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This paper investigates the thermal instability in a horizontal porous annulus with an
external wavy wall. The porous matrix is supposed to be filled by an incompressible
fluid. The model that we consider includes the heat equation and the hydrodynamics
equations under the Darcy law and Boussinesq approximation. The derived model with the
temperature-stream function is solved numerically using the alternating direction implicit
method. Our numerical results indicate that the heat transfer and the convective instability
depend strongly on the waviness of the external cylinder. The results of this paper confirm
that the heat transfer is enhanced when the waviness amplitude increases. It is noticed that
the thermoconvective instabilities are strongly affected by the undulation number.
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I. INTRODUCTION

Natural convection heat transfer in a porous medium has gained increased attention during the
last several decades. This interest is mainly due to its wide range of practical applications in modern
industry and engineering, such as compact heat exchangers, solar power collectors, geothermal
energy systems, cooling of nuclear reactors, movement of contaminants in groundwater, food
industries, and crude oil extraction, to name just a few.

The literature indicates that convection heat transfer inside a concentric annulus arises in multiple
applications in science and engineering, such power plant steam lines, buried electrical cables, oil
and gas transmission lines, and cryogenics. During the last few years, a large number of papers
have dealt with free convection in a horizontal porous annulus. Reference [1] was the first to study
the problem experimentally and numerically. The author used the Christiansen effect to visualize
the isotherms of radius ratio R = 2 and determined experimentally a different Nusselt number. The
perturbation technique was also used to obtain a two-dimensional steady-state solution. Numerous
other studies include Refs. [2–6], and recently Ref. [7] showed that at relatively high Rayleigh
numbers, thermal instabilities appear as steady counterrotating cells in the upper part of the annulus.
A similar behavior was observed for small gap widths.

Moreover, many studies on wavy-walled rectangular or square enclosures have been reported
in the literature. Reference [8] used the finite element technique based on the Galerkin method to
solve the problem of natural convection inside a porous cavity with a sinusoidal vertical wavy wall.
Reference [9] analyzed the effect of volumetric heat sources on natural convection in a wavy-walled
cavity. These authors found that the heat transfer rates depend mainly on the value of the wavy
walls’ amplitude. Reference [10] used the finite element method to analyze numerically the heat
transfer from a vertical wavy wall in a porous cavity. The author found that the convection process
is sensitive to the Rayleigh number, wave amplitude, wave phase, and number of waves. His results
showed that small sinusoidal drifts from the smoothness of a vertical wavy wall with a phase angle
of 60◦ and high frequency seem to enhance the heat transfer. Reference [11] used the Forchheimer-
Buongiorno approach to simulate the effect of thermal dispersion on the heat transfer inside a porous
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FIG. 1. Schematic of the problem and coordinate system.

wavy cavity filled with a nanofluid. The results proved that an increase in the undulation number
leads to a significant attenuation of the convective flow. It has been revealed, also, that the heat
transfer is more pronounced for relatively high undulation numbers. Reference [12] used a response
surface method (RSM) in combination with the finite element method to investigate convective heat
transfer of nanofluids in a wavy absorber collector. The RSM analysis shows that the best case for
the wavy wall implicates the possible smallest wave amplitude in an average wave number. More
recently, Ref. [13] used a Dupuit-Forchheimer model to analyze the convective heat transfer flow
of nanofluid in a porous medium over a wavy surface. Their results illustrate that the injection of
nanoparticles enhances the heat transfer rate.

The main objective of this paper is to investigate natural convection heat transfer in a horizontal
porous annulus with a wavy cold wall. According to the author’s best knowledge, this problem has
not been treated yet. The rest of the work is organized as follows. The mathematical formulation is
given in the next section. The numerical methods are presented in Sec. III, followed in Sec. IV by
discussion of some numerical data. The work is concluded in the last section.

II. PROBLEM DESCRIPTION AND MATHEMATICAL FORMULATION

The problem treated here is a porous layer saturated with an incompressible Newtonian fluid and
bounded by a horizontal concentric inner flat cylinder of radius ri and wavy outer cylinder. The
wavy wall of the enclosure is described by the relation rwavy = ro(1 − λ cos 2ηϕ), where ro is the
radius of the outer flat cylinder, λ is the amplitude of the sinusoidal profile, and η is the number of
undulations. The considered domain of interest is presented in Fig. 1. Both inner and outer cylinders
are kept at uniform, constant, and different temperatures Ti and To, respectively, with Ti > To. It is
taken into account that the flow is two-dimensional, steady, and laminar.

The porous medium is considered to be homogeneous. Under the Boussinesq approximation, the
basic steady conservation of thermal energy, momentum, and mass equations in polar coordinates
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system can be written as

(ρCp)m
∂T ∗

∂t∗ + (ρCp) f (V∗ · ∇)T ∗ = k∇2T ∗, (1)

V∗ = −K

μ
[∇P∗ + ρ0gβ(T ∗ − To)], (2)

∇ · V∗ = 0. (3)

The boundary conditions are as follows:
(1) On the inner cylinder surface (r∗ = ri ): u∗ = v∗ = 0, T ∗ = Ti

(2) On the outer cylinder surface (r∗ = rwavy): u∗ = v∗ = 0, T ∗ = To

where T ∗ is the temperature, V ∗ is the velocity, P∗ is the pressure, K is the permeability, μ is
the dynamic viscosity, ρ0 is the reference density, β is the coefficient of thermal expansion, and g
is the gravitational acceleration. The heat capacity of the saturated porous medium is considered
equivalent to (ρCp)m = ε(ρCp) f + (1 − ε)(ρCp)s where ε and ρ stand, respectively, for porosity
and fluid density. The subscript m designates the fluid-solid mixture, and subscripts f and s refer,
respectively, to the fluid properties and the solid matrix. k is the equivalent thermal conductivity.

To obtain the dimensionless model, we introduce the following scales: ri for distance,
r2

i (ρCp)m/k for time, k/ri(ρCp) f for velocity, 	T for temperature, and kμ/K (ρCp) f for pressure.
Therefore, the dimensionless governing equations can be rewritten as

∂T

∂t
+ (V · ∇)T = ∇2T, (4)

V = −∇P − RaT k, (5)

∇ · V = 0, (6)

where k is the unit vector oriented vertically downward (k = g
||g|| ), Ra is the Rayleigh number given

by Ra = gβK	Tri (ρCp) f

kν
, ν is the kinematic viscosity, and 	T = Ti − To is the temperature difference.

The dimensionless boundary conditions are as follows:

u = v = 0, T = 1 on r = 1,
(7)

u = v = 0, T = 0 on r = R (1 − λ cos 2ηϕ),

where R = ro
ri

is the flat cylinders’ radius ratio. Due to the physical symmetry of the problem the
following boundary conditions are added:

ϕ = 0, π :v = 0,
∂T

∂ϕ
= 0. (8)

The governing equations for the laminar natural convection in terms of stream function-
temperature formulation can be expressed as follows:

∇2ψ = −Ra

(
sin ϕ

∂T

∂r
+ cos ϕ

r

∂T

∂ϕ

)
, (9)

∂T

∂t
+ 1

r

∂ψ

∂ϕ

∂T

∂r
− 1

r

∂ψ

∂r

∂T

∂ϕ
= ∇2T, (10)

where the stream function is defined by

V =
(

1

r

∂ψ

∂ϕ
,−∂ψ

∂r

)
. (11)
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The corresponding boundary conditions take the following form:

r = 1 : T = 1 and
∂ψ

∂ϕ
= 0,

r = R (1 − λ cos 2ηϕ) : T = 0 and ψ = 0,

ϕ = 0, π :
∂T

∂ϕ
= ψ = 0. (12)

The local Nusselt number along the inner cylinder is estimated as the ratio of convective to
conductive heat transfer:

Nui(r = 1, ϕ) = − ln R
∂T

∂r

∣∣∣∣
r=1

, (13)

and the average Nusselt number evaluated at the inner cylinder can be written as

Nu = 1

S

∫ S

0
Nui ds, (14)

where S stands for the length of the wall formed by the inner cylinder.

III. NUMERICAL METHODS AND CODE VALIDATION

The mathematical problem along with boundary conditions was solved by the second-order
finite difference method using a nonuniform mesh for the radial coordinate. The discretized stream
function and energy equations were solved with the alternating directions implicit method. The
Thomas algorithm in conjunction with iterations was used to solve the resulting matrix systems. The
time limit for solution of the transient problem is considered as the steady-state solution. It should
be noted that there are many ways for choosing the initial conditions that can be introduced in the
computations. The initial conditions used in this work are the same as in Ref. [7]. Hence, as initial
conditions, the stream function is set to zero everywhere. However, the value of the temperature is
given as

T = 1 − log r

log R

M∑
m=1

N∑
n=0

bmn sin

(
mπ

log r

log R

)
cos(nϕ), (15)

where m and n stand, respectively, for the number of discretization points in the r-ϕ directions. As
presented in Refs. [14,15], the conduction heat transfer represented by 1 − log r

log R induces a unicellular
flow pattern, while the establishment of bicellular or multicellular flow regimes requires that bi, j = 0
except for b1,6 = −0.3, b1,7 = 0.3, b1,8 = −0.3, and b1,7 = 0.3. The iteration process is terminated
when the following criterion is satisfied in each node of the grid:

max

∣∣∣∣∣
ξ n+1

i, j − ξ n
i, j

ξ n
i, j

∣∣∣∣∣ < 10−8, (16)

where ξ designates T or ψ , the subscript i and j indices denote grid location in the (r, ϕ) plane, and
n refers to the iteration number.

The present model, in the form of an in-house code, has been validated against the other published
data for the case of concentric flat cylinders for R = 2 and Ra = 50, 100. The comparison is shown
in Table I where a good agreement is observed.

For the purpose of obtaining a grid-independent solution, a grid independence analysis is
conducted. In fact, numerical tests, using various mesh grids, were examined in order to determine
the best compromise between the grid-independent solutions and the calculation time. The results in
terms of average Nusselt number along the hot wall of the annulus for R = 2, Ra = 100, λ = 0.03,
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TABLE I. Average Nusselt number for R = 2 and λ = 0 and
comparison with literature.

Grid size Ra = 50 Ra = 100

[1] 49 × 49 1.328 1.829
[16] 25×25 1.362 1.902
[17] 30 ×44 1.335 1.844
[6] 10×10 1.341 1.861
[5] 10×10 1.341 1.861
[18] 50×50 1.342 1.835
[4] 30×95 1.344 1.867
[19] 161×101 1.338 1.861
[20] 10×18 1.317 1.865
[21] 100×240 1.343 1.868
[22] 50×50 1.3455 1.8752

This study 49×49 1.343 1.851

and η = 10 are presented in Table II. On the basis of the performed verifications, the structured grid
of 300 × 300 points has been selected for the further investigation.

IV. RESULTS AND DISCUSSIONS

Numerical analysis of the boundary value problem (9)–(12) has been carried out at the following
key parameters: radius ratio R = 2, Rayleigh number Ra = 50–100, amplitude of sinusoidal profile
λ = 0–0.45, and number of undulations η = 0–50. Particular efforts have been focused on the
effects of these parameters on heat transfer characteristics and thermoconvective instabilities.

Figure 2 illustrates the effect of undulation number on the average Nusselt number. It is revealed
that the maximum convective heat transfer rate on the inner cylinder is observed at η = 1, and then
the average Nusselt number decreases gradually with the increase of undulation number. This figure
shows that an increase of the amplitude λ leads to an intensification of the convective flow.

As presented in previous works [2,7], different flow regimes may develop depending on the initial
conditions used in the computation, the thickness of the annulus, and the value of the Rayleigh
number. In fact, thermoconvective instabilities appear by the development of additional convective
cells on the top of the annulus. Results show that, exceeding a threshold, a small perturbation of
the Rayleigh number leads to the development of a new branch of solutions where the flow pattern
structure is bicellular. This phenomenon called the bifurcation is generated by the thermoconvective
instabilities. The bifurcation point is characterized by the critical value of the Rayleigh number Rac

TABLE II. Mesh effect on the average Nusselt number of the
hot wall for R = 2, Ra = 100, λ = 0.03, and η = 10.

Grid size Nui× j
Nui× j−Nu401×401

Nu401×401
× 100%

31 × 31 1.9923 0.6415
101 × 101 1.9804 0.0404
151 × 151 1.9800 0.0202
201 × 201 1.9798 0.0101
251 × 251 1.9797 0.0051
301 × 301 1.9797 0.0051
401 × 401 1.9796 –
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FIG. 2. Average Nusselt number as function of η for Ra = 100 and different values of λ.

under which the bicellular flow regime transits towards a unicellular one (see Refs. [2,4,5,7]). The
first step of the numerical determination of the bifurcation point consists of obtaining a bicellular
flow pattern by considering a relatively high value of Rayleigh number. Then this latter value is
gradually decreased until the unicellular flow structure is met.

For a flat horizontal porous annulus, the bifurcation point is determined at Rac = 62.4 (Fig. 3).
Therefore, the flow transits from a unicellular flow structure for Ra = 62.4 towards a bicellular one
where a second cell appears in the top of the annulus for Ra = 62.5. The cells are contrarotative.
These data are in good agreement with the already published results. In fact, Ref. [6] determined
the bifurcation point between the unicellular and bicellular flow regimes at Rac = 65.5 ± 0.5.
Reference [15] found that this flow regime transition occurs at Rac = 67. This result has been
validated further by the results of Ref. [4], which define the bifurcation point at 60.5 < Rac < 61.5.
Moreover, the results obtained by Refs. [5,21] have determined numerically the flow regime
transition as Rac = 62.

Our numerical simulations show that the flow pattern depends mainly on the waviness of the outer
cylinder. Hence, the unicellular-bicellular regime transition is highly affected. Figure 4 illustrates
that, for η = 30, the two-dimensional unicellular-bicellular regime transition occurs at Ra = 62.8,
Ra = 63.4, Ra = 64.1, and Ra = 65.6 when λ equals 0.05, 0.15, 0.2, and 0.25, respectively.

FIG. 3. Streamlines (left) and isotherms (right) for λ = η = 0.
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FIG. 4. Streamlines (left) and isotherms (right) for η = 30 and different values of λ.
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FIG. 5. Critical Rayleigh number as a function of undulation number for different λ.

The variation of the bifurcation point as a function of the undulation number for different values
of the wavy wall amplitude is shown in Fig. 5. It is clearly noticed that the thermoconvective
instabilities are more pronounced when the undulation number equals 6 and 7 for λ < 0.25 and
λ = 0.25, respectively. It was also observed that, for 7 � η � 13, the bifurcation point increases
with the increase of the undulation number. However, for η � 15, no significant change on
the thermoconvective instability is observed. Also, it is worth noting that the thermoconvective
instabilities are more pronounced for high amplitudes when the undulation number is between 6
and 12. However, these instabilities are less pronounced for high amplitudes when 3 � η � 6 or
η � 13.

V. CONCLUSION

The thermal instability in a horizontal porous annulus with an external wavy wall has been
studied. The porous matrix is supposed to be saturated by an incompressible fluid. The derived
model with the temperature-stream function formulation is solved numerically using the finite
difference alternating direction implicit method. Particular efforts have been focused on the effects
of the Rayleigh number and the waviness of the external cylinder on the heat transfer and the flow
pattern. Results show that the heat transfer and the convective instability depend on the waviness
of the external wall. It has been found that the natural convection is an increasing function of
the amplitude of sinusoidal profile. Moreover, one can conclude that the heat transfer increases
with the undulation number when η � 3 and decreases for values of η � 3. It has been also shown
that the thermoconvective instabilities are more pronounced with the undulation number when
3 � η � 6. When the number of the undulation is between 7 and 12, the bifurcation point increases
with η. It is also worth noting that exceeding a given threshold (η = 15), the number of undulations
has no significant effect on the thermoconvective instabilities.
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