms the scenario of dissolution at constant Rayleigh number.

This robust value of the Rayleigh number during the quasistationary regime is comparable to the
critical values of the Rayleigh number corresponding to the appearance of a convective flow. Using
the values obtained at the onset of instability, we find Rac = 950 ± 350. The ratio Rac/Raqs is
well approximated by (δonset/δqs)3 = (1/0.83)3. We note that these values of the Rayleigh number
depend on an arbitrary way of defining δ (see Sec. V). Therefore, it is delicate to compare our
values to the critical values obtained in the literature for the Rayleigh-Bénard convection in the
stationary regime [45] (for example, 1100 for mixed boundary conditions) or to the values obtained
experimentally using the dissolution flux to estimate the boundary thickness, which are of order 100
[25,29]. In contrast, the critical value of Ra defined using tonset by Eq. (11c) does not rely on an
arbitrary estimation of δ. From the fit of Fig. 8(b), we find Rac = 374.

VII. DISCUSSION: SPATIAL VARIATIONS OF DENSITY AT THE INTERFACE AND POSSIBLE
EMERGENCE OF DISSOLUTION PATTERNS

We saw in previous sections that the global dissolution flux is constant in the quasistatic
regime. We address now the spatial variations of the local dissolution flux, which would be
responsible for the formation of the patterns observed for dissolving bodies plunged into a solvent
[17,18,20,25–28,30]. Analogous dissolution patterns have been observed recently in numerical
studies of dissolution in a porous medium [60]. Numerical studies of thermal Rayleigh-Bénard
convection with a horizontal melting boundary report also the development of a topography at
the solid-liquid interface [61,62]. Melting cavities are separated by cusps, which correspond to
the positions of falling plumes. Similarly, in recent dissolution experiments, where the solutal
convection creates a pattern, plumes are emitted at the peaks of the topography [28,29].

Spatial variations of concentration at the dissolving interface should induce a dissolution pattern
through differential dissolution. Although the interface does not move in our code, we study the
space and time fluctuations of the density field at the interface to discuss the emergence of a
dissolution pattern resulting from solutal convection. The boundary (4) relates the local interface
velocity to the the local value of interfacial solute concentration. The left-hand side of Eq. (4) is

103801-17



JULIEN PHILIPPI et al.

10−9 10−8 10−7 10−6

vd (m s−1)

10−12

10−10

10−8

10−6

v p
a
tt

er
n

(m
s−

1 )
(a)

∝ vd

∝ v
7
4
d

10−3 10−2 10−1 100 101

Φ (g s−1 m−2)

0.2

0.3

0.4

0.5

0.6

v p
a
tt

er
n
/v

f
a
st

pa
tt

er
n

(b)

0

5

10

15

v p
a
tt

er
n
/v

sl
ow

pa
tt

er
n

FIG. 11. (a) Relationship between the pattern velocity vpattern and the global dissolution velocity vd . Green
squares correspond to varying values of α. The dashed green line shows the scaling of Eq. (24): vpattern =
9.1vslow

pattern. Blue triangles correspond to the fast dissolution regime: α = 10−4 m s−1 and varying values of
�ρ (�) or ν (�). The dotted blue line displays the scaling of Eq. (25): vpattern = 0.38vfast

pattern. (b) Detailed
examination of the deviation to the predicted scalings for fast and slow dissolution regimes. While varying

α (green squares), the slow dissolution regime scaling in vslow
pattern = Ra1/4( ηρ3

s (ρm−ρ0 )3

gD2c3
m�ρ4 )1/4v

7/4
d (with Ra = 500)

is followed until a critical flux corresponding to the critical Damköhler number discussed in the preceding
section. When we vary �ρ or ν at constant α = 10−4 m s−1, one can observe a slight monotonic variation to
the fast dissolution scaling: vfast

pattern = vd . Although α > αc, the value of α is not orders of magnitude larger than
αc, which may be needed to get perfect agreement.

rewritten

vd · n = α
ρi − ρm

ρ0 − ρm

cm

ρs
. (20)

We link the typical velocity vpattern at which the pattern emerges (growth velocity) to the spatial
fluctuations of vd that the spatial fluctuations of the concentration field should induce. Therefore, it
corresponds to the standard deviation of the interface velocity

vpattern = 2α
σρ(z=0)

ρm − ρ0

cm

ρs
, (21)

where σρ(z=0) is the instantaneous standard deviation of the density profile at the interface
ρ(x, z = 0, t ).

We also define the scalar value vd as the spatially averaged dissolution velocity, which corre-
sponds to the global dissolution flux. From Eq. (20) it reads

vd = α
〈ρ(z = 0)〉x − ρm

ρ0 − ρm

cm

ρs
. (22)

As we did for the flux �, these quantities are averaged over time in the quasistationary regime.
Figure 11 shows the pattern velocity vpattern as a function of the dissolution velocity vd for the

salt parameters when varying the density difference �ρ, the dynamic viscosity ν, or the dissolution
rate coefficient α. For fast dissolution kinetics (Da � 1, varying �ρ or ν), the pattern formation
velocity is roughly proportional to the dissolution velocity. Figure 11(b) shows a slight dependence
with the flux, but the velocity of pattern formation is always roughly half the speed of the mean
interface velocity. For slow dissolution kinetics (Da � 1, varying α), we find that vpattern scales
like v

7/4
d .

Simple arguments allow us to derive these scaling laws. Between two plumes, the local vertical
dissolution flux through the interface matches the divergence of the horizontal advective flux
integrated on the thickness of the concentration boundary layer δ, � ≈ d

dx (δvδcδ ), where vδ and
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cδ (x) are the values of the horizontal velocity and the concentration averaged over the thickness
of the boundary layer. Ascribing the differential dissolution to a difference of concentration in the
boundary layer only and using the fact that δ and λ are proportional, the previous balance integrated
over half a wavelength λ/2 gives

�c̄δ ∼ tonset

δonset
�, (23)

where �c̄δ is the characteristic concentration difference inside the boundary layer along the interface
and δonset

tonset
is the typical flow velocity in the boundary layer.

By definition, vpattern scales like the characteristic difference of dissolution velocity, so vpattern ∼
α
ρs

(�c̄i ), where �c̄i is the characteristic difference of concentration at the interface. For a linear
concentration boundary layer, �c̄i ∼ 2�c̄δ .

In the slow dissolving case, the dissolution flux �, tonset, and δonset are given by Eq. (11c), (11a),
and (11d), so we find

vslow
pattern = Ra1/4

(
ηρ3

s (ρm − ρ0)3

gD2c3
m�ρ4

)1/4

v
7/4
d , (24)

where the scaling of pattern formation is written as a function of the global dissolution velocity
vd = �

ρs
. Similarly, in the fast dissolving case, the dissolution flux �, tonset, and δonset are given by

Eq. (10c), (10a), and (10d), which gives

vfast
pattern = vd . (25)

These scaling laws agree fairly well with our data. Although the solid interface is fixed in our
simulations, these velocities of pattern formation should prevail at least in the early stage, when
patterns have small amplitudes.

However, as discussed in Sec. II and commonly reported [1], the hydrodynamic timescales are
substantially shorter than those corresponding to the interface evolution. Therefore, to observe the
growth of a significant pattern, the lifetime of the concentration variations should be larger than
or of the order of the typical time for pattern formation. Thus, pattern formation relies on a time
coherent spatial differential density profile at the interface: If the plume positions are uncorrelated
in time, the interface should remain flat. For the parameters of salt dissolution in pure water, we find
vpattern ≈ 0.38vd . Liu et al. found a similar value in experiments [26]. The typical time lapse between
the emission of two plumes at a given location of the boundary layer is τplume ≈ 1.4 s (Fig. 5);
τplume sets the coherence time of the boundary layer. Over this coherence time, the pattern attains
a typical amplitude vpatternτplume ≈ 10−6 m, which is about 50 times smaller than the thickness of
the boundary layer (see Fig. 4). This small rugosity may stabilize the position of plumes to explain
the emergence of patterns in experiments [26–29]. We have performed simulations with a solid
interface with peaks. They evidence that spikes at the interface stabilize the plume locations. This
offers perspective for future work studying the effect of the topography in the emergence of patterns
by simulating the same problem with a moving interface.

VIII. CONCLUSION

Motivated by the geophysical relevance of erosion by dissolution, we performed an extensive
numerical study of the solutal convection induced by dissolution, which occurs when immersing a
horizontal dissolving body in a quiescent solvent. Through the example of salt dissolving in water,
we described the three regimes of the convection driven by dissolution. First was the diffusive
regime, where the concentration boundary layer grows by diffusion until the thickness and the
density reach critical values at a finite time, the onset time. In the second regime, the boundary
layer destabilizes because of the buoyant flow and eventually leads to the emission of plumes. The
third regime of plumes emission corresponds to a quasistationary regime where the structure of
the boundary layer and the dissolution rate fluctuate around constant values. In this established
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TABLE I. Geological application of our numerical results in the cases of NaCl salt, gypsum, and limestone.
The fits in Figs. 6(c) and 8(c) give the prefactors for onset characteristics. In the fast dissolution regime,
we found tonset ≈ 29.2( η

g
√

D
)2/3�ρ−2/3, δonset ≈ 10.2( ηD

g )1/3�ρ−1/3, and � ≈ 0.11(gD2/η)1/3 cm
ρm−ρ0

�ρ4/3. In

the slow dissolution regime, we found tonset ≈ 19.3( η

�ρg )1/2α−1/2, δonset ≈ 6.25( D2η

�ρg )1/4α−1/4, and � ≈
0.98 cm

ρm−ρ0
�ρα. The erosion velocity is vd = �

ρs
. The chosen parameters for salt are D = 1.61 × 10−9 m2 s−1,

ν = 1.66 × 10−6 m2 s−1 (saturated concentration), ρm = 1.2, �ρ = 200 kg m−3, cm = 315 kg m−3, α = 5.0 ×
10−4 m s−1 [41], and the solid density ρsalt = 2170 kg m−3. The parameters for gypsum are [3] D = 1.0 ×
10−9 m2 s−1, cm = 2.04 kg m−3, �ρ = 2.58 kg m−3, α = 2.7 × 10−6 m s−1, and the solid density ρgypsum =
2320 kg m−3. We take for the viscosity the value for fresh water ν = 10−6 m2 s−1. For limestone, the chemical
reaction of dissolution involves the partial pressure in CO2 and depends on the pH. Moreover, the dissolution
rate is not linear with the concentration in ions Ca2+, due to an inhibition phenomenon at high concentration.
We take α ≈ 3 × 10−6 m s−1 [63], which constitutes a higher bound in natural conditions. The other parameters
for the limestone are D = 1.4 × 10−9 m2 s−1, the density at saturation in conditions of high CO2 pressure is
ρm = 1.000 312 kg m−3 [63] and so �ρ = 3.12 × 10−1 kg m−3 and the solid density ρlimestone = 2711 kg m−3.
Due to the weak solute concentration, the viscosity is the one of fresh water ν = 10−6 m2 s−1. We choose also
cm = 0.057 kg m−3 [63].

Mineral Dissolution regime tonset (s) δonset (μm) Da D/δ (μm s−1) � (g m−2 s−1) vd

salt NaCl fast kinetics 2.2 113 35 14 5.1 74 m yr−1

gypsum fast kinetics 33.7 349 0.93 2.9 2.9 ×10−2 39 cm yr−1

gypsum slow kinetics 74 389 1.0 2.6 5.4 ×10−3 7.3 cm yr−1

limestone fast kinetics 123 787 1.7 1.8 1.0 × 10−3 1.2 cm yr−1

limestone slow kinetics 202 756 1.62 1.8 1.7 × 10−4 0.2 cm yr−1

regime, as for the onset of the instability, the solutal Rayleigh number is constant when calculated
with the actual density at the interface and the thickness of the concentration boundary layer. This
constant value of the Rayleigh number sets the scaling laws that grasp the dynamics of convective
dissolution. Varying the density difference, the viscosity, and the characteristic dissolution rate,
we confirm the physical picture and the scaling laws for the fast dissolving materials (Da � 1)
and derive and verify the scaling laws for slow dissolving materials (Da � 1). For such materials,
the solute concentration at the solid interface is smaller than the concentration of saturation, but
still the effective Rayleigh number is constant and equals approximately 500 in the quasistationary
regime. This is of particular importance when considering dissolution of geological materials such
as gypsum or limestone. Table I summarizes for NaCl salt, limestone, and gypsum the onset time
tonset (s), the thickness of the boundary layer at the onset δonset, the Damköhler number Da, the
characteristic velocity D/δ for which the advection by an external flow dominates the diffusion,
the dissolution flux �, and the erosion velocity vd . For salt, our predictions match the orders of
magnitude found in experiments: onset time of the order of 1 s (see our experiment in Sec. III) and
fluxes of the order of a few g m2 s−1 (see [29]). If salt is a fast dissolving material, limestone and
gypsum appear to stand at transitional values of the Damköhler number. The occurrence of solutal
solution induced by dissolution is of prime importance in predicting the dissolved mass of minerals
as a function of time. In the presence of diffusion alone, the flux vanishes slowly with time, as the
concentration boundary layer becomes more and more thick. In contrast, once the quasistationary
regime of solutal convection characterized here has been reached, the erosion velocity remains
constant, which implies a significantly higher amount of dissolved material. This point is crucial
specifically in the case of the development of dissolution cavities in gypsum strata which can lead
to the appearance of sinkholes at the surface [6,64–66]. In nature, an external flow could inhibit
the solutal convection. If the velocity of an externally forced flow, in the boundary layer, is larger
than the characteristic velocity D/δ, the external flow would overcome the solutal convection to
transport the solute. However, in the case of quiescent water, although the dissolution rates can be
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weak even with a Damköhler number of order one, the solutal convection undoubtedly takes place
after a few seconds to a few tens of seconds only, making this mode of dissolution worth considering
on geological times.
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APPENDIX A: NUMERICAL METHODS

All the numerical simulations were performed with the open-source code FREEFEM++ [67] (see
also the paper of Hecht [53] for details). FREEFEM++ is a code solving partial differential equations
using the finite-element method. One of the particularities of this code is that the problem to solve is
described by its variational formulation. In this Appendix we provide some details about the weak
form of the dimensionless system (13)–(15) implemented in the code.

1. Weak form of the governing equations of the problem

a. Temporal discretization of the momentum equation and introduction of the
FREEFEM + + operator convect

The main difficulty in the determination of the weak form of the equations governing this
problem comes from the nonlinear convective term. However, it is possible with FREEFEM++ to
take it into account with an operator called convect. This operator appears explicitly in the weak
formulation of the problem implemented in the FREEFEM++ code. Obviously, due to this operator
specific to the code, the variational formulation we propose here does not correspond to those we
found in [68,69].

In order to properly introduce the convect operator, we can start by writing the time discretiza-
tion of the momentum equation. This involves the velocity at times n and n + 1, pressure at time
n + 1, and density at time n. Indeed, we compute the velocity and the pressure fields with the
momentum equation for the density given at the previous time step. This difference lies in the
timescale separation between hydrodynamic and advection-diffusion phenomena. Therefore, we
obtain from Eq. (14) the discretized momentum equation (after dropping the overbars)

1

τ

(
un+1

i − un
i ◦ X n

i

) + ∂ pn+1

∂xi
− Sc�un+1

i + (ρn − 1)g∗δi2 = 0,

where τ is the time step of the discretization. The term un
i ◦ X n

i (x) could be approximated by the term
un

i [x − un
i (x)τ ], which we use to define the FREEFEM++ convect operator convect(un,−τ, un

i ) :=
un

i [x − un
i (x)τ ].

b. Weak form of Navier-Stokes equations

We consider here the discretized dimensionless Navier-Stokes equations written with the operator
convect,

∂un+1
i

∂xi
= 0,

1

τ

[
un+1

i − convect
(
un,−τ, un

i

)] + ∂ pn+1

∂xi
− Sc�un+1

i + (ρn − 1)g∗δi2 = 0.
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We proceed classically by multiplying these equations by appropriate test functions and then
integrating on the whole domain �. The problem now is to determine the solution of the Navier-
Stokes equations (u, p) ∈ V × W such that for all (v, q) ∈ V × W we have∫

�

qn+1 ∂un+1
i

∂xi
d� = 0,

1

τ

∫
�

[
un+1

i − convect
(
un,−τ, un

i

)]
vn+1

i d�

+
∫

�

∂ pn+1

∂xi
vn+1

i d� − Sc
∫

�

�un+1
i vn+1

i d� + g∗
∫

�

(ρn − 1)vn+1
i δi2d� = 0.

The functional spaces V and W have to be compatible with the boundary conditions of the numerical
problem. Here we choose the spaces

V = H1
0 (�)2, W =

{
q ∈ L2(�)|

∫
�

q d� = 0

}
.

The choice of V and W obviously has an influence on the final form of the variational formulation.
Here we have chosen to use the spaces, compatible with our problem, proposed by Hecht et al. in the
FREEFEM++ tutorial [54]. The next step is to apply the Green’s theorem to the momentum equation.
The boundary conditions imposed to solve our numerical problem are then used to properly write
the integrals along the boundary of the domain �. Indeed, the relationship obtained with the Green’s
theorem is valid for all test functions v ∈ V = H1

0 (�). Therefore, the product ∂ui
∂n vi resulting from

the theorem is null all along the boundary of the domain. The momentum equation is then given for
all test functions v ∈ V by

1

τ

∫
�

[
un+1

i − convect
(
un,−τ, un

i

)]
vn+1

i d� +
∫

�

∂ pn+1

∂xi
vn+1

i d� + Sc
∫

�

∇un+1
i · ∇vn+1

i d�

+g∗
∫

�

(ρn − 1)vn+1
i δi2d� = 0.

Otherwise, the pressure term could be written for all v ∈ V ,∫
�

∂ pn+1

∂xi
vn+1

i d� =
∫

�

∂

∂xi

(
pn+1vn+1

i

)
d� −

∫
�

pn+1 ∂vn+1
i

∂xi
d�.

However, the divergence theorem implies that∫
�

∂

∂xi

(
pn+1vn+1

i

)
d� =

∫
�

pn+1vn+1
i nid� = 0

because v ∈ H1
0 (�)2. Finally, the weak formulation of the Navier-Stokes equations is as follows:

Determine the solutions (u, p) ∈ V × W such that for all test functions (v, q) ∈ V × W we have∫
�

qn+1 ∂un+1
i

∂xi
d� = 0, (A1)

1

τ

∫
�

[
un+1

i − convect
(
un,−τ, un

i

)]
vn+1

i d� −
∫

�

pn+1 ∂vn+1
i

∂xi
d�

+Sc
∫

�

∇un+1
i · ∇vn+1

i d� + g∗
∫

�

(ρn − 1)vn+1
i δi2d� = 0. (A2)

The mass equation (A1) could be trivially subtracted from the momentum equation (A2). We
have implemented this operation in the source code of FREEFEM++ in order to ensure the
incompressibility condition. We have also subtracted a penalty term

∫
�

εpn+1qn+1d�, where ε is
a constant such that ε � 1. This term is imposed to improve the stability of the code by numerically
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imposing the arbitrary constant in the pressure term. We have chosen ε = 10−6 in our numerical
simulations. There is no extra term in this weak formulation considering the boundary conditions
of our numerical problem. Indeed, we only consider periodic boundary conditions for the velocity.
This does not appear explicitly in the weak form, but is implemented in the FREEFEM++ source
code through the choice of appropriate periodic finite elements.

c. Weak form of the advection-diffusion equation

As with the Navier-Stokes equation, we first write the temporal discretization of the advection-
diffusion equation. This involves the density at times n and n + 1, and the velocity at time n. We
have the discretized equation

1

τ
(ρn+1 − ρn ◦ X n) − �ρn+1 = 0.

By using the same development as in the preceding section, we obtain, after the application of the
Green’s theorem, the equation involving the FREEFEM++ operator convect for all test functions
ξ ∈ X,

1

τ

∫
�

[ρn+1 − convect(un,−τ, ρn)]ξ n+1d� +
∫

�

∇ρn+1 · ∇ξ n+1d� −
∫

�

∂ρn+1

∂n
ξ n+1d� = 0,

where X is the Sobolev space H1. Due to the periodic boundary condition and the condition
of null flux at the bottom of the domain for the density, it only remains the contribution of
the flux boundary condition at the solid surface in the surface integral of the previous equation.
Along this last boundary the normal derivative is simply given by ∂ρ

∂n = ∇ρ · n = −(ρ − ρm). The
specific boundary condition modeling the dissolution is thus easily implemented. Finally, the weak
formulation of the advection-diffusion equation is as follows: Determine the solution ρ ∈ X such
that for all test functions ξ ∈ X we have

1

τ

∫
�

[ρn+1 − convect(un,−τ, ρn)]ξ n+1d� +
∫

�

∇ρn+1 · ∇ξ n+1d�

+
∫

�solid

(ρn+1 − ρm)ξ n+1d� = 0. (A3)

APPENDIX B: VALIDITY AND CONVERGENCE TESTS

For the canonical case of salt with D = 10−9 m2 s−1, ν = 10−6 m2 s−1, α = 10−4 m s−1, and
β = 0.2, we checked that a small variation of the geometrical parameters (length L and height H)
as well as of the numerical parameters (maximum time step dtmax and nH a parameter characteristic
of the mesh refinement) does not affect the general results. We chose as a quantitative measure the
flux �, because it displays correctly when the system starts evolving away from the pure diffusion
solution. Figure 12 shows that when we go away from the chosen parameters (L = 1 cm, H = 2 cm,
dtmax = 0.01, and nH = 50) the simulations stay robust.

APPENDIX C: ONSET CHARACTERIZATION

In order to determine the onset time of solutal convection, we carefully examine the temporal
evolution of the horizontal density profiles in the vicinity of the top boundary [as represented in
Fig. 3(b)]. Before the convection starts, the stable diffusive concentration field is evolving in time
[see Eq. (17)]. Thus, it is relevant to probe the horizontal density profile at an evolving vertical
distance from the interface to track the density perturbations. To determine at which distance to
probe the density, at each time of interest we compute a horizontally averaged vertical density
profile 〈ρ(z)〉x and choose arbitrarily to look at the distance z0 where 〈ρ(z0)〉x = 0.8〈ρ(0)〉x. Taking
50%, 80%, or a different arbitrary number does not change the results (data not shown).
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FIG. 12. Numerical robustness of the simulations. If not precised, all parameters are set to the case of the
salt (see text). (a) Simulations for maximum time step dtmax varying from 0.005 s, to 0.01 s (typical value used
for the canonical case) and 0.02s. No significant change is seen. (b) Length dependence, simulations are done
for L = 1 cm which displays same behavior as L = 2 cm or L = 0.5 cm. (c) Height dependence, simulations
are done for H = 2 cm which displays same behavior as H = 1 cm or H = 0.5 cm. (d) Mesh refining: the
parameters nH is characteristic of the refinement. For nH = 20 the run is slightly different than for nH = 40,
but then, the same behavior is observed for nH = 50 (chosen value for the canonical case).

We associate the amplitude of the instability with the standard deviation of the horizontal density
profile: σ (ρz0,t ) =

√
〈ρ(x, z0, t )2〉x − [〈ρ(x, z0, t )〉x]2. To determine the wavelength at a given time

t and altitude z0, we use standard autocorrelation techniques on the centered density profile s(x) =
ρ(x, z0, t ) − 〈ρ(x, z0, t )(x)〉x.

The autocorrelation A(x) = ∫
s(u)s(u + x)du has a central maximum peak in x = 0 whose

amplitude A(0) incidentally represents the variance of the original signal. The second maximum
peak is at the typical wavelength λ of the central peak. The wavelength can also be determined from
the position of the first minimum which stands between the central peak and the second peak. To
determine the accuracy of the detection, we measure the associated score S, which is the amplitude
of the second peak normalized by the amplitude of the central peak; S := A(λ)/A(0). For one given
run, by this method we extract at each time step the wavelength λ, measured from the position of the
second maximum and the first minimum, as well as the score S and the standard deviation σ (ρz0,t ).
This analysis clearly separates the three regimes.

As shown in Fig. 4, when t < tonset, the wavelength is very small, hardly defined, and corresponds
to a correlation score S close to zero. The standard deviation σ is very small. At a given time
corresponding to tonset, the wavelength sharply jumps to a larger and more defined value. We ascribe
this jump to a marker of the onset of the instability and assign the value tonset to this particular time.

In the precise case of salt in pure water, we find tonset = 1.02 s. For t > tonset, S increases towards
values close to 1 and the rugosity increases exponentially. These features correspond to the second
regime of instability development. The two estimations of the wavelength differ at the beginning of
this regime, but converges towards a well-defined value.

At longer times, the standard deviation σ (ρz0,t ) saturates and fluctuates around a mean value.
There we observe the emission of the sinking plumes (third regime). The transition between regimes
(ii) and (iii) corresponds to the first emission of plumes. We define this transition time tem as the time
where the boundary layer δ is maximum (tem = 2.74 s for pure water).

Note that, due to the increase of the thickness of the boundary layer as a function of time, the
wavelength can evolve monotonically between tonset and tem and may not reach a constant value (see,
for example, Fig. 13). In such a case, we define the wavelength at the onset as the average value
between the wavelength at t = tonset and the one at t = tem.
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FIG. 13. Time evolution of the wavelength for parameters corresponding to the case of salt, but with an
increased viscosity of ν = 2.9 × 10−7 m2 s−1. The wavelength was determined by autocorrelation from the
first minimum (green) and the first maximum (blue). Dotted vertical lines indicate the onset time and the
plume emission time. Between these lines, the wavelength increases monotonically.
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