
PHYSICAL REVIEW FLUIDS 4, 103701 (2019)

Numerical analysis of electroconvection in cross-flow
with unipolar charge injection
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Electroconvection driven by unipolar charge injection in the presence of cross-flow be-
tween two parallel electrodes is investigated in a numerical study. The two-relaxation-time
lattice Boltzmann method with a fast Poisson solver is used to resolve the spatiotemporal
distribution of flow field, electric field, and charge density. Couette and Poiseuille cross-
flows are applied to the solutions with established electroconvective vortices. Increasing
cross-flow velocity deforms the vortices and eventually suppresses them when threshold
values of velocities are reached. At intermediate flow velocities, partial suppression of the
vortices leads to the reduction in electroconvection. This behavior is parameterized by a
nondimensional parameter, Y —a ratio of the electrical forcing term to the viscous term in
the Navier-Stokes equations. For high values of Y , the electric force dominates the flow,
while for values below the critical threshold, the electric force influence is negligible and
the flow is dominated by the shear.

DOI: 10.1103/PhysRevFluids.4.103701

I. INTRODUCTION

The electroconvection (EC) phenomenon was first reported by Taylor in 1966, describing cellular
convection in the liquid droplet [1]. Since then, EC has been observed in a number of systems where
the interaction of electrostatic force with fluids is present. In nonequilibrium electrohydrodynamic
(EHD) systems [1–22], poorly conductive leaky dielectric fluids acquire unipolar charge injection
at the surface interface in response to the electric field. Charge transport in the fluid can trigger
instabilities, leading to the development of EC vortices [23,24]. In charge-neutral electrokinetic
(EK) systems, electroconvection is triggered by the electro-osmotic slip of electrolyte in the electric
double layer at membrane surfaces [25–36].

Insights into the complex multiphysics interactions are essential for understanding EK and EHD
phenomena. These include (1) the electric field from the potential difference between the anode
and cathode and its modifications by the space-charge effects; (2) the ion motion in the electric
field; (3) the interaction between the motion of ions and the neutral molecules; and (4) the inertial
and viscous forces in the complex flow. The EHD was used to describe cellular convection in
deforming oil droplets under a dc electric field [1] and droplet generation in microfluidic flow and
oil separation [1,24,37]. EC vortices have been observed in systems where convective transport is
induced by unipolar discharge into a dielectric fluid [2–22]. The model system describing EHD
electroconvection is also known as the Taylor-Melcher (TM) model. The experiment demonstrating
electroconvective flow in the system with unipolar charge injection was first reported by Jolly and
Melcher in 1970 [2] and by Watson et al. that same year [38]. Jolly and Melcher had found that the
incipient cellular convection can be characterized by the electric Hartmann number Hae = εE/
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(with ε permittivity, E the applied electric field intensity, μ viscosity, and σ electric conductivity)
with the assumption of uniform charge density in the fluids [2]. Watson et al. performed experiments
on EHD stability in a space-charge-limit (SCL) current injection and found that there is a transition
between SCL conduction and convection-enhanced conduction marked by increased conductivity
due to the motion of the fluids [38]. Atten et al. have shown that for the SCL scenario Tc = 100,
where Tc is the linear stability threshold for the electric Rayleigh number T —a ratio of electric
force to viscous force [13,18,39,40]. The parameter T is also sometimes referred to as the electric
Taylor number [18], thus denoted as T . The chaotic behavior of EC instabilities was investigated
experimentally by Malraison and Atten, who characterized two types of power spectra of intensity
fluctuations, i.e., an exponential decay when viscous force is dominant and a power-law decay when
inertial force is dominant [3]. The EC coupled to heat transfer was first experimentally shown by
Atten et al., who observed that the Nusselt number (Nu) depends on applied electric field intensity
[41]. In the annulus between concentric circular electrodes, the electric Nusselt number (Ne) trend
can be described by the power-law function of electric Rayleigh number and electric Prandtl
number [7,8].

The analysis of EC stability was first performed using a simplified nonlinear hydraulic model
[42,43] and linear stability analysis without charge diffusion [38,44]. Atten and Moreau [45]
showed that in the weak-injection limit, C � 1, where C is the charge injection level, the flow
stability is determined by the criterion TcC2. In the SCL injection, C → ∞, the flow stability is
determined by Tc only. Nonlinear stability analysis yields Tc = 160.75 [46], while the experiments
yield Tc = 100 for the same conditions [47]. Atten et al. suggested that the discrepancy may be due
to the omission of the charge diffusion term in the analysis [46,48]. The effect of charge diffusion
was investigated by Zhang et al. by employing linear stability analysis with a Poiseuille flow
[13] and by nonlinear analysis using a multiscale method [18]. The authors found that the charge
diffusion has a non-negligible effect on Tc and the transient behavior depends on the Reynolds
number (Re) [13,18]. More recently, Li et al. performed linear analysis of the EHD-Poiseuille
system and found that when the ratio of Coulomb force to viscous force increases, the transverse
rolls can transition from convective instability to absolute instability [49]. Even with the inclusion
of charge diffusion in the linear and nonlinear stability analysis, the predicted stability criterion
Tc is always greater than the experimental value obtained by Lacroix and Atten et al. [46,47].
Lacroix et al. attributed this discrepancy to the instability associated with finite perturbation [47],
suggesting that the experimental instability resulted from small perturbation (disturbance due
to imperfection or error) and the theoretical solutions developed from applied finite-amplitude
perturbation [47].

In the charge-neutral EK system, Rubinstein and Zaltzman showed that the electro-osmotic slip at
the surface leads to instability of the double layer generating EC paired vortices, thus enhancing ion
exchange at the membrane surface [25–27]. Demekhin et al. [50] modeled electrokinetic instability
(EKI), decoupling the nonlinear Poisson-Nernst-Planck (PNP) equations and neglecting the inertial
term in the Navier-Stokes equations (NSEs). Pham et al. [29] performed direct numerical simulation
(DNS), demonstrating that the charge-neutral EKI system exhibits a hysteretic behavior in the
transition between the limiting and overlimiting regimes. Kwak et al. [30] have examined the effect
of the cross-flow on the EKI and proposed a scaling law relating the field strength and shear to the
height of the vortices. More recently, Kwak et al. extended the scaling law analysis for the electric
Nusselt number as a function of the electric Rayleigh and Reynolds numbers for the EC-induced
convective ion transport [31].

The EC stability problems in both EK and EHD systems were shown to be analogous to
Rayleigh-Bernard convection (RBC) [22,51–58]. Of particular interest to this work is the suppres-
sion of the RBC cells in the cross-flow [59]. The Richardson number Ri = Gr/Re2, the ratio of
buoyancy to the inertia force, has been used to parametrize the effect of the applied shear, where Gr
is the Grashof number. For Ri > 10, the effect of the cross-flow is insignificant, while for Ri < 0.1,
the effect of the buoyancy can be neglected. In the EC scenario, two-dimensional (2D) finite-volume
simulations of Poiseuille flow show that the critical electric Rayleigh number Tc depends on the Re
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number and the ion mobility parameter M [14]. The model for the EC system is more complicated
than the RBC due to the introduction of two independent variables, i.e., the charge density and
electric field. With the Boussinesq approximation, the RBC system is a two-way coupling of fluid
motion and heat [60]; on the other hand, EC is a three-way coupling between fluids, charge density,
and electric field.

To gain insight into the complexity of the EC flow, the problem can be investigated using
numerical simulations. The earlier finite-difference simulations have shown that strong numerical
diffusivity may contaminate the model [4]. Other numerical approaches include the particle-in-cell
method [61], finite-volume method with the flux-corrected transport scheme [62], total variation
diminishing scheme [9,11,15–17], and the method of characteristics [6]. Luo et al. showed that
a lattice Boltzmann model (LBM) could predict the linear and finite-amplitude stability criteria
of the subcritical bifurcation [19–22] for both two- and three-dimensional (2D, 3D) EC flow
scenarios. This unified LBM transforms the elliptic Poisson equation to a parabolic advection-
diffusion equation and introduces tuning coefficients to control the evolution of the electric potential,
requiring additional subiterations at each time step.

Researching the interaction between EHD-driven EC instabilities and the external flow, Castel-
lanos et al. performed a linear stability analysis of Poiseuille and Couette flow under unipolar
injection. The authors showed that the external flow inhibits the transverse perturbation, but the
longitudinal rolls remain unaffected [63]. Lara et al. found that the stability of traverse rolls depends
on the mobility ratio M [Eq. (9)] in the low-Reynolds-number Poiseuille flow by performing linear
stability analysis [64]. The current paper investigates the numerical effects of cross-flow on EC
convection in a unipolar charge injection scenario.

In this paper, we parameterize the 2D EC stability in the cross-flow between two parallel
electrodes in the presence of strong unipolar injection and electric field. The segregated solver
combines a two-relaxation-time (TRT) LBM modeling fluid and charged species transport and a fast
Fourier transform Poisson solver to solve for the electric field directly [65]. Couette and Poiseuille
cross-flow scenarios provide shear stress; the dominant terms are determined by nondimensional
analysis of the governing equations. A subcritical bifurcation is characterized by the ratio of the
electrical force to the viscous force.

II. GOVERNING EQUATIONS AND DIMENSIONAL ANALYSIS

The governing equations for EHD flow include the Navier-Stokes equations (NSE) with the
electric forcing term Fe = −ρc∇ϕ in the momentum equation, the charge transport equation, and
the Poisson equation for electric potential. The TM model describes cellular convection driven by
unipolar charge injection for fluids with constant dielectric, and it can be parameterized in terms of
nondimensional parameters [11–17,19–22,49,66]:

∇ · u = 0, (1)

ρ
Du
Dt

= −∇P + μ∇2u − ρc∇ϕ, (2)

∂ρc

∂t
+ ∇ · [(u − μb∇ϕ)ρc − Dc∇ρc] = 0, (3)

∇2ϕ = −ρc

ε
, (4)

where ρ and μ are the density and the dynamic viscosity of the working fluid, u = (ux, uy) is the
velocity vector field, P is the static pressure, μb is the ion mobility, Dc is the ion diffusivity, ρc is
the charge density, ε is the electric permittivity, and ϕ is the electric potential. The electric force
provides a source term in the momentum equation [Eq. (2)] [13,67–69]. The variables to be solved
are the velocity field u, pressure P, charge density ρc, and electric potential ϕ. The flow is modeled
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as periodic in the horizontal direction (x direction) and wall-bounded in the y direction. Cross-flow
is applied in the x direction.

In the absence of cross-flow, the system can be nondimensionalized with the electric field
properties alone [13], i.e., H is the distance between the electrodes (two plates infinite in x and
y), ρ0 is the injected charge density at the anode, and �ϕ0 is the voltage difference applied to the
electrodes. Respectively, the time t is nondimensionalized by H2/(μb�ϕ0), the velocity u by the
ion drift velocity udrift = μb�ϕ0/H , the pressure P by ρ0(μb�ϕ0)2/H2, and the charge density in
the domain ρc by ρ0. Therefore, a nondimensional form of the governing equations [Eq. (1)–(4)] is

∇∗ · u∗ = 0, (5)

Du∗

Dt∗ = −∇∗P∗ + M2

T
∇∗2u∗ − CM2ρ∗

c
∇∗ϕ∗, (6)

∂ρ∗
c

∂t∗ + ∇∗ ·
[

(u∗ − ∇∗ϕ∗)ρ∗
c

− 1

Fe
∇∗ρ∗

c

]
= 0, (7)

∇∗2
ϕ∗ = −Cρ∗

c
, (8)

where the asterisk denotes the nondimensional variables. These nondimensional governing equa-
tions yield four dimensionless parameters describing the system’s state [9–22]:

M = (ε/ρ )1/2

μb
, T = ε�ϕ0

μμb
, C = ρ0H2

ε�ϕ0
, Fe = μb�ϕ0

De
. (9)

The physical interpretations of these parameters are as follows: M is the ratio between hydro-
dynamic mobility and the ionic mobility, T is the ratio between electric force to the viscous force,
C is the charge injection level [13,18], and Fe is the reciprocal of the charge diffusivity coefficient
[13,18].

With the addition of a cross-flow, the velocity term in the nondimensional analysis of the momen-
tum equation is modified to account for external flow uext, while in the previous definitions [Eq. (9)]
the velocity term was nondimensionalized by the drift velocity of charges udrift = μb�ϕ0/H . Here,
we consider the velocity of the upper wall uext = uwallex in Couette flow or the centerline velocity
uext = ucenterex for Poiseuille flow, where ex is the x-direction unit vector. For a system with the
cross-flow the governing equations become

∇∗ · u∗ = 0, (10)

Du∗

Dt∗ = −∇∗P∗ + 1

Re
∇∗2u∗ − Xρ∗

c
∇∗ϕ∗ + H

ρ|uext|2
Fp, (11)

∂ρ∗
c

∂t∗ + ∇∗ ·
[

(u∗
extu

∗ − ∇∗ϕ∗)ρ∗
c

− 1

Fe
∇∗ρ∗

c

]
= 0, (12)

∇∗2
ϕ∗ = −Cρ∗

c
, (13)

where Re = ρ|uext |H
μ

is the Reynolds number, X = ρ0�ϕ0

ρ|uext |2 a ratio of electric force to inertial force [68],
u∗

ext = |uext|/udrift the nondimensional external velocity, and Fp is a uniform force for Poiseuille
cross-flow and zero otherwise, such that ucenter = 1

2μ
( H

2 )2Fp. Although X was first introduced to
analyze the local flow acceleration effect due to electric force [68], the parameter can also be used
in global stability analysis by adopting the global variables (ρ0 and �ϕ0), which has a direct analogy
to Richardson number in flow with heat convection (Ri is the ratio of buoyancy to viscous shear)
[59,60,70].
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TABLE I. Boundary conditions for the numerical simulations.

Boundary Macro-variable conditions Meso-variable conditions
x Direction Periodic Periodic

LBM FBB scheme for fi [74–78]Upper wall u = 0, ϕ = 0, and ∇ρc = 0
Neumann boundary condition ∂gi

∂y = 0
LBM FBB for fi [74–78]Lower wall u = 0, ϕ = ϕ0, and ρc = ρ0 LBM FBB for gi [74–78]

III. RESULT AND DISCUSSION

The TRT LBM approach is used to solve the transport equations for fluid flow and charge density,
coupled to a fast Poisson solver for electric potential [65]. The equilibrium state was obtained when
the flow patterns became stable. The numerical code is in SI units, and the physical constants are
determined by the nondimensional parameters. The numerical method is implemented in C++
using CUDA graphics processing unit (GPU) computing. The number of threads in the x direction
in each GPU block is equal to NX ; the number of GPU blocks in the y direction is equal to NY .
Fast Fourier transform (FFT) and inverse FFT operations are performed using the CUDA FFT, or
cuFFT, library [71]. All variables are computed with double precision to reduce truncation errors.
The numerical method was shown to be second-order accurate in space. Error analysis is provided in
the Supplemental Materials [72]. To reduce computational cost while maintaining accuracy, the grid
of NX = 122, NY = 100 is used throughout this work. The macroscopic and mesoscopic boundary
conditions are specified in Table I. The no-slip boundary conditions are applied at both electrodes
for fluid flow. A constant charge density at the anode (lower wall) represents a unipolar injection; a
zero-diffusive flux condition ∇ρc = 0 at the cathode (upper wall) represents an outflow current. A
constant electric potential is applied at the anode; the cathode is grounded (ϕ = 0). At mesoscale,
the discrete distribution function of velocity fi(x, t ) and charge density gi(x, t ) are used. The details
on the transformations between macrovariables (u, ρc) and mesovariables ( fi, gi) are presented in
the Supplemental Materials [72] and can be found in our recent publication [65]. The LBM full-way
bounce-back (FBB) scheme is used for the Dirichlet (no-slip) boundary conditions for the fluid flow
[19,20,73] and for charge density at the lower wall. The gi Neumann boundary condition is set as a
current outlet boundary condition for charge density transport [19,20,74].

For the hydrostatic-based state the numerical solutions of electric field and charge density agree
with the model of Luo et al. [19,20] and the analytical solution based on a reduced set of equations
for the electric field in one-dimensional coordinates [61,69], see Fig. 1. This comparison acts as a

FIG. 1. Hydrostatic solution comparison of the TRT LBM and fast Poisson solver [65], unified SRT LBM
[19], and the analytical solution [61,69] for C = 0.1 and C = 10, Fe = 4000: (a) charge density and (b) electric
field.
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FIG. 2. Charge density and x-direction velocity color contours of the EC with cross-flow. Top: Couette flow
with u∗

wall = 2.0; one of the two vortices is suppressed. Bottom: Poiseuille flow with u∗
center = 2.0; both vortices

are suppressed and displaced towards the walls.

validation of the numerical method:

ρc = ρa(y + ya)−1/2, (14)

Ey = 2ρa

ε

(
y + ya

)1/2
, (15)

where ρa and ya are two-dimensional parameters which depend on the boundary conditions and
geometry. At the hydrostatic-based state, the parameters C and Fe dominate the system. Figure 1
shows the profiles of normalized charge density and electric field for C = 0.1 and C = 10 with
Fe = 4000. A more detailed description of the analytical solution is included in the Supplemental
Material [72].

To model EC vortices, the hydrostatic base state is perturbed using a finite-amplitude wave-form
function that satisfies the boundary conditions and continuity equation:

ux = Lx sin(2πy/Ly) sin(2πx/Lx ) × ε

uy = Ly[cos(2πy/Ly) − 1] cos(2πx/Lx ) × ε. (16)

The physical domain size Lx = 1.22m and Ly = 1m limits the perturbation wave number to
λx = 2π/Lx ≈ 5.15(1/m), yielding the most unstable mode under the conditions C = 10, M = 10,
and Fe = 4000 [20]. The perturbation magnitude, ε = 10−3, is small enough to not affect the
flow structures within the linear growth region [65]. The electric Nusselt number, Ne = I/I0,
serves as a flow stability criteria, where I is the cathode current for a given solution and I0 is
the cathode current for the hydrostatic solution [9,20]; thus if the EC vortices exist, Ne > 1. In
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FIG. 3. Electric Nusselt number as a function of the electric Rayleigh number T and (a) applied velocity
of the upper wall u∗

wall for Couette-type cross-flow or (b) applied body force Fp represented by the centerline
velocity u∗

center for Poiseuille-type cross-flow. Partial suppression of the EC vortices leads to the reduction in
electroconvection for the entire range of electric Rayleigh number.

the cases with strong ion injection, the EC stability largely depends on T , so in this analysis,
T is varied while other nondimensional parameters are held constant at C = 10, M = 10, and
Fe = 4000.

Couette cross-flow is added to the simulation with the established EC vortices by assigning
a constant upper wall velocity. To model Poiseuille flow, a body force in the x direction is
added. Figure 2 shows the charge density and x-direction velocity for intermediate cross-flow
strength Couette cross-flow (u∗

wall = 2.0) and Poiseuille cross-flow (u∗
center = 2.0) at T = 170.07.

The Couette cross-flow stretches the vortices in the direction of the bulk flow, eliminating one of
the two vortices. In a Poiseuille cross-flow, the vortex pair becomes separated; the vortices are
pushed toward the opposite walls. With the increasing cross-flow, both vortices are eliminated and
I = I0, Ne = 1(see Fig. 6). The EC contribution to the flow field is negligible at higher values of
shear stress (higher velocity), and the flow field becomes identical to the cross-flow without charge
injection.

Figure 3 shows the extended stability analysis of EC without cross-flow [65] by introducing (a)
finite velocity of the upper wall (cathode) and (b) a uniform body force for pressure-driven flow
Fp. For a constant T , Ne decreases as u∗

wall or u∗
center increases. Figure 3 shows that in the cases

without cross-flow, a hysteresis loop is observed for Ne as a function of T , which is consistent
with previous theoretical studies [13,18], experimental results [46], and numerical simulations
[11,15,17,19,20,65]. The shape of the Ne vs T plot in cases with cross-flow is similar. However,
the magnitude of Ne is lower; thus the convective charge transport (and the current) are reduced
when the cross-flow is applied due to the partial suppression of the EC vortices.

Figures 4(a) and 4(b) show that Ne decreases as Re increases (stronger cross-flow), which
agrees with the observation that cross-flow suppresses EC vortices and stabilizes the system.
As previously shown, the intensity of convection strongly depends on T when cross-flow is not
present [65]. Figure 3 shows that when cross-flow is present and while holding C, M, and Fe
constant, Ne = f1(T, u∗

ext ). To gain insight into the vortices and the cross-flow interaction, it is
convenient to plot Ne vs nondimensional groups that contain the velocity term. The analysis
can be aided by taking a nondimensional curl (∇∗×) of Eq. (6) for u∗

ext = 0 and Eq. (11)
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FIG. 4. Electric Nusselt vs nondimensional parameters. (a), (c), (e) Couette cross-flow is applied. (b), (d),
(f) Poiseuille-type cross-flow is applied. (a), (b) Ne/NeRe0 vs Re showing that the flow becomes more stable for
increasing Re or cross-flow. (c), (d) Ne/NeX∞ vs X . (e), (f) Ne/NeY ∞ collapses on a single curve for various T
and Y indicating that Ne/NeY ∞ is a function of Y only for constant C. NeRe0 = NeX∞ = NeY ∞ is the electric
Nusselt number without cross-flow.

for u∗
ext 	= 0:

Dω∗

Dt∗ = M2

T
∇∗2

ω∗ − CM2(∇∗ρ∗
c

× ∇∗ϕ∗), (17)

Dω∗

Dt∗ = 1

Re
∇∗2

ω∗ − X (∇∗ρ∗
c

× ∇∗ϕ∗), (18)

where ω∗ is the nondimensional vorticity, which is a scalar in the 2D flow. The two terms on the
right-hand side of Eqs. (17) and (18) are significant with respect to growth or decay of the vortices.
Figures 4(a)–4(d) show that Re and X cannot serve as similarity parameters that describe the behav-
ior of the system. However, if Ne is plotted against the product of Re and X (defined as Y ), the Ne =
f1(T, u∗

ext ) collapses on a single curve, see Figs. 4(e) and 4(f). Here Ne is normalized by NeRe0,
NeX∞, or NeY ∞, which are the solutions without cross-flow Re → 0, X → ∞, Y → ∞ [65]. The
physical interpretation of Y is as follows. Since Re is the ratio of inertia to viscous force and X is
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FIG. 5. Color contours of vorticity ω∗, curl of electric force −(∇∗ρ∗
c

× ∇∗ϕ∗), diffusion and forcing terms
from Eqs. (17) and (18), with and without cross-flow: (a) no cross-flow, both vortices exist; (b) intermediate
Couette flow with u∗

wall = 2.0, one of the two vortices is suppressed. (c) strong Couette flow with u∗
wall = 4.0;

(d) intermediate Poiseuille flow u∗
center = 2.0, vortices are suppressed and displaced towards the walls; and

(e) strong Poiseuille flow with u∗
center = 4.0.

FIG. 6. Electrical Nusselt number Ne vs Y. Bifurcation thresholds are (a) Couette cross-flow Yc = 625.25
and Yf = 297.32, and (b) Poiseuille cross-flow Yf = 159.36 and Yc = 218.58.
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the ratio of electric force to inertia, their product is the ratio of electric force to viscous force:

Y = X × Re = ρ0�ϕ0H

μ|uext| = ρ0�ϕ0

|τ | , (19)

where τ is the shear stress. In Couette flow, τ = constant; in Poiseuille flow, the average value for the
channel flow is used. In terms of nondimensional parameters M, C, T , and u∗

ext, X = CM2/(u∗
ext )

2

and Y = CT/u∗
ext. When the cross-flow is not present, NeRe0 = NeX∞ = NeY ∞ = f2(T ) [19,20,65].

Since Ne/NeY ∞(T) collapses on the same curve when plotted against Y , the EC stability in
cross-flow can be parameterized by a single nondimensional parameter, which is inversely
proportional to τ . In other words, Ne/NeY ∞ = f1(T, u∗

ext )/ f2(T ) = f3(T/u∗
ext ) for constant

C, M, and Fe, [ fi(·), i = 1, 2, 3 denotes a function of]. As the Y = CT/u∗
ext for C = const,

Ne/NeY ∞ = f3(T/u∗
ext ) = f3(Y ). Figure 4 shows the solutions with the established EC vortices,

which represents the upper bifurcation branch with Ne > 1 (as shown in Fig. 6).
Figure 5 shows the effects of intermediate and strong cross-flow on vorticity ω∗ and curl of

electric force −(∇∗ρ∗
c

× ∇∗ϕ∗), the diffusion term M2

T ∇∗2ω∗ as in Eq. (17) without cross-flow or
1

Re∇∗2ω∗ as in Eq. (18) with cross-flow, and the forcing term −CM2(∇∗ρ∗
c

× ∇∗ϕ∗) as in Eq. (17)
without cross-flow or −X (∇∗ρ∗

c
× ∇∗ϕ∗) as in Eq. (18) with cross-flow. As expected, maximum

and minimum values of vorticity correlate with the maximum and minimum values of the curl of
electric force and forcing term, see Eqs. (17) and (18), implying that the Coulombic forcing term
leads to vorticity generation. When an intermediate cross-flow is applied [Figs. 5(b) and 5(d)],
the symmetry of the vortex pair is disrupted and the curl of the electric force is also asymmetric.
For strong cross-flow [Figs. 5(c) and 5(e)], the magnitude forcing term is lower, leading to lower
vorticity generation. One of the most significant findings in this analysis is that the reduction in the
forcing term X (∇∗ρ∗

c
× ∇∗ϕ∗) does not come from the expression (∇∗ρ∗

c
× ∇∗ϕ∗) but rather from

X , as seen by comparing Fig. 5 (columns 2 and 4). Thus variations in values of X are responsible
for the changes in vorticity generation.

On the other hand, it is apparent from Fig. 5 that the diffusion balances the forcing term; for all
cases, the diffusion terms have equal and opposite values of the forcing terms over the wide range
of values, while the vorticity magnitudes do not change significantly. Similarly to the forcing, the
diffusion term in Eq. (18) is the product of two nondimensional groups: 1/Re and ∇∗2ω∗. Figure 4
shows that Re changes by order of magnitude acting as a scaling factor in the diffusion term Eq. (18).
Multiplication of both diffusion and forcing terms by Re yields a coefficient of unity in diffusion
term and parameter Y in the forcing term.

To examine hysteresis associated with the formation and suppression of EC vortices, Fig. 6
shows the Ne = f (Y ) for fixed C = 10, M = 10, T = 170.07, and Fe = 4000. Both Couette and
Poiseuille cross-flows are examined. A hysteresis loop with subcritical bifurcation is observed;
the bifurcation thresholds are Yc = 625.25, Yf = 297.32 for Couette flow and Yc = 218.58, Yf =
159.36 for Poiseuille flow. The critical values of Yc correspond to Rec ∼ O(1) (Rec = 4.63 for
Couette flow and Rec = 2.94 for Poiseuille flow), which is consistent with linear stability analysis
[64] for T = 170.07. Similar to stability parameter T for Re = 0 (Fig. 3), for Y < Yc, the system
does not yield the EC instability, returning to the unperturbed state (I = I0 and Ne = 1). If Y
decreases after the EC vortices are formed, Ne decreases nonlinearly, until Y = Yf , then the EC
vortices are suppressed; the flow is not influenced by the electric forces.

The results presented in this work consider the interaction cross-flow electroconvective transport
due to the unipolar charge injection; the presented methodology can be extended to more complex
convective systems such as RBC and charge-neutral electrokinetic systems. The 2D case in this work
can be regarded as a special case in the 3D flow scenario, i.e., the traverse rolling pattern [19,20].
Multimodal 3D structures (square patterns, hexagonal patterns, and mixed patterns) are ubiquitous
in convective flows such as in EKI [58], EHD [20,21,79], and RBC [51,52,59,80–83]. The effect of
cross-flow has been observed in all three scenarios; the summary and the analogy to EKI and RBC
is shown in Table II.
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TABLE II. Nondimensional parameter analogy for RBC and EHD electroconvection in the presence of
cross-flow velocity uext.

Physical Heat convection
interpretation Electrohydrodynamic convection (EHD) (RBC)

As presented here Based on average field properties
(including charge density) (without charge density)

Body force
Inertial force X = ρ0�ϕ0

ρ|uext |2
[68] Nei = ε�ϕ2

0
ρH2 |uext |2 [84,85] Ri = Gr/Re2 = g′H

|uext |2
[59]

Body force
Viscous force Y = X × Re = ρ0�ϕ0

|τ | Neυ = Nei × Re = ε�ϕ2
0

μH |uext | [84,85] Gr/Re = g′ρH2

μ|uext |

where g′ = g�ρ

ρ
is the reduced gravity [60]. In the context of EKI, the convection can also be

characterized by nondimensional parameters such as electric Nusselt number, electric Rayleigh
number, and Reynolds number [30,31].

IV. CONCLUSION

The 2D numerical study extends the EC stability analysis to Couette and Poiseuille flows between
two infinitely long parallel electrodes with unipolar charge injection. The numerical approach
utilizes the two-relaxation-time LBM to solve the flow and charge transport equations and a fast
Poisson solver to solve the Poisson equation. Increasing cross-flow velocity deforms the vortices
and eventually suppresses them when threshold values of velocities are reached. Partial suppression
of the vortices leads to a reduction in electroconvection for the entire range of the electric Rayleigh
number. The nondimensional analysis of the governing equations is used to derive the parameter
Y, a ratio of electric force to viscous force, in the presence of cross-flow. The nondimensional
parameter Y accounts for the effect of the shear stress, analogous to the Richardson number
Ri, (the ratio of buoyancy to the inertial forces), which is used to parametrize the effect of the
applied shear in RBC. Similar to the stability parameter T for the hydrostatic case, a hysteresis
loop with subcritical bifurcation is observed. For C = 10, M = 10, T = 170.07, and Fe = 4000,
the bifurcation thresholds are Yc = 625.25, Yf = 297.32 for Couette flow and Yc = 218.58, Yf =
159.36 for Poiseuille flow.
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