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Density contrast matters for drop fragmentation thresholds
at low Ohnesorge number
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We address numerically the deformation and fragmentation dynamics of a single liquid
drop subject to impulsive acceleration by a unidirectional gas stream. The density ratio
between the liquid and gaseous phases is varied in the 10–2000 range and comparisons
are made with recent drop breakup experiments. We show for low Ohnesorge numbers
that the liquid-gas density contrast significantly modifies the critical Weber number for
the transition between bursting and stripping fragmentation regimes, on the one hand, and
for drop fragmentation, on the other hand. We suggest a simple theoretical argument to
predict the transitional Weber number as a function of the density contrast and show that the
stabilizing influence of small contrasts can be explained by inertial effects in the nonlinear
coupling between drop stretching and centroid acceleration.
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I. INTRODUCTION

Drop fragmentation is the complex phenomenon by which single liquid drops break into child
droplets of varying sizes, occurring in a large diversity of natural events (e.g., rain) or industrial
processes (e.g., fuel injection in propulsion systems). It is also referred to as secondary atomization
in the context of the classical jet atomization problem where, through the development of successive
hydrodynamic instabilities, a high-speed liquid jet destabilizes into thin liquid sheets prone to
fingering and (primary) drop ejection. The further fragmentation of the resulting drops, if any,
depends on the flow conditions and eventually determines the droplets size distribution, a subject of
many active debates and a key element toward control of a spray mixing rate [1–3].

The fundamental mechanisms underlying drop fragmentation have been addressed by a vast
amount of experimental and numerical studies, which considered the breakup of a single, initially
spherical drop immersed in a unidirectional high-speed gas stream. Drop breakup experiments
carried out in the last few decades are essentially twofold: A liquid drop is either impulsively
accelerated by a shock-wave in a dedicated tube [4–7] or released sideways in a high-speed
cross-flow [8–11]. These experiments have established the existence of a variety of deformation
and breakup regimes depending on the flow conditions [12–17]. Due to practical constraints,
however, drop breakup experiments have mostly focused on liquid drops whose density ρL was
large compared to that of the ambient gas ρG, with density contrasts rd = ρL/ρG typically larger
than 500 (as in the case of a water-air or ethanol-air system at ambient temperature and atmospheric
pressure [11]). Nevertheless, small density contrasts (rd � 10) are also relevant for combustion
sprays due to the high fuel injection pressures involved, e.g., in rocket propulsion systems [18].
Moreover, information such as the thickness of the sheet of inflated drops remains elusive as yet,
due to visualization difficulties.
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Such information, however, could be easily accessed by means of direct numerical simulations
(DNS). Yet numerical studies of drop breakup are limited by the considerable diversity of
spatial scales involved as the drop undergoes dramatic stretching and bursting, resulting in huge
computational costs, and have long been restricted to small-to-moderate density contrasts with
rd typically in the 1–80 range [19–23]. As a result there is so far little overlap between the flow
regimes explored in experiments, on the one hand, in simulations, on the other hand; and whereas
the influence of flow conditions on secondary atomization has received most attention (especially
in terms of the Weber number defined below), this discrepancy arguably contributes to obscure that
of the density contrast [22,24]. Early simulations [19,20] already suggested that the deformation
modes exhibited by the liquid drop at low rd strongly differ from those observed for similar flow
conditions at large rd ∼ 1000; therefore, it appears desirable to bridge the gap between these two
parameter regimes and address the sensitivity of the drop breakup dynamics to the density contrast
as the latter is varied over a broad range.

Also of particular interest for industrial applications is to determine the threshold (in terms of
flow conditions) beyond which liquid drops become unstable to fragmentation. In the literature this
threshold is characterized by means of two dimensionless parameters, namely the Weber number
We = ρGR0U 2

0 /σ quantifying the ratio of inertial to surface tension forces, and the Ohnesorge
number quantifying the effect of liquid viscosity Oh = μL/

√
σρLR0. (Importantly, the latter has

been, however, reported to matter only if exceeding a typical value Oh > 0.1.) Here U0 is the
velocity difference between the gas stream and the drop, R0 the (undeformed) drop radius, μG

the dynamic viscosity of the gas and σ the surface tension associated with the gas-liquid interface.
Various breakup criteria involving these two parameters are commonly used in non-DNS (Eulerian
or Lagrangian) CFD models, where drop breakup is handled with a statistical approach. These
numerical criteria either rely on experimental observations (such as the Schmehl model [25] inferred
from Refs. [4,16]) or simple theoretical arguments (such as the Taylor-Analogy Breakup criterion
[26], which uses an analogy between the distorted drop and a spring-mass system [27]). In a
fundamental context, Ref. [2] addressed the fragmentation of a falling raindrop and suggested a
simple inviscid model to account for the critical Weber number characterizing the transition from
oscillatory, reversible deformation to exponential stretching and breakup, which they found to be
Wec ∼ 3, in excellent agreement with available experiments at large density contrasts.

None of these stability criteria, whether empirical (and based on experiments, hence typically
implying rd > 500) or theoretical (and based on simplified models), involves the density contrast
between the gaseous and liquid phases. Yet, the important morphological discrepancy between
deformation regimes observed at low rd (numerically) and those observed at large rd (mostly
experimentally, although simulations at rd = 1000 have been very recently reported for Weber
numbers well above the critical value for breakup [28,29]) suggest that the effect of density contrast
on the fragmentation threshold remains an open question, which it is the aim of the present paper to
investigate.

II. NUMERICAL MODEL

A. Flow configuration

Simulations were performed using the flow solver Gerris [30,31] in axisymmetric geometry to
model the impulsive acceleration of a spherical liquid drop behind a planar shock-wave. Gerris
solves for the two-phase, incompressible Navier-Stokes equations using a finite-volume method
with dynamical adaptive mesh refinement, which allows for capturing thin flow structures while
mitigating computational costs. The interface is advected using a Volume of Fluid method, and
the incompressibility constraint is enforced at each time step by projecting the velocity field onto
the divergence-free manifold using a classical Chorin’s algorithm [32,33] coupled with a multigrid
Poisson solver.
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Our computational domain is a cylindrical channel with dimensionless radius Rcyl = 5 and length
Lcyl = 15 in the streamwise direction, where the unit length is the drop initial radius R0 (the channel
length was increased whenever necessary up to Lcyl = 25 to observe the successive deformation
stages as the drop travels downstream). Along with the prescribed axisymmetry condition on the
axis, the boundary conditions are free-slip at the outer radius, free outflow at the channel outlet, and
fixed inflow at the channel inlet, where the prescribed incoming gas velocity U0 sets the velocity
unit. The drop center is initially located on the axis at distance d = 3 from the inlet boundary, and
the velocity field is initially set to zero over the entire domain. Refinement of the adaptive quadtree
mesh was allowed up to 400 cells per drop radius. It is important to appreciate that the choice of
an axisymmetric model filters out the three-dimensional instability mechanisms eventually leading
to droplet atomization, and that the observed breakup occurs essentially once the thickness of a
liquid sheet becomes smaller than the minimal grid size. Prescribing the same maximum level of
refinement for all simulations (except for convergence checks) therefore provides a unique criterion
for numerical breakup throughout the study.

The numerical problem can be entirely described using four independent dimensionless param-
eters: in addition to the Weber number We and the density contrast rd = ρL/ρG defined in the
introduction, we define here the Reynolds number as Re = ρGU0R0/μG and the viscosity contrast
rv = μL/μG, where μL and μG are, respectively, the dynamical viscosities of the liquid and gas.

B. Concerning initial conditions

Dealing with the flow initialization requires particular care, whether considering our initial
velocity field (with u = 0 over the flow domain and u = U0 on the inlet boundary) or the alternative
(and equivalent) setups where the velocity field is initialised as u = U0 (respectively, u = 0) in the
liquid drop and u = 0 (respectively, u = U0) in the surrounding gas (with, respectively, free inflow
boundary condition and fixed inlet velocity). It should be emphasized that the numerical model
aims at reproducing a physical problem (the impulsive acceleration of a drop traveling across a
shock-wave) which as such is a compressible one while discarding the timescale of the acoustic
waves. Therefore, it necessarily takes a time step for the numerical solution to adjust and for a
(nearly) dipolar velocity field to set in around the drop, which satisfies both the incompressibility
constraint and conservation of momentum. As a result, however, the relative velocity measured after
one time step between the drop centroid and the gas in the far-field has jumped from the prescribed
value U0 by an offset δU approximately proportional to r−1

d , so that the deviation is particularly
pronounced for small density contrasts.

Importantly, this effect is not a numerical artefact but rather arises from the conservation
equations. In the reference frame moving with the shock-wave the drop is initialised with velocity U∗
and the gas is at rest. As the shock-wave sweeps over the domain a dipolar flow settles in around the
spherical drop, which in turn releases a fraction of its momentum as it accelerates the surrounding
gas. The overall momentum is conserved: writing V the volume of the drop, and U1 the new relative
velocity between the drop and the ambient gas after one time step, we obtain

ρLVU∗ = ρLVU1 + ρGCMVU1, (1)

where CM = 1
2 is the added-mass coefficient for a spherical drop [34], and we assume the volume

of gas entrained by the drop to be equivalent to V . The new relative velocity U1 is then

U1 = U∗
(
1 + 1

2r
−1
d

)−1
, (2)

so that for rd � 1 the velocity offset δU = U1 − U∗ becomes at leading order δU ∼ − 1
2rd

−1U1.
If we assume that the meaningful quantity is the effective velocity difference between the drop

centroid and the far-field resulting from the interaction with the shock-wave, the flow parameters
used in previous numerical studies of secondary atomization might be reconsidered with some
caution. Specifically to overcome this issue, our simulations were performed using corrected control
parameters Re∗, We∗ built on the anticipated value U∗, which we determine by requiring the effective

103604-3



FLORENCE MARCOTTE AND STÉPHANE ZALESKI

velocity difference U1 be kept fixed for all the density contrasts considered, and equal to U0. The
time series for the centroid velocity shown in Sec. III are rescaled accordingly, and all the results
presented here therefore correspond to the same, consistent definition of the effective We and Re
numbers.

III. RESULTS

A. Deformation at high density contrasts: Comparison with bag breakup experiments

The early stages of drop deformation at large rd are characterized by radial stretching and
flattening in the streamwise direction. The drop fate (whether fragmentation or not) then depends on
the flow conditions: the restoring effect of surface tension can either overcome the stretching—in
which case the drop undergoes oscillatory deformation around a spherical shape while traveling
downstream—or the drop stretches further, inflates, and eventually breaks up, displaying a diversity
of fragmentation regimes. In the past two decades a vast literature has been dedicated to the
experimental investigation of these various deformation modes. As argued in the introduction, most
of these experiments were performed in conditions such that the density contrast was typically larger
than 500 and the viscosity contrast rv typically in the 100–1000 range. In this context, the selection
of a particular deformation mode was found to be determined by the Weber number [9,10,12–
15,17], with additional influence of the Ohnesorge number whenever the latter exceeds 0.1. At low
Ohnesorge numbers (i.e., when viscous effects are weak at the drop scale compared to capillary
ones), these studies have shown that the drop dynamics transition from a vibrational mode at the
lowest We numbers, where the accelerated drop undergoes capillary oscillations with or without
breakup, to so-called bag breakup at 6 � We � 15, where the drop inflates and bursts like a blown
balloon, and shear breakup at higher We, where strings of droplets are emitted from the thinning
drop edge [16].

Additional distinctions have been introduced between “simple” bag, “multiple” bag, or “bag-and-
stamen” modes [16], but also between “backward-facing” or “forward-facing” bag modes, some
of these features being observable only transiently, and therefore difficult to clearly discriminate
from each other. Furthermore, the distinction between “simple” or “multiple” bag deformation
can be biased in numerical studies by the neglect of 3D flow features as shown by Ref. [28].
In point of fact such a regime diversity may seem unnecessary from a comprehensive point
of view, and for the purpose of the present paper we will restrict ourselves to the distinction
between three generic regimes, referred to as oscillatory, bursting or stripping, which are expected
to eventually determine the child droplets size distribution. Specifically, the bursting regime
is characterized by the formation of a well-defined toroidal rim at the edge of the flattening
drop and the inflation and rupture of the central liquid sheet, whatever the curvature of the
sheet and the location of its first rupture point (here bursting regime therefore includes any
type of bag breakup, whether “simple,” “multiple,” “backward-facing,” or “forward-facing” bag).
The stripping regime on the other hand corresponds to the progressive mass loss associated
with small droplets being emitted away from the thinning edge (this regime has been also
referred to as “sheet thinning” or “shear breakup” in the literature). Finally, oscillatory regime
here denotes the absence of any fragmentation process. Note that this attempted classification
builds on a phenomenological description of the deformation and breakup dynamics and by no
means on an assumed distinction between the physical mechanisms underlying fragmentation.
The mechanisms for sheet piercing, whether associated with aerodynamic effects such as the
development of a flapping instability, an acceleration-driven hydrodynamic instability, or even the
presence of impurities in the drop liquid, are poorly understood and remain an important subject of
investigation.

Figure 1 illustrates the drop typical morphological evolution corresponding to these three
regimes, as can be observed successively by increasing We at fixed {rd = 1110, rv = 90.9,
Re = 1090} in our simulations, where the contrasts between fluid properties rd and rv are typically
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FIG. 1. Drop deformation for increasing Weber number (a–f): We = 2.5; 5.65; 7.5; 12; 20; 40. Note that
the simulations are axisymmetric and the full drop volume is obtained by revolution of the sketched drop
section around the dashed (symmetry) axis. The density contrast rd = 1110, Reynolds number Re = 1090
and viscosity contrast rv = 90.9 are fixed ; here the gas stream blows from the left side. Dimensionless times
t̃ = t U0/R0 are indicated on each snapshot. Bottom line: snapshots of the vorticity field in the gas (isolines)
for case (f), shown here at times t̃ = 0; 20; 40; 90. Blue arrows highlight the region where breakup first occurs.
Note that even though our axisymmetric simulations cannot truly reproduce the 3D breakup mechanisms with
the expansion of circular holes in the bursting drop sheets, the very occurrence of a breakup event (whether
bursting, or stripping at higher We) is not a numerical artefact and is also observed in experiments.

close to that of an air-water system at 293 K. The two examples of oscillatory deformation shown
in Figs. 1(a) and 1(b), respectively, correspond to the We = 2.5 and We = 5.65 cases: the drop
flattens and a toroidal rim forms at the edge. Here the case We = 5.65 (b) transiently appears to be
on the verge of break-up until surface tension effects induce the rim to drain back into the drop core
region. The two examples of bursting behavior in Figs. 1(c) and 1(d), respectively, correspond to
what is classically referred to as bag (or backward-facing bag) mode and multiple bag (or even
bag-and-stamen) mode, here for We = 7.5 and We = 12. Both evolutions are characterized by
the formation of a well-defined rim at the edge of the flattening drop and the extreme thinning
of the liquid sheet in the interior, eventually causing the inflated drop to burst. Bursting occurs
as the bag thickness locally becomes smaller than the minimal grid size, and is typically initiated
in the vicinity of the rim neck. It has been argued that the selection of a simple or multiple bag
deformation mode could be associated to different most unstable wavelengths with respect to
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Rayleigh-Taylor instability [35]. In point of fact, whether “simple” or “multiple” bag is seen here
to result from an inertia competition between the outer, heavy region forming the rim and the inner
sheet at the drop center, resulting in one region being accelerated faster than the other. The size and
retractation speed of the rim [36,37] being controlled by the surface tension, it is naturally expected
that larger We (hence smaller, lighter rims) will result in the rim neck moving outward and the inner
region becoming heavier than the rim.

Finally, two stripping-mode examples are shown in Figs. 1(e) and 1(f), respectively, for We = 20
and We = 40: here the rim is hardly (if at all) visible, and the early stages of drop deformation
exhibit a typical “axelike” shape (as in the snapshots shown at t̃ ∼ 40). This particular feature
progressively becomes more acute for larger We as the smoothing operated by the weaker
surface tension cannot counteract the erosion of the drop by its own vortical wake (as illustrated
by the vorticity fields in Fig. 1 for {We = 40 ; Re = 1100 ; rd = 1110 ; rv = 90.9}; bottom line).
As the drop further flattens the indentation carved by the vortical wake tightens and shuts down,
until its remnant becomes the noticeable irregularity of the drop edge shown at t̃ = 60 in Fig. 1(f).
Fragmentation eventually occurs as small droplets are stripped away repeatedly from the thinning
edge of the dramatically stretching drop, which behaves like a downstream-facing bag. The
transition from bursting to stripping mode appears to be a continuous one and corresponds to the
disappearance of the rim.

Figure 2 (left) shows the displacement of the drop tip along the streamwise direction (thick
solid line) and the drop radius (thin solid line) as a function of the dimensionless time t̃ = t U0/R0.
Here the particular fluid properties (rd, rv) and flow conditions (Re, We) are chosen so as to
reproduce the experimental conditions reported in Ref. [11] (see their Fig. 4, case e-3). Although
some differences arise from the comparison between their experimental results and our numerics
(for instance the drop tip position slightly displaces upstream during the first flattening stage, and
the slope of the drop radius evolution is close to zero in the numerical results at t̃ = 0+; both
features are missing in the experimental curves), these discrepancies can be traced back to the
difference in flow initialization. Indeed, in the experiments the drop is introduced sideways into the
channel and has to travel across the boundary layer where it already feels (differential) acceleration
by the gas stream before reaching the region of uniform, maximal flow intensity. We therefore
expect the transient dynamics to differ from what is monitored in our simulations. Nevertheless,
and despite the uncertainties related to initialization, we find the evolution of the drop radius (dotted
line) to agree well with experimental measurements (denoted by the blue stars; the method used
to superimpose the experimental data from Ref. [11] with our numerics is carefully detailed in the
caption of Fig. 2). Both time series display a clear transition between a first deformation stage,
in which the maximal drop radius grows (almost) linearly between t̃ ∼ 50 and t̃ ∼ 110, and a
later stage of exponential growth, although the latter is initiated slightly earlier in the experiments
(t̃ ∼ 120) than in the numerics (t̃ ∼ 130, corresponding to snapshot ‘e’ in 2). The snapshots (“f” to
“h”) show that this later stage corresponds to the catastrophic inflation of the bag, and the maximal
radius is no longer that of the outer rim. [Closer observation of the drop radius time series and its
successive inflexion points during the first deformation stage (up to t̃ ∼ 110) actually points towards
a behavior similar to that of a half-oscillation (with dimensionless period ∼200), interrupted at later
times by a catastrophic inflation stage. This point will be further discussed later on.]

Numerical and experimental measurements of the tip displacement are more difficult to compare.
Although the trends are qualitatively similar, the acceleration of the drop tip seems to be achieved
earlier in the experiments—but here again it should be emphasized that in this case the drop has
been already progressively accelerated during its travel toward the center of the channel, making
the comparison uncertain. An important outcome of our numerics is that they provide for the first
time a direct numerical estimate of the drop thickness [solid line in Fig. 2 (bottom, right)], here
measured on the symmetry axis. From t̃ ∼ 60, which approximately corresponds to the formation
of the rim (snapshot “c”) up to t̃ ∼ 110 (snapshot “d”), the time evolution of the thickness on the
axis (which for this time window is also the minimal thickness) is well represented by an exponential
decay (dashed line). The film thickening observed at later times corresponds to a stage where the
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FIG. 2. Left: Displacement Ztip of the drop tip along the z axis (thick solid line) and drop radius R (thin
solid line) as a function of the dimensionless time t̃ = t U0/R0, for Re = 1484, We = 7.55, rd = 1110, and
rv = 909. The plotted quantities are defined in the schematic (top, right). As illustrated by the snapshots (given
at the times signaled by the letters “a” to “h”), the deformation regime corresponds here to (single) bag bursting.
The conditions reproduce experimental ones using ethylene glycol drops in Ref. [11] (case e-3): data extracted
from their experimental results (Ref. [11], Fig. 4) are superimposed for reference (blue stars: drop radius, blue
crosses: displacement of the tip). The data are recast in terms of our dimensionless variables using the values
given in Table 2 of Ref. [11], for the length and velocity units: R0 = 1.35 mm and U0 = 15 m/s. Note that in
Ref. [11], the “initial” drop radii (first experimental points) in their Fig. 4 do not match those indicated in their
Table 2: We have assumed that the first deformation stage (during which the drop travels through the boundary
layer toward the center of the channel) was not recorded in their time series. Therefore, we have arbitrarily
shifted the origin of their times to the time at which the drop radius was numerically observed to match that
of the first experimental point. The same time shift was then applied for the (experimental) evolution of the tip
displacement. Right, bottom: Drop thickness on the axis e (solid line) and bag length L (dotted-dashed line)
versus dimensionless time. The thin, dashed lines emphasize stages of exponential growth or decay.

minimal film thickness is no longer achieved on the axis. Finally, the later stage of drop deformation
is characterized by an exponential growth of the bag length L [Fig. 2 (bottom, right, dotted-dashed
line)], starting around t̃ ∼ 110 (snapshot “d”). As seen from Fig. 2 (left), this time coincides with
the end of the first stage in the evolution of the drop radius, as catastrophic bag inflation takes over
the “half-oscillatory” behavior. Breakup occurs (numerically) as the (axisymmetric) sheet minimal
thickness reaches the smallest grid size: Assuming an initial drop radius of R0 = 1.35 mm as in
Ref. [11], this critical thickness would correspond here to 3.2 μm (note that in Ref. [11] bursting is
observed experimentally for a thickness of ∼1 μm).

B. From large to small density contrasts: From bursting to stripping

Importantly, the evolution of drop deformation for increasing Weber numbers at small density
contrast seems to significantly differ from the large density contrast case, as already observed from
early drop breakup simulations [19,20]. Figure 3 (left) illustrates this evolution for rd = 10 and
We in the 7.5–40 range, while the Reynolds number and viscosity contrast are chosen as in Fig. 1.
These results are in excellent agreement with previous numerical results of Refs. [19,20,29]. Three
observations are readily made. First, we find the transition from oscillatory to fragmentation regime
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FIG. 3. Left: Drop deformation for increasing Weber number (a)–(d): We = 7.5; 12; 20; 40. The density
contrast rd = 10, Reynolds number Re = 1090 and viscosity contrast rv = 90.9 are fixed. Dimensionless times
t̃ = t U0/R0 are indicated on each snapshot. Right: Centroid velocity as a function of the dimensionless time t̃ ,
for We = 7.5 (dashed-dotted line), We = 12 (dashed line), We = 20 (dotted line), and We = 40 (solid line).
For reference empty squares mark the time of the corresponding framed snapshots.

to occur at significantly higher We compared to the large-density series in Fig. 1. Second, for all
the We numbers presented here the drop rapidly bends in the downstream direction and develops
(at least transiently) into a downstream-facing bag, which—unlike that of Figs. 1(e) and 1(f) at
high density contrast—exhibits a well-defined rim. No stripping regime could be observed up to
We = 40, where the inflated drop deforms into a typical jellyfish shape. Thirdly, although a large
(and obviously heavy) rim is observed also at large We, the thin (and obviously lighter) inner region
seems to lag behind the rim until it either bursts (at high We) or catches up under effect of surface
tension at lower We, so that the competition of inertia between the rim and the inner region discussed
for the large density contrast case may not seem to apply here. In fact, this apparent contradiction is
removed by considering the instantaneous centroid velocity UC of the drop on Fig. 3 (right), where
UC = 1/V

∫
V udV . (Note that UC is expected to differ from the velocity of the rim or that of the drop

apex but is considered here for simplification.) By the time t̃ = 10 the centroid velocity has already
temporary reached a (near to) saturation plateau and the drop does not feel the acceleration at this
stage. (The mechanism for temporary stabilization of the centroid velocity lies in the nonlinear
coupling between drop stretching and acceleration, as will be transparent from the simple model
developed and discussed later on in Sec. III C.)

Finally, the transition between deformations regimes observed at low and high density contrasts
(respectively, in early numerical studies and experimental ones; see, for example, the references
given in Introduction) is illustrated by the snapshots series in Fig. 4, where the Weber number
was kept fixed at a small value We = 7.5 and the density contrast varied for the first time in
the 10–2000 range: the downstream bending of the flattened drop at early times progressively
disappears as the density contrast increases, and is no longer observable from rd ∼ 100–250.
The times corresponding to the various snapshots in Fig. 4 are expressed in terms of the reduced
(dimensionless) time t∗ = rd−1/2t̃ .

A particularly remarkable feature in the drop deformation dynamics is the reduced time t∗
× at

which the rim starts to develop, which in first approximation appears to be almost invariant with the
density contrast (here t∗

× ∼ 1.8 was found for We = 7.5). This observation can be simply explained
by considering the force balance: discarding viscous effects, a rim forms at the edge of the stretching
drop when the restoring effect of surface tension overcomes that of inertia, i.e., when

ρLṘ2 ∼ σκ, (3)
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FIG. 4. Drop deformation for increasing density contrast (a)–(g): rd = 10; 20; 40; 111; 250; 1111; 2000.
The Weber number We = 7.5, Reynolds number Re = 1090, and viscosity contrast rv = 90.9 are fixed.
Dimensionless times are indicated for each snapshot in terms of the reduced time t∗ = rd

−1/2t̃ .

where κ is the curvature of the rim radius as defined on the schematic drawing in Fig. 5. At this
stage, the rim radius is equivalent to the drop half-thickness e/2, so that the previous condition
rewrites as

ρLeṘ2

2σ
∼ 1, (4)

meaning that the Weber number built on the stretching velocity and the drop half-thickness becomes
close to unity. Continuity of stagnation pressure across the interface implies that the stretching
velocity is related at short times to the gas velocity through Ṙ = U0

√
ρG/(

√
ρL + √

ρG)—referred

to as Dimotakis velocity [38]—reducing to Ṙ = U0rd
− 1

2 for ρG � ρL. Using mass conservation in
the flattening drop, condition Eq. (4) thus becomes

1 ∼ We
e

2R0
∼ We

2

3

R2
0

R2
, (5)

and finally

1 ∼ We 2
3 (1 + t∗

×)−2, (6)
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FIG. 5. Schematic drawing defining the variables used for the derivation of Eqs. (3) and (4), in the marginal
(idealized) case where the rim is about to develop: κ−1 ∼ e/2 (middle), before (left), and after (right) the
formation of a well-defined rim.

yielding t∗
× ∼ 1.2 for We = 7.5. Note that this estimate builds on the assumption that ρG � ρL and

therefore fails as ρG and ρL become comparable.
The transition from bursting to stripping regime corresponds to the progressive disappearance

of the rim. It is associated with the displacement of the most-thinning region from the interior of
the sheet (in the vicinity of the rim neck in bursting regime) toward the outer edge (in stripping
regime). Since the argument above provides a typical timescale for the formation of the rim, it is
therefore natural to compare t∗

× with the typical timescale for viscous entrainment in order to predict
the transition between the two regimes. As in Ref. [21], the dimensional “shear” breakup timescale
tS ∼ e/UL (with UL the velocity close to the interface inside the liquid drop) can be estimated using
the continuity of viscous stress across the interface:

μG
U0

δ
∼ μL

UL

e
, (7)

where δ ∼ √
μGR0/ρGU0 is the typical thickness of the laminar boundary layer in the gas [39],

and for simplicity e is assumed to provide a relevant length scale for the laminar boundary layer
in the liquid. The reduced, dimensionless shear breakup timescale is therefore approximated by the
relationship

t∗
S = rd

− 1
2

U0

R0
tS ∼ rd

− 1
2 rv

√
1

Re
. (8)

In Ref. [21], the argument suggested to predict the transition from bursting to stripping regime
is equivalent to comparing the typical reduced (dimensionless) time for shear breakup t∗

S with unity,
or comparing its dimensional counterpart with the typical stretching timescale, built on Dimotakis
velocity and the drop undeformed radius. However, this approach was motivated by a numerical
study performed at constant We and does not take the surface tension into account. Here we compare
instead the typical reduced timescale on which shear stresses operate, t∗

S , with the typical reduced
timescale for rim formation t∗

×: Even though the latter is (approximately) independent on the density
contrast, the former is not, so that the We number characterizing the transition between bursting and
stripping regimes is found to scale like

We ∼ 3

2

(
1 + λ rd

− 1
2 rv

√
1

Re

)2

, (9)

where λ is the prefactor inherited from Eq. (8). The predicted transition threshold does indeed
decrease with increasing density contrasts, consistently with our observations; moreover, this
threshold asymptotically tends toward a constant value at large rd, in agreement with the phase
diagram presented later on in Fig. 6. We also note that Ref. [4] suggests a prediction We ∼ √

Re
for a somewhat related transition from “bowl-” to “dome”-shape regime. This prediction, however,
builds on different theoretical considerations to which the authors do not subscribe; in particular,
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FIG. 6. Phase diagram determined numerically for constant Re = 1090 and rv = 90.9, in the rd-We
plane: full symbols denote fragmentation and empty symbols denote oscillatory deformation regime (without
fragmentation). Among the full symbols, discs correspond to bursting regime whereas diamonds correspond
to stripping regime. Mingled diamonds/discs symbols correspond to transitional regime. The corresponding
Ohnesorge numbers (Oh = rv/Re

√
We/rd) are small and lie within the Oh = 0.004–0.17 range (the dotted

isolines Oh = 0.1 and Oh = 0.01 are given for reference). Additionally, the thin, solid line provides a
comparison with our prediction Eq. (9) for the transitional We between bursting and stripping regime: the
prefactors being unknown, we have arbitrary prescribed A = rv/

√
Re, a choice equivalent here to λ = 1

in Eq. (9).

the authors of Ref. [4] use the undeformed drop radius R0 throughout their analysis, whereas we
model the variation of the radius R(t ) in time.

C. Fragmentation threshold

As argued in the Introduction, determining the effect of the liquid-gas density contrast on
the fragmentation threshold at low Ohnesorge number has important implications, e.g., for CFD
modeling purposes, but has not been investigated so far due to the missing overlap between
numerically accessible parameters and explored experimental conditions. Taking advantage of
Gerris’s capability of accurately handling large rd, the influence of the density contrast on the critical
We number for fragmentation was characterized for rd varying by nearly 3 orders of magnitude.

Figure 6 presents the phase diagram obtained for fixed gas Reynolds number Re = 1090 and
viscosity ratio rv = 90.9 in the rd-We plane, where empty symbols denote oscillatory mode (no
breakup) and full symbols denote atomization. Among the latter, discs correspond to bursting and
losanges to stripping regime. Mingled symbols on the other hand correspond to a transitional regime
where the drop first undergoes dramatic edge-thinning (thus similar to stripping regime dynamics)
before a rim starts to form on the outer edge, and breakup first occurs at a thinner region in the sheet
interior. Our most important finding here is that the fragmentation threshold drops by one order of
magnitude as the density contrast increases from rd = 10 to rd = 250. In the range rd = 250–1000
the critical value lies between 2.5 and 5.65, consistently with the prediction of Wec ∼ 3 formulated
by [2] in the case of a air-water (rain) system (rd ∼ 1000). At larger contrast (rd = 1000–2000) the
fragmentation threshold is found to rise again, although by a less significant amount (a factor two).

This dependency of the critical We number on the density ratio is not predicted by the existing
linear models for the evolution of the drop radius [2,27], which for low Ohnesorge numbers predict
fragmentation for We > Wec regardless of the density contrast. Further, the exponential behavior of
the drop radius for We > Wec theoretically predicted by such models hardly describes the early-time
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FIG. 7. Centroid axial velocity (left) and maximal drop radius (right) as a function of the reduced time t∗,
for density contrasts rd in the 10–2000 range and constant {We = 7.5; Re = 1090; rv = 90.9}.

evolution of the drop maximal radius monitored in our simulations [as can be seen for example on
Fig. 7 (right)].

However, a key element to understand the decrease in the fragmentation threshold from small
to large density contrast (rd = 10–250) lies in the loss of the reduced time t∗-universality which
we observe in the evolution of the (streamwise) centroid velocity UC , shown in Fig. 7 (left) for

FIG. 8. Centroid velocity (left) and drop radius (right) as a function of the reduced time t∗, as obtained by
numerical integration of the simple, nonlinear model Eqs. (14) and (15), for constant We = 7.5, and rd = 10
(solid line), rd = 100 (dotted line), rd = 1000 (dashed line). The proportionality coefficients in Eqs. (14) and
(15) are arbitrarily set to Cd = α2/4 = 1.
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constant {We = 7.5; Re = 1090; rv = 90.9}, and for rd varying in the 10–2000 range. Whereas
t∗ remains the relevant, typical timescale describing the acceleration of the centroid, Fig. 7(a)
shows a nonambiguous tendency for the drop centroid velocity to increase faster and reach sooner
a (temporary) saturation plateau at smaller density contrasts. Interestingly, numerical results of
Ref. [40], who used a compressible flow model at infinite Re and We to study drop breakup
behind a shock-wave, are consistent with this observation despite important differences in flow
conditions and modeling. Indeed their results for the evolution of the drop centroid velocity as a
function of the reduced time t∗ show a monotonic increase of the early centroid acceleration for
increasingly high Mach numbers (Fig. 14 in Ref. [40]), i.e., for increasingly high gas density behind
the shockwave (following Rankine-Hugoniot jump conditions) and thus increasingly small density
contrasts.

The corresponding evolutions of the drop radius R are shown in Fig. 7 (right), with a blowup
on early times in the figure inset: as in Fig. 7 (left), interrupted time series for rd > 40 denote
(numerical) bursting. For all the density contrasts, and whether fragmentation eventually occurs
or not, the evolution of the drop radius is similar up to t∗ ∼ 1: except for the two largest
contrasts (rd = 1000–2000) that yield slightly slower drop stretching, the different time series
(almost) collapse onto a single curve once expressed in terms of the reduced time t∗. After
this first stretching stage, the successive inflection points displayed by the various time series
suggest that the drop radius initiates oscillations with growing period and amplitude as the density
contrast increases from rd = 10 up to (at least) rd = 250, which in the cases where fragmentation
occurs (here for rd > 40) are finally interrupted by a new growth and rapid bursting as in
Fig. 2.

In fact, we can show that the smaller inertia of the lighter drops accounts both for the stabilizing
effect of small density contrasts and for the (nonexponential) time evolution of the radius monitored
in our simulations. To that effect, we assimilate the flattening drop with a disk of uniform thickness e,
radius R, and constant volume V = 4/3πR3

0, and use cylindrical coordinates to describe the fluid ax-
isymmetric motion. Conservation of momentum in the streamwise direction can be approximated by

ρL
d

dt
(UCV ) = Cd ρG(U0 − UC )2πR2, (10)

where Cd is the drag coefficient determined by the drop shape, so that the centroid acceleration
evolves as the square of the drop radius (and vanishes as soon as the drop has reached the gas
stream velocity). Note that Cd is in truth a time-dependent quantity and is expected to increase as
the drop deforms (from a near to spherical shape to a near to cylindrical one), resulting in a faster
increase in the centroid velocity; for simplicity we will, however, assume that Cd is constant in the
present model.

Using now cylindrical coordinates to describe the fluid axisymmetric motion, conservation of
mass inside the expanding disk yields

r∂t e + ∂r (rūr ) = 0, (11)

where ūr (r, t ) = ∫ e/2
−e/2 ur (r, z, t ) dz is the radial velocity flux (per unit length); hence, ūr = r eṘ/R.

Following the approach of Ref. [2], we now approximate the pressure difference in the gas between
the high pressure region at the stagnation point on the drop pole (r = 0) and the lower pressure
region at the drop equator (r = R) by that of a hyperbolic stagnation flow with stretching rate
γ = α(U0 − UC )/R0, where α is a shape coefficient, yielding pG(R) − pG(0) = −ρGγ 2R2/8. Im-
portantly, we will, however, assume here that the relative velocity U0 − UC remains time-dependent.

The pressure difference in the liquid is estimated from the pressure difference in the gas: at
the pole r = 0, the pressure jump across the interface vanishes due to the negligible curvature of
the latter. At the equator, however, this pressure jump can be approximated by 2σ/e ∼ 3

2σR2/R3
0

according to Laplace’s law, so that the pressure difference in the liquid across the drop radius is
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finally

pL(R) − pL(0) ∼ −α2

8
ρG (U0 − UC )2R2/R2

0 + 3

2
σR2/R3

0. (12)

Discarding viscous damping, the axisymmetric Euler equation for the radial velocity ur inside the
drop writes

ρL(∂t ur + u · ∇ur ) = −∂r p. (13)

Assuming uniform radial motion through the drop thickness (hence ur = ūr/e = rṘ/R) and
averaging Eq. (13) over the drop domain using Eq. (12) yields

R̈

R
∼ rd

−1

(
α2

4

(
1 − UC

U0

)2

− 3

We

)
U 2

0

R2
0

, (14)

an evolution equation for the drop radius nonlinearly coupled with that of the centroid velocity
derived from Eq. (10):

U̇C ∼ 3

4
Cd rd

−1

(
1 − UC

U0

)2 U 2
0

R3
0

R2, (15)

with R(0) = R0 and UC (0) = 0. The nonlinear coupling between Eqs. (14) and (15) accounts for the
role played by the density contrast in the fragmentation threshold. If we ignore the drop acceleration
as in Ref. [2], as is realistic for large rd at early times, then Eq. (14) becomes linear in R. The drop
radius then undergoes exponential stretching as soon as the Weber number exceeds the critical value
Wec = 12/α2, on a typical timescale determined by the reduced time t∗ = rd−1/2t̃ . [In Ref. [2]
the shape coefficient determining the stretching rate of the hyperbolic stagnation flow in the gas
is α = 2, an intermediate value between the case of a spherical obstacle (α = 3) and that of a disk
(α = π/2). This value of α yields Wec = 3, in excellent agreement with the fragmentation threshold
found numerically at large density contrast.] However, taking Eq. (15) into account modifies the
critical Weber number: it is clear from Eq. (14) that an increase in UC achieved sufficiently fast
over the reduced timescale can significantly raise the fragmentation threshold. The acceleration at
early times (t̃ = 0+) is larger for smaller density contrasts, so that a faster decrease in the right-hand
side of Eq. (14) is expected as rd decreases, associated with a smaller stretching amplitude and
oscillation period (expressed in reduced timescale).

Solutions of Eqs. (14) and (15) determined by numerical integration are shown in Fig. 8
for constant We = 7.5 and three different density contrasts in the 10–1000 range. Even though
our simple nonlinear model does not allow for a precise quantitative description of the drop
deformation dynamics and does not account for the slight increase in Wec numerically observed
at rd = 1000–2000 [presumably because of the important simplifications made in the derivation of
Eqs. (14) and (15)], the principal features of Fig. 7—stronger acceleration and earlier (temporary)
saturation of the drop velocity for small density contrasts, as well as shorter and weaker oscillations
of the drop radius—are well reproduced. Our findings thus demonstrate that the variation in the drop
inertia indeed accounts for the dependency of the deformation dynamics on the density contrast
over the reduced timescale t∗, and for the stabilizing effect of small density contrasts with respect
to fragmentation. However, it is important to emphasize that our model does not address the
deformation and bursting dynamics during the later inflation stage. Moreover, our axisymmetric
simulations cannot address the inherently three-dimensional mechanisms of sheet piercing in
the inflating drop, which would require additional (and computationally much more demanding)
studies. Full understanding of the bursting mechanisms, including the possible development of
hydrodynamic instabilities in the rim or and the thinning film, is beyond the scope of the present
article and remains a challenging problem for future investigation.
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IV. CONCLUSION

Our axisymmetric simulations of impulsively-accelerated drop breakup show for the first time
a significant influence of the liquid-gas density contrast on the fragmentation thresholds at low
Ohnesorge number. The density contrast was varied over two decades (rd = 10–2000), showing
good agreement with previous numerical and experimental works. We suggest a simple theoretical
argument to determine the critical Weber number characterizing the transition from bursting to
stripping regime, which we find to increase for decreasing density contrasts, consistently with our
numerical results. Although the objective of the present paper was not to provide a review of the
studies that could experimentally assess the validity of these theories over the whole parameter
space (large and small Reynolds and Weber numbers, and large and small density/viscosity
contrasts), we believe that the full range of such experimental investigations remains to be done
and would be of great interest. Finally, we explain the significant rise of the fragmentation threshold
observed here at small density contrasts by the nonlinear coupling between the stretching drop radius
and the centroid acceleration. Our results demonstrate the need for adaptation of existing breakup
criterion, such as those currently used in non-DNS CFD models, so as to take into account the effect
of density contrast on the fragmentation threshold and regimes.
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