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Rheology of a confined suspension of vesicles (model for blood) is analyzed numerically
in two dimensions as a function of the viscosity contrast λ (defined as the ratio between
the inner and the outer viscosities, ηin and ηout). We consider both the dilute, semidilute,
and more concentrated regimes up to about 35% of vesicle area fraction. This paper is a
follow-up of our recent work [Phys. Rev. Fluids 3, 123601 (2018)], where we found that,
depending on λ, the vesicle can either be centered or off-centered in a channel. Here we
analyze in particular how the existence of the new attractor (off-centered solution) affects
rheology. In the dilute regime, it is found that the effective viscosity corresponding to the
off-centered solution may have a lower value than that of the centered solution. Moreover,
the effective viscosity shows a discontinuity as a function of λ. This discontinuity is traced
back to the existence of a saddle-node bifurcation of the lateral position. When the flow
strength is increased, the viscosity behavior becomes continuous, owing to the evolution of
the transition of the off-centered solution from a saddle-node to a pitchfork bifurcation. We
analyze then rheology as a function of the suspension concentration ϕ for different values
of λ. For large enough λ the viscosity may be lower or larger than that corresponding to
small λ, depending on initial configuration. There is a critical concentration beyond which
the initial configuration is irrelevant, but still the behavior of the suspension viscosity with
ϕ for low and large λ are quite different both qualitatively and quantitatively. This is traced
back to special spatial organization of the confined suspensions, which depends on λ.

DOI: 10.1103/PhysRevFluids.4.103602

I. INTRODUCTION

Rheology of confined suspensions, where the suspended entity size becomes of the order of the
available gap, has received so far much less attention than their unconfined counterparts. There
are many examples where the confinement effects come to the fore. For example, in microfluidics
and nanofluidics [1–11], the transported entities (cells, macromolecules, such as DNA and so on)
often have sizes which can be comparable to the typical size of the transport devices. We therefore
expect the interaction of the suspended entities with walls to play decisive roles. For example, walls
may create depletion (zones), due either to entropic or hydrodynamic effects [10,12–17] that should
affect transport properties. A prominent example is blood flow where the interaction of red blood
cells (RBCs) with the vessel walls leads to a cell-free layer close to the wall. This cell-free layer
plays a pivotal role in oxygen transport, since it leads to a drastic reduction of the effective viscosity
with decreasing vessel diameter, allowing thus for a more efficient transport in small vessels of
the vascular network where oxygen (and other elements, such as ATP [18]) is delivered to tissues
and organs. The decrease of blood viscosity with vessel diameter is known as the Fåhræus-Lindqvist
effect [19]. A basic understanding of the behavior of confined suspensions requires, on the one hand,
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the identification of the key parameters that play a relevant role, and, on the other hand, linking the
microscale (e.g., the spatiotemporal organization) to the macroscale. The present study is directed
along this objective. We will see that the viscosity contrast λ (defined as the ratio of the inner
viscosity ηin to the outer viscosity ηout) plays an essential role in the spatial organization, which
in turn affects rheology. The rheology of confined suspensions has been addressed quite sparsely
to date. Regarding suspensions of rigid spheres, Peyla et al. [20–22] have shown that, for a certain
range of ratios between the gap size and the particle size, the interactions between particles leads to a
decrease of the total dissipation. Two-dimensional (2D) and (3D) numerical simulations of confined
RBCs [23,24] have been performed by using vesicles and capsules as a model. It has been shown
that confinement leads to a subtle ordering with a strong impact on rheology. Similar ordering [25]
has been reported on confined suspensions of rigid particles in the presence of inertia.

Our study is motivated by blood flow. However, since our objective is to analyze the basic
fundamental features, we focus here on a simplified model: a 2D suspension of vesicles (a vesicle
is a closed phospholipid membrane [26]). It has been shown that 2D vesicles capture many features
known for 3D models of RBCs. Indeed, both models show several common shapes and dynamics;
namely, tank-treading and tumbling [27,28], slipper and parachute shapes [29,30], flow alignment
[27,31], and, very recently, polylobe shapes [32,33], etc. In addition, both models show the same
rheological behavior [23]. These observations provide confidence that the adopted 2D system may
retain the essential effects of a more realistic model, and at the same time offers low enough
numerical cost for a more systematic investigation.

An important factor in our study is the role of the viscosity contrast λ. It is traditionally reported
that, under shear flow (in 2D), two basic dynamics prevail: tank-treading (TT, obtained for low λ)
and tumbling (TB, obtained for large λ). In the presence of confining walls, a vesicle under shear
flow (obtained by two counter-translating plates) is known to migrate towards the centerline, be it
in the TT or TB regime (in the TB regime the migration velocity is smaller than in the TT regime)
[31,34]. The migration due to a wall has been the subject of many studies [34–42].

Recently [31], we discovered that a vesicle under a confined linear shear flow in the Stokes limit
has other final solutions than settling in the centerline. More precisely, for a small enough flow
strength and beyond a certain λ the central position coexists with an off-centered one. The off-
centered solution arises as a saddle-node bifurcation. When the flow strength increases, the saddle-
node bifurcation transforms into a pitchfork bifurcation. Here we study how the emergence of the
new attractors affects rheology. We shall see that the new solutions significantly impact the rheology,
provided that the suspension concentration is small enough. When the concentration exceeds a
certain value, we shall see that the coexistence of attractors in the dilute regime is overridden by
hydrodynamic interactions. However, the viscosity contrast still plays an important role by changing
qualitatively and quantitatively the rheological properties.

II. MODEL AND METHOD

Here we describe briefly the membrane model and the simulation method (for further information
see Refs. [31,43]). We consider a set of 2D vesicles inside a channel, under a planar shear flow
(v0 = γ̇ yex). The vesicle membrane influences the ambient fluid via bending and tension forces,
and the total membrane force is given by

fmem→flu = κ

(
d2c

ds2
+ 1

2
c3

)
n − ζcn + dζ

ds
t, (1)

which includes the local effective tension term ζ in order to fulfill the local arclength conservation
constraint (ζ is a Lagrange multiplier). Here c is the local curvature, s is the curvilinear coordinate
along the membrane, n and t are the unit normal and tangent vectors, and κ is the membrane bending
rigidity. The enclosed area A is conserved automatically thanks to the fluid incompressibility.
However, very slight variations of area and perimeter are observed because of numerical errors (see
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Fig. 1 in the Supplemental Material [44]). A derivation of Eq. (1) can be found in Ref. [42], obtained
from the functional derivative of the Helfrich [45] bending energy E = κ

2

∫
mem c2ds + ∫

mem ζds.
We consider the limit of zero Reynolds number (the Stokes limit). The full problem is described

by four dimensionless numbers, which are

λ = ηin

ηout
, Cκ = ηoutγ̇ R3

0

κ
≡ γ̇ tc, Cn = 2R0

W
, τ = 4πA

L2
. (2)

λ is the viscosity contrast, where ηin, ηout denote the inner and the outer viscosities. Cκ is the
capillary number, which measures the flow strength over the bending energy of the membrane. In
other words, Cκ controls how the shapes of vesicles deform in response to an applied external flow,
where tc is the typical time needed for the vesicle to recover its equilibrium shape after cessation
of flow. γ̇ is the applied shear rate. Cn is the degree of confinement, where W is the channel width.
τ is the reduced area, where L is the vesicle perimeter, the effective vesicle radius is defined as
R0 = √

A/π . Using the Green’s function techniques, the velocity v(r0) of a point on the membrane
can be written in the following dimensionless expression:

v(r0) = 2

1 + λ
v0(r0) + 1

2πCκ (1 + λ)

∫
mem

dsfmem→flu(r) · G2w(r, r0)

+ 1 − λ

2π (1 + λ)

∫
mem

dsv(r) · T2w(r, r0) · n(r), (3)

where we have used the following scales: R0 for length, U = γ̇ R0 for velocity, and κ/R3
0 for force

per unit area. G2w(r, r0) and T2w(r, r0) are the Green’s functions (second- and third-order tensors)
satisfying the no-slip boundary condition at the bounding walls (see Ref. [43] for more details). v0

is the imposed velocity.
The dimensionless force fmem→flu is given formally by the same expression in Eq. (1) in which

membrane bending rigidity κ is set to unity (we keep the same notation for simplicity).
The still-unknown Lagrange multiplier ζ is obtained by imposing a divergence-free velocity

along the membrane, expressing the membrane incompressibility. The numerical method of
imposing membrane incompressibility follows closely that presented in Ref. [28].

The membrane displacement in time is obtained by updating the discretization points after each
time iteration, using a Euler scheme, r0(t + dt ) = v(t )dt + r0(t ).

III. RESULTS

A. Rheology and its relation to attractors of vesicle positions in the channel

In a recent work [31], we saw that the vesicle final lateral position in the channel (denoted as hf )
depends on λ. We found that, beyond a critical λ (and for a small enough Cκ ), there is the emergence
of a noncentered solution coexisting with the centered solution. In this section, we consider the very
dilute regime (where the additivity effect due to each vesicle is legitimate) in order to study the
impact of the lateral position on the rheology. The effective viscosity is given by

ηeff = ηout (1 + [η]ϕ), (4)

where [η] is the normalized viscosity (called the intrinsic viscosity when ϕ → 0) and represents the
contribution of the vesicles to the viscosity. It is given by

[η] = 1

ηoutSγ̇

[∫
mem

dsy fflu→mem,x + ηout (λ − 1)
∫

mem
ds(nxvy + nyvx )

]
, (5)

where S is the total area of the vesicles. This expression is the extension of the Batchelor result for
suspensions of rigid particles to vesicles [46].

For a small enough λ, the vesicle always reaches the centerline regardless of initial position
[31]. Once the final position is reached, the normalized viscosity is extracted from Eq. (5). Figure 1
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FIG. 1. The evolution of (a) the normalized viscosity [η] and (b) equilibrium lateral position hf as a function
of the bifurcation parameter λ. TT: tank-treading; TB: tumbling; FA: flow alignment. Here τ = 0.7, Cκ = 1,
and Cn = 0.4. The dashed gray lines correspond to the results where the vesicle initially starts at the centerline
or at its vicinity and ultimately gets centered. The orange line is the ensemble average of the viscosity (see
text). The centerline is at y/W = 0 on the vertical axis in panel (b) and the lower wall is at y/W = −1/2.

shows the result. Here parameters are τ = 0.7, Cκ = 1, and Cn = 0.4. Below a critical value of λ

(λc � 16, a value which depends on the other parameters), the vesicle migrates towards the center
of the channel. In this case (centered vesicle), the suspension shows a classical behavior [28,43,47–
51]: in the tank-treading motion (TT) [η] decreases with λ to a minimal value. Then [η] increases
in the tumbling regime (TB) [Fig. 1(a)]. Above λc, if the initial position is close enough to the wall
(the distance from the lower wall in the simulation is 0.72R0), the vesicle settles in an off-centered
position [31], as shown in Fig. 1(b). This solution coexists with the centered solution. The vesicle
aligns with the flow; we refer to this solution as flow alignment (FA), whereas in the coexisting
centered regime the vesicle shows TB. The two corresponding branches are labeled FA and TB
in Fig. 1(a). In other words, the suspension presents two possible values of viscosity due to the
existence of two different attractors. The orange branch in Fig. 1 shows the ensemble average of
[η] obtained from the following expression: [η] = PFA[η]FA + PT B[η]T B, where PFA (PT B) is the
probability that the final configuration is FA (TB) and [η]FA ([η]T B) is the normalized viscosity
corresponding to the FA (TB) regime. The probability is calculated, for a given λ, as the interval of
initial conditions leading to the given solution (the basin of attraction was calculated in Ref. [31],
Fig. 7) divided by the whole interval of initial conditions. Whether the system selects one solution
or the other depends on initial conditions. The viscosity in the FA regime is significantly less than
that in the TB regime. This is quite intuitive since a TB vesicle has a larger cross section in the
channel than a FA vesicle, thus offering higher resistance to the flow. When λ increases further the
viscosity of the FA solution shows an increase of the suspension viscosity. This is due to the fact
that the FA vesicle is closer and closer to the wall, and thus the cell free layer becomes smaller and
smaller.

B. Effect of degree of confinement

In this section we investigate the effect of the degree of confinement on the dynamics and
rheology of a very dilute suspension of vesicles. We take a single vesicle initially placed close
to the lower wall. We set τ = 0.7, Cκ = 1 and vary λ (a key parameter in this study) for several Cn.
The results are depicted in Fig. 2 and show the same qualitative behavior as seen in the previous
section. The same dynamics of the vesicle for Cn = 0.4 (previous section) persists for all values
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FIG. 2. The evolution of [η] and equilibrium lateral position hf as a function of λ for several degrees of
confinement Cn. Here we set Cκ = 1 and τ = 0.7. The vesicle is initially set at a small enough distance (0.72R0)
from the lower wall. TT, TB, and FA are shown. The channel center is at zero and the walls are at y/W = ±1/2
on the right vertical axis. Note that the TB branch continues for larger λ but here we only show the results until
the FA branches appears.

of confinement investigated here; that is, TT, TB, and FA motion are observed. For each value
of Cn (Fig. 2) there is a different critical viscosity contrast λc, below which the vesicle migrates
to the centerline and [η] shows a nonmonotonic behavior, as already discussed in the previous
section. Beyond λc the vesicle settles at an off-centered position, exhibiting a sudden decrease of
the normalized viscosity [η] of the suspension (Fig. 2), which then increases with increasing λ. In
conclusion, the same trend is observed, pointing to the robustness of the phenomenon.

C. Effect of capillary number

In this section we consider the effect of capillary number Cκ on the dynamics and rheology of
the vesicle by fixing the other parameters, Cn = 0.4, τ = 0.7. Figure 3 illustrates the effect of Cκ

on the dynamics and rheology. The main difference with previous results is that, upon increasing
Cκ , the gray line representing the off-centered position as a function of λ exhibits weaker and
weaker jumps at the bifurcation point, until the transition becomes continuous. The saddle-node
bifurcation transforms into a pitchfork bifurcation. This transition also affects the behavior of the
normalized viscosity [η] which shows weaker jumps until showing a continuous behavior. A point
worth mentioning is that the TB regime completely disappears in favor of a continuous transition
from a TT solution to a FA solution. We also note that, for a given λ in the off-centered case (FA
regime in Fig. 3), the distance between the vesicle and the wall increases as a function of capillary
number Cκ , implying a decrease of the normalized viscosity with Cκ (shear-thinning behavior).
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FIG. 3. The evolution of [η] and equilibrium lateral position hf according the bifurcation parameter λ for
several capillary numbers Cκ . The vesicle is initially set at a small enough distance (0.72R0) from the lower
wall. TT, TB, and FA are shown. (c), (d) Beyond a certain value of Cκ , the TB motion is suppressed and the
evolution of [η] as a function of λ no longer exhibits any jump. The channel center is at zero and the walls are
at y/W = ±1/2 on the right y vertical axis. Note that the TB branch (when it exists) continues for larger λ but
here we only show the results until the FA branches appears. For the continuous curves (i.e., when there is no
jump), the TB regime does not exist.

D. Effect of reduced area

We carried out a systematic study on the effect of reduced area τ (for a circle τ = 1, otherwise
τ < 1) on the equilibrium lateral position of a vesicle and its effect on the rheology of the
suspension. The results are reported in Fig. 4. The other parameters are fixed at Cn = 0.4 and
Cκ = 1. When τ is small enough, we find the same trends as before. However, as τ increases
(approaching 1), the situation changes significantly. For example, for τ = 0.9, while the vesicle
migrates out of center (for λ > 40), the normalized viscosity still exhibits a jump. Contrary to the
other values of τ , the viscosity is higher for the off-centered solution at the transition point. This is
due to two effects: (i) the higher value of τ lowers the lift due to wall so that the fluid left between
the vesicle and the wall is smaller, leading to higher dissipation. (ii) The vesicle has a shape close
to a circle causing a higher cross section against the flow. These two effects together yield higher
viscosity than a tumbling vesicle at the center. Even if the vesicle tumbles at the center, due to its
quasicircular shape, its elongation is weaker now, causing less and less resistance against the flow.

IV. SUSPENSIONS

We have seen above that, depending on λ, a single vesicle may migrate to the center or towards
the wall and this significantly alters the rheology of the suspension. The question naturally arises
of whether this off-centered position may survive for higher concentrations. We have investigated
this question by varying concentration and by choosing various initial vesicle positions with the
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FIG. 4. The evolution of [η] and equilibrium lateral position hf as a function of the bifurcation parameter
λ for several reduced areas τ . Here we set Cκ = 1 and Cn = 0.4. The vesicle is initially set at a small enough
distance (0.72R0) from the lower wall. TT, TB, and FA are shown. The channel center is at zero and the walls
are at y/W = ±1/2 on the right y vertical axis. The normalized viscosity [η] shows in the FA regime a jump
with higher values than those of the TB regime for τ = 0.9. This contrasts with the behavior for other value
of τ (see text). Note that the TB branch continues for larger λ but here we only show the results until the FA
branches appears.

aim being to see whether the final configuration is sensitive to initial conditions. Periodic boundary
conditions are used along x, the box length is Lx = 40.5R0, and the enclosed area of a single vesicle
is A = πR2

0. The other parameters are kept to λ = 20, Cn = 0.4, and Cκ = 1 for which a single
vesicle would select an off-centered position. We first discuss the dilute and the semidilute regimes.
We compare the results to those obtained in Ref. [23] for another set of parameters (λ = 1, Cn = 0.4,
and Cκ = 1) where only the centered solution exists; i.e., for this viscosity contrast λ = 1, there
exists no second attractor (off-centered) for a single vesicle.

The results are presented in Fig. 5. We see that, for λ = 20, and below a certain concentration
(ϕ � 12.4%), the normalized viscosity [η] may have several values for the same concentration ϕ,
depending on the final configuration (which depends on the initial configuration) of the suspension.
This means that, for dilute and semidilute suspensions, several stable spatial configurations are
possible which give rise to different values of normalized viscosity [η] or effective viscosity ηeff

(Fig. 6). It is interesting to note that, below a certain concentration (ϕ � 6.2%), the suspension of
relatively rigid vesicles (λ = 20) may have a much lower value of [η] than that of a suspension of
soft vesicles (λ = 1 Fig. 5). This lower value for more rigid particles is associated with the existence
of stable off-centered positions, as described above. The highly nonmonotonic behavior of [η] for
λ = 1, described in Ref. [23], as a function of ϕ is due to the existence of ordered solutions with a
single-file (for low enough ϕ) and double-file (for larger ϕ) configurations.

For a large enough λ for which two attractors exist for a single vesicle, the situation is quite
different. We have fixed λ = 20. We find, depending on the initial conditions (random or nonrandom
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FIG. 5. The evolution of [η] as a function of concentration ϕ for typical values of λ. Here we set Cκ = 1
and Cn = 0.4. The initial position of the vesicles impacts the rheology up to ϕ � 12.4%. Points a, b, and c on
the curve correspond to the FA configuration (a typical configuration is shown in inset c). Points a′, b′, and c′

on the curve correspond to another type of configuration (centered TB; a typical configuration is shown in inset
c′) obtained from different initial conditions as compared with a, b, and c configurations. Point b′′ on the curve
corresponds to another configuration which is a mixed state, in which a vesicle undergoes an off-centered TB,
whereas the second one shows FA (see inset b′′). Points d and e on the curve correspond to a centered TB
configuration (see inset d and e, respectively). Points d ′, e′, and f on the curve correspond to a disordered
configuration (a typical configuration is shown in inset f ). The blue curve (λ = 1) is taken from Ref. [23].
Configurations a, b, and c are obtained from initial conditions where the vesicle are equidistant and set close
to the lower wall (0.72R0 from the wall). Configuration d and e are obtained with an initial set of equidistant
vesicles at the center. Configuration f is obtained with random initial positions. Configurations a′, b′, and c′

are obtained from initial conditions where the vesicles are equidistant and set at the center. It is noteworthy
that we may also obtain the points b′ and c′ with initial random positions with a much longer simulation time.
Configurations d ′ and e′ are obtained with initial random positions. Configuration b′′ is obtained with a vesicle
at the center and the other close to the wall (0.72R0 from the wall).

initial conditions, as described in the caption of Fig. 5) that for a small enough ϕ (<6.2%) there exist
two solutions: (i) centered single file (as found for λ = 1) undergoing tumbling giving rise to the
viscosity values shown as points (a′, b′, and c′) in Fig. 5 and (ii) off-centered single-file exhibiting
flow alignment having the viscosity shown as points (a, b, and c) in Fig. 5. In other words, for
low enough ϕ the single ordered file seems to exists whatever the value of λ is. For λ = 20 the
existence of a FA single file exists only for a low enough concentration (points a, b, and c in Fig. 5).
In this low-concentration regime the normalized viscosity shows a plateau because of the weak
hydrodynamic interaction. Experimentally, in typical rheometric devices it is difficult to naturally
control the initial configurations. It is likely that random initial configurations will dominate, and in
which case the viscosity data would be those designated with a prime in Fig. 5. However, this does
not exclude the use of external means (like optical tweezers) to allow monitoring appropriate initial
conditions and thus exploring the data represented by a, b, and c in Fig. 5.

When the concentration increases slightly beyond point c in Fig. 5 the hydrodynamic interaction
among vesicles starts to play a role, but still the existence of two attractors continues to affect
rheology up to about ϕ = 12%. The situation becomes more complex than for a lower concentration.
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FIG. 6. The evolution of the effective viscosity ηeff as a function of concentration ϕ for two values of
λ. The filled circles (red curve) and the stars correspond to λ = 20, a value which leads to different spatial
configurations of the suspension, which in turn give rise to different values of ηeff (or [η]), as explained in the
caption of Fig. 5. The stars are the counterparts of the points a′–e′ and b′′ in Fig. 5. In the dilute regime, the
suspension of relatively rigid vesicles (λ = 20) may have a lower value of ηeff than that of a suspension of soft
vesicles (λ = 1). This is traced back to the existence of off-centered positions for λ = 20, as discussed in the
text. In the more concentrated regime, the suspension of relatively soft vesicles (λ = 1) has a much lower ηeff

than that of a suspension of relatively rigid vesicles. This is traced back to the existence of ordered solutions
with a double-file configuration for λ = 1 and disordered solutions for λ = 20. See the text for more details.

Indeed, the single file FA solution undergoes a transition towards the centered TB file (point d and
inset d in Fig. 5). From point c (FA file) to point d (TB centered solution; see inset d) the viscosity
increases as expected, since TB vesicles in the centerline have a higher cross section. When the
concentration is increased further (from point d to e) the single-file TB solution still exists, but [η]
decreases. The reason is that the insertion of a new vesicle fills the gap between already existing
vesicles and reduces the strength of recirculation zones between vesicles. This reasoning is similar
to that evoked for λ = 1 (single-file TT solution) [23]. For solutions d and e the initial condition
corresponds to a centered set of solutions. It seems thus that the central attractor is robust despite the
presence of hydrodynamic interactions. This is, however, not the case for the second (off-centered)
attractor. We have prepared half of vesicles with the off-centered positions (at the attractor position
for a single vesicle) and the other half at the opposite position (which is also an attractor) with
the hope of obtaining a double-file solution (as with λ = 1 [23]). All simulations with these initial
conditions led to a disordered final solution (represented by inset f in Fig. 5). The same outcome is
obtained with random initial position. It seems thus that the second attractor has become unstable
in the presence of hydrodynamic interactions.

A further increase of ϕ (for λ = 20) beyond point e, destroys the single-file TB solution in
favor of an apparently disordered solution (see inset f ), leading to higher and higher viscosity.
This is drastically different from the case of λ = 1, where the system organizes into a double
file that survives up to about ϕ = 35%. At that concentration, the suspension for λ = 20 shows
a significantly higher ηeff , which is about 1.45 times that corresponding to λ = 1.

In summary, the suspension viscosity shows a rich behavior depending on the viscosity contrast
λ. For small enough ϕ, the more rigid particles can either show lower or higher normalized viscosity
depending on initial conditions. This points to a nontrivial fact that data handling in experiments
inherently contain statistical variances not only due to noise and natural imperfections and variety of
samples, but also due to the very nature of multistability of solutions reported here. This sheds a new
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light for future interpretations of the rheology of soft suspensions. Beyond a certain concentration,
the softer particles exhibit order (e.g., double file), whereas more rigid particles show disorder,
resulting in a much higher effective viscosity. Note finally that the appearance of order (soft enough
particles) and disorder (for more rigid particles) is not a 2D property, but also a 3D property, shown
both theoretically for model systems (drops, capsules, vesicles) and experimentally for red blood
cells [24]. The present study can thus serve as a guide for a systematic analysis in 3D.

V. CONCLUSION

A major central point of this study is that the existence of two attractors leads to a rheology which
depends on initial configurations. This happens in the dilute and the semidilute regimes, up to about
a concentration of 12%. Beyond that concentration, the attractors loose their identities. Still, the
viscosity contrast affects significantly the value of the effective viscosity as shown in Fig. 6. Several
diseases (such as malaria) are accompanied by hardening of the RBC cytoplasm, a fact which can be
mimicked by a higher internal viscosity (and thus higher viscosity contrast). This leads to a higher
effective viscosity in microcirculation compromising the efficiency of oxygen transport. This study
was dedicated to 2D and to a linear shear flow. An interesting extension should now be made for
3D and for a pipe flow which is a more relevant scenario for blood flow. Ordering of RBCs (and its
impact on rheology), similar to the reported result in 2D has already been identified in 3D [23,24].
This fact provides some confidence to the present study for its relevance to a more general situations.
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