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A time-evolution of a slightly rarefied gas from a uniform equilibrium state at rest
is investigated on the basis of the linearized Boltzmann equation under the acoustic
time scaling. By a systematic asymptotic analysis, linearized Euler sets of equations and
acoustic-boundary-layer equations are derived, together with their slip and jump boundary
conditions, as well as the correction formula in the Knudsen layer. Analysis is done up
to the first order of the Knudsen number (Kn), with Kn1/2 being the small parameter.
Several rarefaction effects, which are known as the effects of the second order in Kn
in the diffusion scaling, are enhanced to be of the first order in Kn. This is because the
variation of the macroscopic quantities along the normal direction is steep in the boundary
layer and the compressibility of the gas is comparatively strong. The occurrence of secular
terms associated with the Hilbert expansion is pointed out and a remedy for it is also
given. Finally, as an application example, a sound propagation in a half space caused by a
sinusoidal oscillation of flat boundary is examined on the basis of the Bhatnagar–Gross–
Krook equation. The asymptotic solution agrees well with the direct numerical solution.
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I. INTRODUCTION

Propagation of sound waves in a gas is a classical problem in fluid dynamics. The application
of the conventional fluid dynamics implicitly requires that the wavelength (a characteristic length)
is long enough compared to the mean free path of gas molecules. This assumption breaks down
in low-pressure circumstances. It also breaks down when the oscillation frequency is extremely
high. Here, we generically call the gas in these situations a rarefied gas. To describe their behavior
correctly, the kinetic theory of gases is required. Sound propagation in a rarefied gas has been studied
extensively for more than half a century [1–14]. In the present paper, we shall focus on the acoustic
behavior of gases in the slip-flow regime.

When the Knudsen number (i.e., the ratio of the mean free path to the characteristic length)
is small, the overall behavior of the gas is well described by fluid-dynamic-type equations under
their appropriate slip and jump boundary conditions. The regime of small Knudsen numbers is
thus called the slip-flow regime. A correction due to the kinetic effect is required within a thin
layer (the Knudsen layer) with a few mean-free-path thickness adjacent to the body surface. A
systematic asymptotic theory has been established for steady boundary-value problems [15–18]. As
to the unsteady problems under the acoustic scaling, the behavior of the gas can be described by the
linearized Euler set of equations in the bulk region; see Ref. [17]. In Ref. [12], a sound propagation
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in a polyatomic rarefied gas in contact with its condensed phase is considered. For a vapor flow,
the kinetic effect appears from the leading order near the vapor-liquid interfaces. Accordingly,
the primary interest in this reference is to derive the appropriate fluid-dynamic-type system and
Knudsen-layer corrections near the interface at the level of the leading order. The linearized Euler
set of equations and acoustic-boundary-layer equations have been obtained, together with the
appropriate boundary conditions at the interface and the associated corrections in the Knudsen layer,
at the level of the leading order [12].

In the present work, we consider a monatomic rarefied gas over a solid boundary whose position
and temperature change in time under the acoustic scaling. Under this scaling, steep variation of
fluid-dynamic quantities is expected to enhance the non-Navier–Stokes effect, compared with the
situation under the diffusion scaling. We try to clarify what kind of rarefaction effects appear in the
slip-flow regime under the acoustic scaling.

The paper is organized as follows. The problem is stated in Sec. II and formulated in Sec. III.
A preliminary analysis is given in Sec. IV for the clarity of motivation to the main analyses to
be developed in Sec. V. In Sec. V, by a systematic asymptotic analysis, linearized Euler sets of
equations and boundary-layer equations are derived, together with their slip and jump boundary
conditions. The correction formulas in the Knudsen layer are also presented. They are obtained
up to the order of the Knudsen number. Section VI discusses the features of the system, where
the occurrence of secular terms in the Hilbert solution is pointed out and a remedy to it is
given. In Sec. VII, as an illustrative example, a sound propagation in a half space caused by a
sinusoidal oscillation of flat boundary is investigated on the basis of the Bhatnagar–Gross–Krook
(BGK) equation. The asymptotic solution agrees well with the numerical solution. In particular, the
proposed remedy for the secular terms is confirmed to be effective. Concluding remarks are given
in Sec. VIII.

II. PROBLEM AND ASSUMPTION

Let us consider a monatomic rarefied gas around smooth rigid bodies of arbitrary shapes, which
is initially at a uniform equilibrium state at rest with density ρ0 and temperature T0. The initial state
will be taken as the reference equilibrium state. There is no external force. We will investigate the
time-dependent behavior of the gas under the following assumptions: (i) the behavior of the gas is
described by the Boltzmann equation for monatomic molecules; (ii) the gas molecules are reflected
locally isotropically on the surface of the solid bodies by a rule of gas-surface interaction prescribed
later in details; (iii) the deviation from the reference equilibrium state is so small that the equation
and the initial and boundary conditions can be linearized around that equilibrium state; (iv) the mean
free path �0 (or time) of the gas molecules at the reference equilibrium state is much smaller than
the characteristic length (or time) of the problem; (v) the time evolution is initiated by a change of
the surroundings from the reference equilibrium state with the characteristic time scale.

With a reference timescale t0 and length scale L, we denote by t0t the time, by Lx the position, by
(2RT0)1/2ζ the molecular velocity, and by ρ0(2RT0)−3/2[1 + φ(t, x, ζ)]E (ζ ) the velocity distribution
function of molecules, respectively. Here, R is the specific gas constant (the Boltzmann constant kB

divided by the mass of a molecule m), E (ζ ) = π−3/2e−ζ 2
, and ζ = |ζ|. We denote by ρ0(1 + ω) the

density of the gas, by (2RT0)1/2ui the flow velocity, by T0(1 + τ ) the temperature, by p0(1 + P) the
pressure with p0 = ρ0RT0, by p0(δi j + Pi j ) the stress tensor, and by p0(2RT0)1/2Qi the heat-flow
vector, respectively. Here δi j is the Kronecker delta. They are defined in terms of φ as

ω =
∫

φEdζ, (1)

ui =
∫

ζiφEdζ, (2)

τ = 2

3

∫ (
ζ 2 − 3

2

)
φEdζ, (3)
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P = ω + τ, (4)

Pi j = 2
∫

ζiζ jφEdζ, (5)

Qi =
∫

ζi

(
ζ 2 − 5

2

)
φEdζ. (6)

The range of integration is the whole space of ζ. Equation (4) is the linearized equation of state.
From the assumption (iv), the Knudsen number Kn = �0/L is sufficiently small.
The linearization assumption (iii) implies that the perturbation φ is much smaller than Kn,

because the square and higher-order terms are discarded for the former but retained for the latter.
Accordingly, the Mach number Ma is much smaller than Kn.

In the present paper, we are interested in the acoustic phenomena induced by slow motion or
small variation of surface temperature of the bodies. Thus we set the appropriate reference time as
t0 = L/(2RT0)1/2 for their descriptions. Since one of the primary sources of the sound wave is an
oscillation of the bodies, the surface of the bodies may have the velocity component normal to itself
in the present paper.

III. FORMULATION OF THE PROBLEM

From assumptions (i)–(v), the behavior of the gas is described by the following initial and
boundary-value problem for φ:

∂tφ(t, x, ζ) + ζi∂iφ(t, x, ζ) = 1

k
L[φ](t, x, ζ), (7)

φ(t, x, ζ) =
∫

(ζi∗−uwi )ni<0

|ζ̊k∗nk|
|ζ̊ jn j |

R(ζ̊∗, ζ̊)[φ(t, x, ζ∗) − φew(t, x, ζ∗)]
E (ζ∗)

E (ζ )
dζ∗

+ φew(t, x, ζ), [xi = xwi, (ζi − uwi )ni > 0], (8)

φ(0, x, ζ) = 0. (9)

Here ∂t = ∂/∂t , ∂i = ∂/∂xi, k = (
√

π/2)Kn, ζ∗ = |ζ∗|, ζ̊ = ζ − (uw · n)n, ζ̊∗ = ζ∗ − (uw · n)n,
φew = 2ζiuwi + (ζ 2 − 3

2 )τw, L is the linearized collision operator, R is the linearized reflection
kernel, Lxwi is the surface position, ni is the unit vector normal to the surface pointed to the gas, and
(2RT0)1/2uwi and T0(1 + τw) are the velocity and temperature of the body surface, respectively. For
R, the following fundamental properties are assumed:

(a) R(ζ̊∗, ζ̊) � 0, (ζ̊ini > 0, ζ̊i∗ni < 0).
(b) Impermeability:

∫
ζ̊ini>0 R(ζ̊∗, ζ̊)d ζ̊ = 1, (ζ̊i∗ni < 0).

(c) Let ϕ be ϕ(ζ̊) = c0 + ciζ̊i + c4ζ̊
2, where c0, ci, and c4 are independent of ζ̊. Among such ϕ,

only ϕ = c0 satisfies the relation E (ζ̊ )ϕ(ζ̊) = ∫
ζ̊i∗ni<0

|ζ̊k∗nk |
|ζ̊ j n j | R(ζ̊∗, ζ̊)ϕ(ζ̊∗)E (ζ̊∗)d ζ̊∗ (ζ̊ini > 0).

(d) Detailed balance:

|ζ̊i∗ni|R(ζ̊∗, ζ̊)E (ζ̊∗) = |ζ̊ini|R(−ζ̊,−ζ̊∗)E (ζ̊ ), (ζ̊ini > 0, ζ̊i∗ni < 0).

(e) Local isotropy: for any orthogonal transformation matrices li j (thus, lik l jk = δi j) that meet
the condition ni = li jn j ,∫

ζ̊i∗ni<0

|ζ̊k∗nk|
|ζ̊ jn j |

R(ζ̊∗, ζ̊) f (li j ζ̊ j∗)E (ζ̊∗)d ζ̊∗ =
∫

ζ̊i∗ni<0

|ζ̊k∗nk|
|l jiζ̊in j |

R(ζ̊∗, li j ζ̊ j ) f (ζ̊∗)E (ζ̊∗)d ζ̊∗.
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Here, ζ̊ = |ζ̊| and ζ̊∗ = |ζ̊∗|. For the diffuse reflection boundary condition, R(ζ̊∗, ζ̊) =
2
√

πζ̊ jn jE (ζ̊ ). The collision operator L acts on a function of ζ and is defined by

L[ψ (ζ)](ζ) =
∫

[ψ (ζ′
∗) + ψ (ζ′) − ψ (ζ∗) − ψ (ζ)]

× B̂

( |α · (ζ∗ − ζ)|
|ζ∗ − ζ| , |ζ∗ − ζ|

)
E (ζ∗)d
(α)dζ∗, (10)

ζ′
∗ = ζ∗ − [(ζ∗ − ζ) · α]α, ζ′ = ζ + [(ζ∗ − ζ) · α]α. (11)

Here α is a unit vector, d
(α) is the solid-angle element in the direction of α, B̂ is a nonnegative
function which depends on the intermolecular potential. The range of integration is the whole
directions of α and the whole space of ζ∗. For hard-sphere molecules, B̂ = |α · (ζ∗ − ζ)|/4(2π )1/2.

Following Sone’s method [17], we seek the solution of the problem Eqs. (7)–(9).

IV. ATTEMPT IN TERMS OF THE KNUDSEN NUMBER EXPANSION

At first, we seek a solution φ∗
H that changes moderately both in t and xi in a power series of

k: φ∗
H = φ∗

H0 + kφ∗
H1 + · · · . Corresponding macroscopic quantities denoted by h∗

H (h = ω, ui, τ , P,
Pi j , Qi) are also expanded in a power series of k: h∗

H = h∗
H0 + kh∗

H1 + · · · . The h∗
Hm (m = 0, 1, ...) is

expressed by Eqs. (1)–(6) with φ being replaced by φ∗
Hm. Then, by a usual procedure as in Ref. [17],

the leading-order solution φ∗
H0 is found to be a local Maxwellian,

φ∗
H0 = P∗

H0 + 2ζiu
∗
iH0 +

(
ζ 2 − 5

2

)
τ ∗

H0, (12)

such that h∗
H0 satisfies the linearized Euler set of equations and the equation of state:

∂tω
∗
H0 + ∂ ju

∗
jH0 = 0, (13)

∂t u
∗
iH0 + 1

2∂iP
∗
H0 = 0, (14)

3
2∂t P

∗
H0 + 5

2∂ ju
∗
jH0 = 0, (15)

P∗
H0 = ω∗

H0 + τ ∗
H0. (16)

At the initial instance, it is assumed that the gas is in the reference equilibrium state at rest and that
uwi = 0 and τw = 0. Thus, by setting h∗

H0 = 0 (t = 0), φ∗
H0 satisfies the initial condition. However,

φ∗
H0 cannot satisfy the boundary condition as we will see below.

Suppose that φ∗
H satisfies the boundary condition Eq. (8). Then, φ∗

H0 ought to satisfy Eq. (8)
with φew being replaced by φ∗

ew0, where φ∗
ew0 = 2ζiu∗

wi0 + (ζ 2 − 3
2 )τ ∗

w0 and u∗
wi0 and τ ∗

w0 are the
leading-order term of uwi and τw in their expansion in k. Because φ∗

H0, φ∗
ew0, and E are smooth in ζ∗

and ζ, the part [φ∗
H0(t, x, ζ∗) − φ∗

ew0(t, x, ζ∗)]E (ζ∗)/E (ζ ) on the right-hand side can be replaced by
[φ∗

H0(t, x, ζ̊∗) − φ∗
ew0(t, x, ζ̊∗)]E (ζ̊∗)/E (ζ̊ ) within the negligible error in the linearized framework.

Therefore, from the property (c) in Sec. III, φ∗
H0 satisfies the boundary condition if and only if

u∗
iH0 = u∗

wi0, τ ∗
H0 = τ ∗

w0, (17)

on the boundary. However, these conditions are too many as the conditions for the linearized
Euler set of equations. To illustrate it, let us first combine Eqs. (14) and (15) to derive
the wave equation ∂2

t P∗
H0 − 5

6∂2
j P∗

H0 = 0. Then, multiply Eq. (14) by ni to have ni∂iP∗
H0 =

−2∂t (niu∗
iH0) within the negligible error on the surface, because ∂t ni = O(uwi ). When Eq. (17)

holds, its partial information niu∗
iH0 = niu∗

wi0 gives the Neumann boundary condition ni∂iP∗
H0 =

−2∂t (niu∗
wi0) for the wave equation, which is enough to determine P∗

H0 under a given initial
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data. Once P∗
H0 is determined, the other quantities u∗

iH0, ω∗
H0, and τ ∗

H0 are immediately ob-
tained by integrating Eqs. (14) and (13) with respect to t under the initial conditions and
with the aid of Eq. (16). In this process, the remaining part of the condition Eq. (17),
i.e., (δi j − nin j )u∗

jH0 = (δi j − nin j )u∗
w j0 and τ ∗

H0 = τ ∗
w0 are not used at all. Hence, the system

Eqs. (13)–(17) is overdetermined.
When the moderate solution does not satisfy the boundary condition, it is a usual procedure to

introduce the Knudsen layer adjacent to the boundary. In this procedure, we express the solution
φ as φ = φ∗

H + φ∗
K in the layer with the thickness of the order of k (the Knudsen layer), where φ∗

K
varies with the distance from the boundary in the scale of O(k) [ni∂iφ

∗
K = k−1O(φ∗

K )] and vanishes
sufficiently fast away from the boundary. However, φ∗

K is not capable of working as a correction at
the leading order. This is a consequence of the existence and uniqueness theorem for the half-space
problem of the linearized Boltzmann equation [19] and the fact that φ∗

H0 is a local Maxwellian. The
procedure constructing the entire solution with the aid of the Knudsen layer does not work.

Judging from the above facts and as discussed in Refs. [12,17], a boundary layer of diffusive
nature is expected to appear in addition to the Knudsen layer. Denoting by Ld the characteristic
length of this layer, Ld ∼ √

(μ0/ρ0)t0, where μ0 is the reference viscosity. In view of the relation
of μ0 to �0, Ld ∼ √

kL, so that Ld is sufficiently small compared to L [20]. In the rest of the present
paper, we seek the solution by taking account of this layer and expand the velocity distribution
function and macroscopic quantities in a power series of

ε =
√

k. (18)

We will start the analysis again from seeking the moderate solution.

V. ASYMPTOTIC ANALYSIS

A. Hilbert solution

Putting aside the initial and boundary conditions, we seek the Hilbert solution φH that changes
moderately both in t and xi. Corresponding macroscopic quantities are denoted by hH (h = ω, ui, τ ,
P, Pi j , Qi). The φH and hH are expanded in a power series of ε:

φH = φH0 + εφH1 + ε2φH2 + ε3φH3 + · · · , (19)

hH = hH0 + εhH1 + ε2hH2 + ε3hH3 + · · · . (20)

Here hHm (m = 0, 1, ...) is defined by Eqs. (1)–(6) with φ being replaced by φHm. Substituting the
expansion Eq. (19) and k = ε2 into Eq. (7) and arranging the terms by the order of ε, a series of
linear integral equations for φHm is obtained as follows:

L[φH0] = 0, (21)

L[φH1] = 0, (22)

L[φHm] = ∂tφHm−2 + ζi∂iφHm−2, (m � 2). (23)

The solutions of Eqs. (21) and (22) are given as

φH0 = φeH0, φH1 = φeH1, (24)

where

φeHm = PHm + 2ζiuiHm + (
ζ 2 − 5

2

)
τHm, (m = 0, 1, ...). (25)

Corresponding to Eq. (24), Pi jH0, QiH0, Pi jH1, and QiH1 are given by

Pi jH0 = PH0δi j, QiH0 = 0, Pi jH1 = PH1δi j, QiH1 = 0. (26)
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Equation (23) for φHm (m � 2) is inhomogeneous and it can be solved provided that the
solvability condition∫

ψJ (∂tφHm−2 + ζi∂iφHm−2)Edζ = 0, (J = 0, 1, 2, 3, 4), (27)

or equivalently

∂tωHm−2 + ∂ ju jHm−2 = 0, (28)

∂t uiHm−2 + 1
2∂ jPi jHm−2 = 0, (29)

∂t PHm−2 + 5
3∂ ju jHm−2 + 2

3∂ jQ jHm−2 = 0, (30)

are satisfied. Here ψJ is the collision invariant, i.e., ψ0 = 1, ψi = ζi (i = 1, 2, 3), and ψ4 = ζ 2.
Substituting Eq. (26) into the solvability condition Eqs. (28)–(30) for m = 2, 3, the following

sets of equations are obtained: ⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂tωH0 + ∂ ju jH0 = 0, (31)

∂t uiH0 + 1
2∂iPH0 = 0, (32)

3
2∂t PH0 + 5

2∂ ju jH0 = 0, (33)⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂tωH1 + ∂ ju jH1 = 0, (34)

∂t uiH1 + 1
2∂iPH1 = 0, (35)

3
2∂t PH1 + 5

2∂ ju jH1 = 0. (36)

Both sets of Eqs. (31)–(33) and (34)–(36) are linearized Euler sets of equations. No attenuation
effects appear up to this level.

With the aid of Eqs. (24) and (31)–(33), the equation for φH2 can be rewritten as

L[φH2] = ζi j∂iu jH0 + ζi
(
ζ 2 − 5

2

)
∂iτH0, (37)

where ζi j = ζiζ j − (1/3)ζ 2δi j and fi j = fi j + f ji − (2/3) fkkδi j . This equation can be solved to
yield

φH2 = φeH2 − 1
2ζi jB(ζ )∂iu jH0 − ζiA(ζ )∂iτH0, (38)

where A and B are functions defined in Appendix A. Equation (38) leads to the following expression
of Pi jH2 and QiH2:

Pi jH2 = PH2δi j − γ1∂iu jH0, QiH2 = − 5
4γ2∂iτH0, (39)

where γ1 and γ2 are constants defined in Appendix A. Substituting Eq. (39) into the solvability
condition Eqs. (28)–(30) for m = 4, the following is obtained:

∂tωH2 + ∂ ju jH2 = 0, (40)

∂t uiH2 + 1
2∂iPH2 = 1

2γ1∂ j∂iu jH0, (41)

3
2∂t PH2 + 5

2∂ ju jH2 = 5
4γ2∂

2
j τH0. (42)

This is again a linearized Euler set of equations. The main difference from Eqs. (31)–(33) and
(34)–(36) is the occurrence of the attenuation effects.

Equations (31)–(33), (34)–(36), and (40)–(42) are the linearized Euler sets of equations for hHm

(m = 0, 1, 2; h = ω, ui, τ , P). They are supplemented by the equation of state:

PHm = ωHm + τHm, (m = 0, 1, 2). (43)
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B. Acoustic boundary layer

Obviously, φH0 in Sec. V A is identical to φ∗
H0 in Sec. IV. Hence, the same arguments as those

in Sec. IV about the latter apply, and φH0 is found not to match the boundary condition. The
boundary-layer correction of diffusive nature needs to be introduced. Let us express the solution φ as
φ = φH + φB in the layer with the thickness of the order of ε, where φB varies with the distance from
the boundary in the scale of O(ε) [ni∂iφB = ε−1O(φB)] and vanishes sufficiently fast away from the
boundary [21]. Corresponding macroscopic quantities are denoted by hB (h = ω, ui, τ , P, Pi j , Qi).

The φB satisfies the same equation as φH or φ. We shall, however, rewrite it by a new coordinate
system which is more suitable in describing the boundary layer. Let us first introduce coordinates
χ1 and χ2 fixed on the surface and time t to express the position xwi on the boundary by

xwi = xwi(t, χ1, χ2). (44)

Here, χ1 and χ2 are orthogonal to each other. We denote by t (1)
i and t (2)

i the tangential unit vectors
along the coordinates χ1 and χ2, respectively. The χ1 and χ2 are taken so that ni, t (1)

i , and t (2)
i form

the right-handed system with this order. The velocity of the boundary uwi and the unit normal vector
to the boundary ni are also the functions of t , χ1, and χ2:

uwi(t, χ1, χ2) = ∂t xwi, (45)

ni(t, χ1, χ2) = (∂χ1 xw × ∂χ2 xw)i

|∂χ1 xw × ∂χ2 xw| , (46)

where ∂χ1,2 = ∂/∂χ1,2. Then we introduce a stretched coordinate y normal to the boundary as

xi = εyni(t, χ1, χ2) + xwi(t, χ1, χ2). (47)

Then, within the negligible error in the linearized framework, the original equation for φB is
transformed into

∂tφB + ζn

ε
∂yφB + ζi

(
∂iχ1∂χ1 + ∂iχ2∂χ2

)
φB = 1

ε2
L[φB], (48)

where ∂y = ∂/∂y and ζn = ζini. By assumption, φB and hB vanish rapidly as y → ∞:

φB → 0 as y → ∞, (49)

hB → 0 as y → ∞. (50)

By expanding φB and hB in a power series of ε as [22]

φB = φB0 + εφB1 + ε2φB2 + · · · , (51)

hB = hB0 + εhB1 + ε2hB2 + · · · , (52)

we have a series of equations for φBm (m = 0, 1, 2, 3, 4):

L[φB0] = 0, (53)

L[φB1] = ζn∂yφB0, (54)

L[φB2] = ζn∂yφB1 + ∂tφB0 + ζiDi[φB0], (55)

L[φB3] = ζn∂yφB2 + ∂tφB1 + ζiDi[φB1] + ζiD(1)
i [φB0], (56)

L[φB4] = ζn∂yφB3 + ∂tφB2 + ζiDi[φB2] + ζiD(1)
i [φB1] + ζiD(2)

i [φB0]. (57)
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Here

Di[ f ] = (∂iχ1)w∂χ1 f + (∂iχ2)w∂χ2 f ,

D(1)
i [ f ] = yn j[(∂ j∂iχ1)w∂χ1 f + (

∂ j∂iχ2
)

w∂χ2 f ],

D(2)
i [ f ] = 1

2 y2n jnk[(∂k∂ j∂iχ1)w∂χ1 f + (∂k∂ j∂iχ2)w∂χ2 f ],

and (·)w denotes the value on the boundary (y = 0). From Eqs. (49) and (50), φBm and hBm (h = ω,
ui, τ , P, Pi j , Qi) also vanish sufficiently fast as y → ∞:

φBm → 0 as y → ∞, (58)

hBm → 0 as y → ∞. (59)

For Eqs. (54)–(57) to be solvable, the condition∫
ψJ

(
ζn∂yφBm−1 + ∂tφBm−2 + ζiDi[φBm−2] + ζiD(1)

i [φBm−3]

+ζiD(2)
i [φBm−4]

)
Edζ = 0, (J = 0, 1, 2, 3, 4), (60)

or equivalently

∂y(n ju jBm−1) + ∂tωBm−2 + D j[u jBm−2] + D(1)
j [u jBm−3] + D(2)

j [u jBm−4] = 0, (61)

1
2∂y(n jPi jBm−1) + ∂t uiBm−2 + 1

2D j[Pi jBm−2] + 1
2D

(1)
j [Pi jBm−3] + 1

2D
(2)
j [Pi jBm−4] = 0, (62)

2
5∂y(n jQjBm−1) + ∂tτBm−2 − 2

5∂t PBm−2 + 2
5

(
D j[QjBm−2] + D(1)

j [QjBm−3] + D(2)
j [QjBm−4]

) = 0,

(63)

must be satisfied for m = 1, 2, 3, 4. Here, the quantities φBn and hBn (n � −1) should be read as
zero.

The solution process of Eqs. (53)–(57) is similar to that in Sec. V A. Here, we omit the details and
show the resulting set of equations for the boundary-layer correction up to the order of the Knudsen
number:

∂y(niuiB0) = 0, (64)

∂yPB0 = 0, (65)

∂t
(
t (α)
i uiB0

) − 1

2
γ1∂

2
y

(
t (α)
i uiB0

) = 0, (66)

∂tτB0 − 1

2
γ2∂

2
y τB0 = 0, (67)

∂y(niuiB1) = −∂tωB0 +
2∑

β=1

[
(−1)βg3−βt (β )

i uiB0 − χβ,β∂χβ

(
t (β )
i uiB0

)]
, (68)

∂yPB1 = 0, (69)

∂t
(
t (α)
i uiB1

) − 1

2
γ1∂

2
y

(
t (α)
i uiB1

) = γ1κ̄∂y
(
t (α)
i uiB0

)
, (70)

∂tτB1 − 1

2
γ2∂

2
y τB1 = γ2κ̄∂yτB0, (71)
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∂y(niuiB2) = −∂tωB1 − 2κ̄niuiB1 +
2∑

β=1

[−χβ,β∂χβ

(
t (β )
i uiB1

) + (−1)βg3−βt (β )
i uiB1

+ yκβχβ,β∂χβ

(
t (β )
i uiB0

) − yϑχ3−β,3−β∂χ3−β

(
t (β )
i uiB0

)
− (−1)βy(κ3−βg3−β − ϑgβ )t (β )

i uiB0
]
, (72)

∂y

[
PB2 − 1

6
(γ1γ2 − 4γ3)∂2

y τB0

]
= −2∂t (niuiB1) + γ1∂

2
y (niuiB1), (73)

∂t (t
(α)
i uiB2) − 1

2
γ1∂

2
y (t (α)

i uiB2)

= γ1κ̄∂y
(
t (α)
i uiB1

) + 1

2
γ1

⎧⎨⎩−
2∑

β=1

(−1)βg3−βχβ,β∂χβ

(
t (α)
i uiB0

)

+ 3(−1)α
2∑

β=1

gβχβ,β∂χβ
(t (3−α)

i uiB0) +
2∑

β=1

χβ,β∂χβ

[
χβ,β∂χβ

(
t (α)
i uiB0

)]

+
2∑

β=1

(−1)α+β+1χβ,β∂χβ

[
χ3−β,3−β∂χ3−β

(
t (3−α)
i uiB0

)] − y
(
κ2

1 + κ2
2 + 2ϑ2

)
∂y
(
t (α)
i uiB0

)

+ (
t (α)
i uiB0

)
[−2κακ̄ − 2

(
g2

1 + g2
2

) +
2∑

β=1

(−1)βχβ,β∂χβ
g3−β ]

+ (
t (3−α)
i uiB0

)
[2ϑκ̄ + (−1)α

2∑
β=1

χβ,β∂χβ
gβ]

⎫⎬⎭ − 1

2
χα,α∂χα

[
PB2 − 1

6
(γ1γ2 − 4γ3)∂2

y τB0

]

− 1

4
(γ1γ10 − 2γ6)∂4

y

(
t (α)
i uiB0

)
, (74)

∂tτB2 − 1

2
γ2∂

2
y τB2 = 2

5
∂t PB2 + 1

2
γ2

{
2κ̄∂yτB1 − y

(
κ2

1 + κ2
2 + 2ϑ2

)
∂yτB0

+
2∑

β=1

[χβ,β∂χβ
(χβ,β∂χβ

τB0) − (−1)βg3−βχβ,β∂χβ
τB0]

}

− 1

10

(
γ2γ3 − 13

2
γ11

)
∂4

y τB0. (75)

Equations (64)–(75) are supplemented by the equation of state:

PBm = ωBm + τBm, (m = 0, 1, 2). (76)

In Eqs. (66), (70), and (74), α = 1, 2. The γ3, γ6, γ10, and γ11 are constants defined in Appendix A.
The κα , gα , and ϑα are determined by the geometric properties of the boundary and the χα-
coordinate curve on it [18]:

χα,α∂χα
t (α)
i = −καni − (−1)αgαt (3−α)

i , (77)

χα,α∂χα
t (3−α)
i = (−1)α

(−ϑαni + gαt (α)
i

)
, (78)

χα,α∂χα
ni = καt (α)

i + (−1)αϑαt (3−α)
i , (79)
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where κα/L, gα/L, and ϑα/L are the normal curvature, geodesic curvature, and geodesic torsion [23]
on the χα-coordinate curve at the point xwi(t, χ1, χ2), respectively. In addition, ϑ1 = −ϑ2 ≡ ϑ , κ̄ =
(κ1 + κ2)/2, and χα,α = |∂χα

xw|−1. The κ̄/L is the mean curvature. The κα is taken negative when
the center of curvature of the χα-coordinate curve lies on the side of the gas. The gα is taken positive
when the center of curvature of the curve, which is generated by projecting the χα-coordinate curve
to the tangential surface at the point xwi(t, χ1, χ2), lies in the direction of n × t (α) when it is looked
at from xwi. The ϑα is taken positive when the geodesic tangent to the χα-coordinate curve at the
point xwi(t, χ1, χ2) departs from its osculating plane in the direction of the binormal vector. The κα ,
gα , and ϑ are functions only of χ1 and χ2. Although the sign of κα in Eqs. (77)–(79) is opposite to
that in Eq. (6.61) in Ref. [18], it is due to the difference between the two definitions.

As for the expressions of φBm (m = 0, 1, 2), Pi jBm, and QiBm (m = 0, 1, 2, 3), the reader is
referred to Appendix B.

C. Knudsen layer and slip/jump boundary conditions

In Secs. V A and V B, we obtain the sets of equations which describe the overall behavior of the
gas and its correction in the boundary layer up to the order of the Knudsen number. However, we
have not yet taken into account the initial and boundary conditions, i.e., Eqs. (9) and (8).

At the initial instance, it is assumed that the gas is in the reference equilibrium state at rest and
that uwi = 0 and τw = 0. Thus, if we put

hHm = 0, hBm = 0, (t = 0; m = 0, 1, 2), (80)

then the sum of the Hilbert and boundary-layer solutions matches the initial and boundary conditions
at the initial instance. However, as the time goes on, it departs from a Maxwellian, except for the
leading order, and thus ceases to match the boundary condition. Hence, we need to introduce the
so-called Knudsen-layer correction in the thin layer with the thickness of a few mean free paths in
the vicinity of the boundary.

Since the sum of the Hilbert and boundary-layer solutions is a Maxwellian at the leading order,
from the property (c) in Sec. III, it matches the boundary condition Eq. (8) at this order provided
that

niuiH0 + niuiB0 = niuwi0, (xi = xwi ), (81)

t (α)
i uiH0 + t (α)

i uiB0 = t (α)
i uwi0, (xi = xwi; α = 1, 2), (82)

τH0 + τB0 = τw0, (xi = xwi ), (83)

are satisfied on the boundary. Here, uwim and τwm are the coefficients of the expansion of
the boundary data, i.e., uwi = uwi0 + εuwi1 + ε2uwi2 + · · · and τw = τw0 + ετw1 + ε2τw2 + · · · . In
contrast to the case in Sec. IV, the condition Eqs. (81)–(83) is compatible with Eqs. (31)–(33) and
(64)–(67), thanks to the diffusive nature of Eqs. (64)–(67). The Knudsen-layer correction is required
from the first order of ε. Let us express the solution φ as φ = φH + φB + φK in the layer with the
thickness of the order of ε2, where φK varies with the distance from the boundary in the scale of
O(ε2) [ni∂iφK = ε−2O(φK )] and vanishes sufficiently fast away from the boundary. Corresponding
macroscopic quantities are denoted by hK (h = ω, ui, τ , P, Pi j , Qi).

The φK is the solution of the following problem:

∂tφK(t, x, ζ) + ζi∂iφK(t, x, ζ) = 1

ε2
L[φK(t, x, ζ)](t, x, ζ), (84)

φK(t, x, ζ) =
∫

(ζi∗−uwi )ni<0

|ζ̊k∗nk|
|ζ̊ jn j |

R(ζ̊∗, ζ̊)[φK(t, x, ζ∗) + φF(t, x, ζ∗) − φew(t, x, ζ∗)]
E (ζ∗)

E (ζ )
dζ∗

+ φew(t, x, ζ) − φF(t, x, ζ), [xi = xwi, (ζi − uwi )ni > 0], (85)
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φK(t, x, ζ) → 0 as ni(xi − xwi ) → ∞, (86)

φK(0, x, ζ) = 0, (87)

where φF(t, x, ζ) = φH(t, x, ζ) + φB(t, x, ζ) [24]. Thanks to the smoothness of φew, φF, and E
with respect to the molecular velocity, ζ and ζ∗ in their arguments can be replaced by ζ̊ and ζ̊∗,
respectively, within the negligible error in the linearized framework. Then, the boundary condition
Eq. (85) can be rewritten within the negligible error as follows:

φK(t, x, ζ) =
∫

(ζi∗−uwi )ni<0

|ζ̊k∗nk|
|ζ̊ jn j |

R(ζ̊∗, ζ̊)[φK(t, x, ζ∗) + φF(t, x, ζ̊∗) − φew(t, x, ζ̊∗)]
E (ζ̊∗)

E (ζ̊ )
dζ∗

+ φew(t, x, ζ̊) − φF(t, x, ζ̊), [xi = xwi, (ζi − uwi )ni > 0]. (88)

Putting

φK(t, x, ζ) = φK(t, x, ζ̊ + (uw · n)n) ≡ ϕK(t, x, ζ̊), (89)

and changing the variable of integration from ζ∗ to ζ̊∗ in Eq. (88), we have

ϕK(t, x, ζ̊) =K̃[φew − φF](t, x, ζ̊) + K[ϕK](t, x, ζ̊), (xi = xwi, ζ̊ini > 0), (90)

where K and K̃ are operators defined by

K[ψ (ζ̊)](ζ̊) =
∫

ζ̊i∗ni<0

|ζ̊k∗nk|
|ζ̊ jn j |

E (ζ̊∗)

E (ζ̊ )
R(ζ̊∗, ζ̊)ψ (ζ̊∗)d ζ̊∗,

K̃[ψ (ζ̊)](ζ̊) = ψ (ζ̊) − K[ψ (ζ̊)](ζ̊). (91)

These K and K̃ are the same as those in Ref. [25], in which the domain is assumed not to deform in
time. In the rest of the paper, the argument with respect to the molecular velocity is ζ̊ for φew and
φF, unless otherwise stated.

We introduce another stretched coordinate system (η, χ1, χ2) with χ1 and χ2 being the same as
in Sec. V B:

xi = ε2ηni(t, χ1, χ2) + xwi(t, χ1, χ2). (92)

The problem Eqs. (84)–(87) for φK can be rewritten in the following problem for ϕK within the
negligible error in the linearized framework:

∂tϕK + ζ̊n

ε2
∂ηϕK + ζ̊i

(
∂iχ1∂χ1 + ∂iχ2∂χ2

)
ϕK = 1

ε2
L[ϕK], (93)

ϕK = K̃[φew − φF] + K[ϕK], (η = 0, ζ̊n > 0), (94)

ϕK → 0 as η → ∞, (95)

ϕK = 0, (t = 0), (96)

where ∂η = ∂/∂η and ζ̊n = ζ̊ini = (ζi − uwi )ni. Note that the independent variables of each term in
Eqs. (93)–(96) are now t , η, χ1, χ2, and ζ̊ and that L[φK(ζ)](ζ) is replaced by L[ϕK(ζ̊)](ζ̊) within
the negligible error. Taking into account that the correction is not required at the leading order, the
expansion of ϕK and hK in a power series of ε starts from the first order as

ϕK = εϕK1 + ε2ϕK2 + · · · , hK = εhK1 + ε2hK2 + · · · . (97)

Here hKm can be expressed by Eqs. (1)–(6) with φ being replaced by ϕKm.
The Knudsen-layer corrections ϕK1 and ϕK2 can be obtained by a process similar to that in

Refs. [17,18,25]. The expressions of ϕK1 and ϕK2 are given in Appendix C. We omit the details
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of derivation and show the resulting slip and jump boundary conditions, together with formulas of
the Knudsen-layer correction for macroscopic quantities. They are summarized as follows:

Slip/Jump boundary conditions

niuiH1 + niuiB1 = niuwi1, (98)

t (α)
i uiH1 + t (α)

i uiB1 = t (α)
i uwi1 + b(1)

1 ∂y
(
t (α)
i uiB0

)
, (99)

τH1 + τB1 = τw1 + c(0)
1 ∂yτB0, (100)

niuiH2 + niuiB2 = niuwi2, (101)

t (α)
i uiH2 + t (α)

i uiB2 = t (α)
i uwi2 + b(1)

1

[
∂y
(
t (α)
i uiB1

) + nit
(α)
j (∂iu jH0 + ∂ juiH0) − κα

(
t (α)
i uiB0

)
+ ϑ

(
t (3−α)
i uiB0

)] + b(1)
2

(
t (α)

j ∂ jτH0 + χα,α∂χα
τB0

) + b(1)
4 ∂2

y

(
t (α)
i uiB0

)
, (102)

τH2 + τB2 = τw2 + c(0)
1 (∂yτB1 + n j∂ jτH0) + c(0)

6 ∂2
y τB0 + c(0)

5 [∂y(niuiB1) + nin j∂iu jH0], (103)

Knudsen-layer corrections

ωK1 = 

(0)
1 (η)∂yτB0, τK1 = �

(0)
1 (η)∂yτB0, PK1 = ωK1 + τK1, (104)

uiK1ni = 0, uiK1t (α)
i = Y (1)

1 (η)∂y(t (α)
m umB0), (105)

ωK2 = 

(0)
1 (η)(∂yτB1 + ni∂iτH0) + 


(0)
6 (η)∂2

y τB0 + 

(0)
5 (η)[∂y(niuiB1) + nin j∂iu jH0], (106)

τK2 = �
(0)
1 (η)(∂yτB1 + ni∂iτH0) + �

(0)
6 (η)∂2

y τB0 + �
(0)
5 (η)[∂y(niuiB1) + nin j∂iu jH0], (107)

PK2 = ωK2 + τK2, uiK2ni = 0, (108)

uiK2t (α)
i =Y (1)

1 (η)
[
∂y
(
t (α)
i uiB1

) + nit
(α)
j (∂iu jH0 + ∂ juiH0) − κα

(
t (α)
i uiB0

) + ϑ
(
t (3−α)
i uiB0

)]
+ Y (1)

2 (η)
(
t (α)

j ∂ jτH0 + χα,α∂χα
τB0

) + Y (1)
4 (η)∂2

y

(
t (α)
i uiB0

)
, (109)

where α = 1, 2. In Eqs. (98)–(109), the quantities with subscripts H and B represent their values
on the boundary. The b(1)

p (p = 1, 2, 4) and c(0)
q (q = 1, 5, 6) are constants and are called the slip

and jump coefficients, while Y (1)
p (η), 
(0)

q (η), �(0)
q (η), and H (1)

p (η) are called the Knudsen-layer
functions (see Appendix C for their definitions). They depend on both of the gas and the surface-
scattering models. Their numerical data are available for the BGK model, hard-sphere molecules,
Ellipsoidal Statistical (ES) model, and Shakhov model under the diffuse reflection condition [17,25–
29] from Kyoto University Research Information Repository [30]. The expressions of the stress
tensor Pi jKm and heat-flow vector QiKm (m = 1, 2) can be found in Appendix C.

D. Summary

By the analyses in previous subsections, we have obtained the fluid-dynamic-type system for
the description of acoustic phenomena in slightly rarefied gases. The system is composed of (i)
linearized Euler sets of Eqs. (31)–(33), (34)–(36), and (40)–(42) for the Hilbert part, (ii) a set of
Eqs. (64)–(75) for the acoustic boundary-layer corrections, (iii) a set of their boundary conditions
Eqs. (81)–(83), (98)–(100), and (101)–(103), and (iv) the formulas of the Knudsen-layer corrections
Eqs. (104), (105) and (106)–(109). The Hilbert part and the boundary-layer corrections respectively
satisfy the equations of state [Eq. (43) or (76)] and the initial condition Eq. (80) as well. The
condition Eq. (59) at infinity is also imposed on the boundary-layer corrections. Although the two
parts occur simultaneously in the boundary conditions, they are not actually coupled. We can focus
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on either part in solving them from the lowest order [31]. If desired, the boundary-layer corrections
can be expressed explicitly in terms of the fundamental solution, because they are the solution
of the one-dimensional half-space initial boundary-value problem of the diffusion equation. The
Knudsen-layer corrections are given by the formulas once the Hilbert part and the boundary-layer
corrections are obtained. The obtained system describes the phenomena within the error of o(ε2),
i.e., o(Kn).

Incidentally, we have recently become aware of Ref. [32], which studies a similar problem based
on the BGK model equation with the diffuse reflection boundary condition under the time-harmonic
assumption. In this reference, the solution in the acoustic boundary layer is not separated into the
Hilbert and its correction parts; accordingly matching issue to the bulk region arises. The secular-
term problem, which can be a potential drawback in practical application and will be the primary
issue in Secs. VI B and VII, is not discussed.

VI. DISCUSSIONS

In the present section, we first summarize main features of the obtained system, and then discuss
a possible practical drawback in application and a remedy for it.

A. Features

1. Leading order

At the leading order, the boundary-layer correction is not required for the normal component
of flow velocity and pressure [niuiB0(y) = 0, PB0(y) = 0; see Eqs. (64) and (65) and condition
Eq. (59)]. Thus, the Hilbert part is described by the linearized Euler set of equations under the
initial condition and the boundary condition niuiH0 = niuwi0 [see Eq. (81)] [33,34]. This agrees with
the usual description in aeroacoustics [35].

Generally, however, the Hilbert part determined as above does not match the no-slip/jump
condition for tangential components of flow velocity and temperature. The boundary layer emerges
to cancel this mismatch. The structure of the boundary layer is determined by solving Eqs. (66) and
(67) under the conditions (82), (83), (80), and (59), because the Hilbert part has already been at
hands. This also agrees with the acoustic boundary-layer theory in aeroacoustics [35].

2. 1/2th order of the Knudsen number

In contrast to the leading order, the boundary-layer correction for the normal component of flow
velocity is required in general [see Eq. (68)]. Hence its presence affects the Hilbert part or the
behavior in the bulk region at this order through the boundary condition Eq. (98).

The effects of shear slip and the temperature jump are known to be at the first order of Kn
in the literature [17,25]. In the present case, however, they are enhanced to appear at the order
of

√
Kn, as seen in conditions Eqs. (99) and (100). This is because of the steep variation of the

macroscopic quantities in the boundary layer. Up to this order, except for the Knudsen layer, the
system is equivalent to the Navier–Stokes system with corresponding slip/jump conditions.

3. First order of the Knudsen number

At the order of Kn, effects enhanced by the same mechanism as above occur not only in
the boundary condition but also in the boundary-layer equations. In the boundary conditions,
slip and jump effects related to the second-order normal derivative of macroscopic quantities are
enhanced. In the boundary-layer equations, the enhancement induces the term − 1

6 (γ1γ2 − 4γ3)∂2
y τB0

in Eqs. (73) and (74). The part − 1
6 (−4γ3)∂2

y τB0 represents the contribution of thermal stress, which
was also pointed out in Ref. [12]. The other part − 1

6 (γ1γ2)∂2
y τB0 is found to be the leading-order

term of − 1
3ε2γ1∂ ju jB, a part of the Newtonian stress, from Eqs. (67) and (68) and τB0 = −ωB0. The

enhancement also induces the double-Laplacian terms in y of the leading-order flow velocity and
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temperature in Eqs. (74) and (75) [25]. The thermal-stress and the double-Laplacian terms are not
inherent in the Navier–Stokes system. Hence, the boundary layer departs from the Navier–Stokes
description at the present order even if proper slip/jump conditions are applied. However, secondary
effects of the non-Navier–Stokes terms in the boundary layer do not appear in the boundary
conditions Eqs. (81)–(83), (98)–(100), and (101)–(103) nor in the Knudsen-layer corrections (104),
(105) and (106)–(109), because any derivatives of hB2 do not appear there.

The last term on the right-hand side of Eq. (103) represents the jump related to the divergence of
flow velocity (in fact, ∂y(nkukB1) + nin j∂iu jH0 equals to the leading-order term of divergence under
the rigid-body assumption [25]). Under the diffusion scaling, this jump appears at the second order
of Kn [25]. Here, it is enhanced to appear at the order of Kn due to the difference of the magnitude
of compressibility. The divergence vanishes at the leading order in the former, while it is not the
case in general in the latter [see Eqs. (31) and (68)]. The occurrence of the corresponding jump at
the order of Kn is reported in the case of a finite Mach number flow in Ref. [36].

Finally, it should be remarked that the right-hand sides of Eqs. (41) and (42) are inhomogeneous
terms that represent the attenuation effect due to the viscosity and heat conductivity. Because they
appear as sources in the equations, they may cause secular terms in the solution. A practical remedy
for this potential drawback will be the topic of Sec. VI B.

B. Secular terms and a remedy to handle them

We have seen that at the first order of Kn the attenuation effect appears as the source terms in
Eqs. (41) and (42). These terms are expressed with the solution of the homogeneous equations at
the leading order. According to the perturbation theory [37–39], however, this type of sources may
cause that the uniformness of the expansion (here in ε) with respect to the independent variables
(here t and x) no longer holds, namely, some terms in the solution become unbounded. Such terms
are called the secular terms. They affect in an unfavorable way the behavior of the wave which has
traveled for a long time and accordingly for a long distance. In the application example in Sec. VII,
this unfavorable property will be demonstrated in Fig. 2 that appears later.

Sometimes the secularity is regarded as a weakness of the Hilbert expansion compared to the
Chapman–Enskog expansion [40]. However, on the basis of the derived system, we can construct a
useful system, which suppresses secular terms in the solution. The former system has been obtained
by a systematic expansion up to O(ε2) [or O(Kn)] and hence its solution is correct up to O(ε2)
[or O(Kn)]. The latter system is constructed from the former without dropping any component in
them and accordingly the solution of the latter is expected to be correct up to O(ε2) [or O(Kn)]. We
explain the way of construction below.

Summing up Eqs. (31)–(33), (34)–(36), and (40)–(42) after multiplying the corresponding power
of ε, we see that hH satisfies the following equations within the error of O(ε3):

∂tωH + ∂ ju jH = 0, (110)

∂t uiH + 1
2∂iPH = 1

2γ1ε
2∂ j∂iu jH, (111)

∂tτH − 2
5∂t PH = 1

2γ2ε
2∂2

j τH, (112)

PH = ωH + τH. (113)

Equations (110)–(113) are no other than the linearized Navier–Stokes set of equations.
As for the boundary-layer part, the derived Eqs. (64)–(75) are also identical to the same linearized

Navier–Stokes set of Eqs. (110)–(113) in the curvilinear coordinates, Eq. (47), within negligible
error except for the contribution of the thermal-stress term − 1

6 (−4γ3)∂2
y τB0 in Eqs. (73) and (74)

and the source (inhomogeneous) terms − 1
4 (γ1γ10 − 2γ6)∂4

y (t (α)
i uiB0) and − 1

10 (γ2γ3 − 13
2 γ11)∂4

y τB0

in Eqs. (74) and (75) (see the last sentence in Sec. VI A 2 and the first paragraph in Sec. VI A 3).
Remember that the boundary-layer correction at the O(ε2) does not affect the slip/jump conditions
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and Knudsen-layer corrections up to the same order (see the last sentence of the first paragraph
in Sec. VI A 3). Then, we are motivated to unify the Hilbert and boundary-layer parts, say hV =
hH + hB, and treat it as a solution of the linearized Navier–Stokes set of equations

∂tωV + ∂ ju jV = 0, (114)

∂t uiV + 1
2∂iPV = 1

2γ1ε
2∂ j∂iu jV, (115)

∂tτV − 2
5∂t PV = 1

2γ2ε
2∂2

j τV, (116)

PV = ωV + τV, (117)

under the following slip/jump conditions:

niuiV − niuwi = 0, (118)

t (α)
i uiV − t (α)

i uwi = ε2b(1)
1 nit

(α)
j (∂iu jV + ∂ juiV) + ε2b(1)

2 t (α)
j ∂ jτV + ε4b(1)

4 t (α)
i n jnk∂ j∂kuiV, (119)

τV − τw = ε2c(0)
1 n j∂ jτV + ε4c(0)

6 n jnk∂ j∂kτV + ε2c(0)
5 nin j∂iu jV. (120)

The condition Eqs. (118)–(120) has been obtained by summing up Eqs. (81)–(83), (98)–(100), and
(101)–(103) after multiplied with the corresponding power of ε. In this process, the gradients in
the curvilinear coordinates Eq. (47) have been rewritten in terms of the original coordinates xi,
e.g., ∂y = εni∂i, χα,α∂χα

= t (α)
i ∂i + O(ε). The ε in front of ni∂i is due to the difference of the scale

of variation in the normal direction between the Hilbert and boundary-layer parts. Corresponding
summation will be required later to obtain the Knudsen-layer corrections Eq. (136)–(140). By this
hV, the behavior of the gas can be described correctly up to O(ε2) in the bulk region and O(ε) in
the boundary layer (and outside the Knudsen layer). In Eqs. (114)–(117), the contribution of the
viscosity and heat conductivity is represented not as source (inhomogeneous) terms but as high-
order derivative terms (multiplied by small coefficients) expressed with the dependent variables in
the equations. Thus the occurrence of the secular term is expected to be prevented.

To improve the less accuracy in the boundary layer, we can take two options. The first option
(construction I) is rather straightforward: Add the following ε2h#

B2 to hV

ε2P#
B2 = −2

3
γ3ε

2∂2
y τB0, (121)

ε2τ #
B2 = 7

30γ2

(
γ2γ3 − 39

14
γ11

)
ε2y∂3

y τB0, (122)

ε2ω#
B2 = ε2P#

B2 − ε2τ #
B2, (123)

ε2t (α)
i u#

iB2 = 1

4γ1
(γ1γ10 − 2γ6)ε2y∂3

y

(
t (α)
i uiB0

)
, (124)

ε2niu
#
iB2 = 0. (125)

Equations (121)–(125) represent the correction due to the non-Navier–Stokes effect mentioned at
the beginning of the previous paragraph. As for the derivation of these expressions, see Appendix D.
The sum hV + ε2h#

B2 is correct up to O(ε2) in the entire region outside of the Knudsen layer. Note
that τB0 [or t (α)

i uiB0] is the solution of Eq. (67) [or (66)] under the conditions (83) [or (82)], (59),
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and (80), and is thus expressed in the form

τB0 = τw0(t, χ1, χ2) − τH0(t, xw(t, χ1, χ2))

−
∫ t

0
erf

(
y√

2γ2(t − s)

)
[∂sτw0(s, χ1, χ2) − ∂sτH0(s, xw(s, χ1, χ2))]ds, (126)

t (α)
i uiB0 = t (α)

i uwi0(t, χ1, χ2) − t (α)
i uiH0(t, xw(t, χ1, χ2)) −

∫ t

0
erf

(
y√

2γ1(t − s)

)
× [

∂s(t
(α)
i uwi0)(s, χ1, χ2) − ∂s(t

(α)
i uiH0)(s, xw(s, χ1, χ2))

]
ds. (127)

Because it is easily seen from Eqs. (31)–(33) that

τH0 = 2

5
PH0, (128)

t (α)
i uiH0(t, x) = −1

2
t (α)
i

∫ t

0
∂iPH0(s, x)ds, [ni(xi − xwi ) = O(ε)], (129)

and from PB0 = 0 that

PV = PH0 + O(ε), (130)

the corrections Eqs. (121)–(125) can be recovered from the data of PV within the tolerant error by
the simple replacement of PH0 with PV in Eqs. (128) and (129).

The second option (construction II) might be easier to implement: Add the following hC to hV:

PC = −2

3
γ3ε

4∂2
xn
τV, (131)

τC = 7

30γ2

(
γ2γ3 − 39

14
γ11

)
ε4[1 − exp(−xn)]∂3

xn
τV, (132)

ωC = PC − τC, (133)

t (α)
i uiC = 1

4γ1
(γ1γ10 − 2γ6)ε4[1 − exp(−xn)]∂3

xn

(
t (α)
i uiV

)
, (134)

niuiC = 0, (135)

where xn ≡ (xi − xwi )ni = εy and ∂xn = ∂/∂xn. Compare the above with Eqs. (121)–(125), and
recall that ε2∂yhV = ε2∂yhB0 + O(ε3) (h = τ , t (α)

i ui) in the boundary layer. Then, it is obvious that
hC is O(ε2) and agrees with the desired non-Navier–Stokes part ε2h#

B2 within the error of O(ε3) in the
boundary layer. It should be noted that since hV is nonzero outside the boundary layer, εy is replaced
by 1 − exp(−xn) in Eqs. (131)–(135) to suppress the secular-term problem. Outside the boundary
layer, the magnitude of hC is at most O(ε4), which is within the negligible error in the present
framework. The sum hV + hC is correct up to O(ε2) in the entire region outside of the Knudsen layer.

Finally, from Eqs. (104), (105) and (106)–(109), the following summed up Knudsen-layer
corrections hK (h = ω, τ, P, ui) are obtained:

ωK = ε2

(0)
1 (η)n j∂ jτV + ε4


(0)
6 (η)n jnk∂ j∂kτV + ε2


(0)
5 (η)nin j∂iu jV, (136)

τK = ε2�
(0)
1 (η)n j∂ jτV + ε4�

(0)
6 (η)n jnk∂ j∂kτV + ε2�

(0)
5 (η)nin j∂iu jV, (137)

PK = ωK + τK, (138)

uiKt (α)
i = ε2Y (1)

1 (η)nit
(α)
j (∂iu jV + ∂ juiV) + ε2Y (1)

2 (η)t (α)
j ∂ jτV + ε4Y (1)

4 (η)t (α)
i n jnk∂ j∂kuiV, (139)

uiKni = 0. (140)
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We can construct the solution which is correct up to O(ε2) or O(Kn) in the entire region by hV +
ε2h#

B2 + hK (construction I) or by hV + hC + hK (construction II). The expressions for the stress
tensor and heat-flow vector of each part, say (Pi jV, QiV), (Pi jC, QiC), and (Pi jK, QiK), are summarized
in Appendix D.

VII. APPLICATION EXAMPLE

Consider a slightly rarefied gas in a uniform equilibrium state at rest with density ρ0 and
temperature T0, bounded by an infinitely wide flat plate with temperature T0. The plate location
Xw(t̃ ) in X1 at time t̃ changes sinusoidally as Xw(t̃ ) = ã cos σ̃ t̃ from its initial position Xw(0) = ã.
The mean free time of the gas molecules is much smaller than the period of oscillation of the plate:
σ̃ �0/(2RT0)1/2 	 1, where �0 is the mean free path in the equilibrium state at rest with density ρ0

and temperature T0. The amplitude of oscillation of the plate is sufficiently small so that square and
higher-order terms of σ̃ ã/(2RT0)1/2 ≡ a are negligible.

Let the reference time be t0 = σ̃−1 so that t = σ̃ t̃ . With this t0, we take the reference length
L = (2RT0)1/2t0 [41]. Because the present problem is spatially one dimensional, we simply denote
the x1 coordinate by x and the dimensionless flow velocity ui as (u(t, x), 0, 0). The same notation
convention will be applied to uiH, uiB, uiK, etc.

We will investigate the harmonic behavior of the gas after a long time has passed from the initial
state on the basis of the system derived above up to the second order of ε.

In seeking the solution of hHm and hBm, the conditions Eqs. (81)–(83), (98)–(100), and (101)–
(103) may be imposed at the fixed position x = 0 because of the oscillatory motion of the plate (see
Ref. [33]).

We can seek the solution in the form hHm = Re[eit ĥHm(x)] and hBm = Re[eit ĥBm(y)], where i is
the imaginary unit and ĥHm(x) and ĥBm(y) are complex-valued functions. The ĥHm(x) and ĥBm(y)
are obtained as follows:

P̂H0 = 5ia

3c
exp

(
− ix

c

)
, ûH0 = 3c

5
P̂H0, ω̂H0 = 3

5
P̂H0, τ̂H0 = 2

5
P̂H0, (141)

P̂H1 = 5(1 − i)a
√

γ2

9c2
exp

(
− ix

c

)
, ûH1 = 3c

5
P̂H1, ω̂H1 = 3

5
P̂H1, τ̂H1 = 2

5
P̂H1, (142)

P̂H2 = −a

{
5i

9c4

(
γ1 + 5γ2

12c2

)
x +

[
25

27c3

(
1 − 1

4c2

)
γ2 − 5γ1

9c3
+ 10c(0)

1

9c2

]}
exp

(
− ix

c

)
,

ûH2 = −a

[
i

3c3

(
γ1 + 5γ2

12c2

)
x + 2

3c

(γ2

3c
+ c(0)

1

)]
exp

(
− ix

c

)
, (143)

ω̂H2 = 3

5
P̂H2 + γ2

2
i
d2τ̂H0

dx2
, τ̂H2 = 2

5
P̂H2 − γ2

2
i
d2τ̂H0

dx2
, (144)

P̂B0 = 0, ûB0 = 0, τ̂B0 = −ω̂B0 = −2ia

3c
exp

(
− (1 + i)y√

γ2

)
, (145)

P̂B1 = 0, ûB1 = − (1 − i)a
√

γ2

3c
exp

(
− (1 + i)y√

γ2

)
, (146)

τ̂B1 = −ω̂B1 = −(1 − i)a

(
2
√

γ2

9c2
+ 2

3c
√

γ2
c(0)

1

)
exp

(
− (1 + i)y√

γ2

)
, (147)

P̂B2 = 2a

3c

(
4

3
γ1 − γ2 − 4γ3

3γ2

)
exp

(
− (1 + i)y√

γ2

)
, (148)

ûB2 = 2a

(
γ2

9c2
+ c(0)

1

3c

)
exp

(
− (1 + i)y√

γ2

)
, (149)
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FIG. 1. The profile of macroscopic quantities. (a) ω/a for k = 0.02, (b) ω/a for k = 0.01, (c) τ/a for
k = 0.02, (d) τ/a for k = 0.01, (e) u/a for k = 0.02, and (f) u/a for k = 0.01. The solid line indicates the
N solution, the dashed line the HBK2 solution, the dash-dotted line the HBK1 solution, and the dash-double-
dotted line the HBK0 solution.
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FIG. 2. The profile of ω in a far field at t = 2nπ for k = 0.01. (a) N, HBK2, CI, and CII solutions and
(b) N, HBK1, and HBK0 solutions. The N, HBK2, CI, CII, HBK1, and HBK0 solutions are indicated by the
solid, dashed, long-dashed, dotted, dash-dotted, and dash-double-dotted lines, respectively. In panel (a), the
long-dashed and dotted lines are invisible because they are close to the solid line. In panel (b), the dash-dotted
and dash-double-dotted lines overlap each other.

τ̂B2 = a

[
1

27c3

(
19 − 5

2c2

)
γ2 − 2γ1

9c3
+ c(0)

1

(
14

9c2
+ 4c(0)

1

3cγ2

)
+ 4c(0)

6

3cγ2
+ 5c(0)

5

3c

− 2(1 + i)

15c
√

γ2

(
γ2 − 4

3
γ1 + 7γ3

3γ2
− 13γ11

2γ 2
2

)
y

]
exp

(
− (1 + i)y√

γ2

)
, (150)

ω̂B2 = P̂B2 − τ̂B2, (151)

where c = √
5/6. The Knudsen-layer correction is given as hKm = Re[eit ĥKm(η)], where m = 1, 2,

η = x/ε2, and ĥKm is defined by Eqs. (104), (105) and (106)–(109) with (hHm, hBm) being replaced
by (ĥHm, ĥBm).

We have solved the same physical problem on the basis of the linearized BGK model under
the diffuse reflection condition, again under the time-harmonic assumption, directly by the finite-
difference method. In the rest of this section, we denote the numerical solution by the N solution,
the asymptotic solutions which are correct up to the leading, first, and second orders of ε

[
∑m

k=0 εk (hHk + hBk + hKk ) (m = 0, 1, 2)] by the HBK0, HBK1, and HBK2 solutions, the solutions
obtained by the constructions I and II in Sec. VI B by the CI and CII solutions, and the Navier–Stokes
solution hV by the V solution for short.

To confirm the validity of the asymptotic solutions, we compare the N, HBK0, HBK1, and HBK2
solutions in the region rather close to the boundary for k = 0.02 and 0.01 in Fig. 1. The quantities
at t = 2nπ , [2n + (1/2)]π , (2n + 1)π , and [2n + (3/2)]π with n being an arbitrary large integer
are shown in the figure [42]. The asymptotic solutions approach the N solution as the degree of
approximation increases.
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FIG. 3. The profile of macroscopic quantities near the plate at t = 2nπ . (a) ω/a for k = 0.02, (b) ω/a for
k = 0.01, (c) τ/a for k = 0.02, (d) τ/a for k = 0.01, (e) u/a for k = 0.02, and (f) u/a for k = 0.01. The solid
line indicates the N solution, the dashed line the HBK2 solution, the dash-dotted line the HBK1 solution, the
dash-double-dotted line the CI solution, and the long-dashed line the CII solution.
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FIG. 4. The profile of macroscopic quantities near the plate at t = [2n + (3/2)]π . (a) ω/a for k = 0.02,
(b) ω/a for k = 0.01, (c) τ/a for k = 0.02, (d) τ/a for k = 0.01, (e) u/a for k = 0.02, and (f) u/a for k = 0.01.
See the caption of Fig. 3.

103401-21



MASANARI HATTORI AND SHIGERU TAKATA

FIG. 5. The profile of macroscopic quantities near the plate for k = 0.02. (a) ω/a at t = 2nπ , (b) ω/a
at t = [2n + (3/2)]π , (c) τ/a at t = 2nπ , (d) τ/a at t = [2n + (3/2)]π , (e) u/a at t = 2nπ , and (f) u/a at
t = [2n + (3/2)]π . The solid line indicates the CI solution, the dashed line the CII solution, and the dash-dotted
line the V solution.
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Although good agreement between the HBK2 and N solutions is achieved in Fig. 1, the
secular-term problem is anticipated in a far field. The comparisons in much wider region are made
in Fig. 2 for ω with k = 0.01. The HBK2 solution deviates significantly both in amplitude and
phase from the N solution at a far distance. The amplitude of HBK2 solution grows unlimitedly
as x increases [see also Eqs. (143) and (144); the ω̂H2 includes the term proportional to x in front
of exp(−ix/c)]. This clearly demonstrates the drawback of HBK2 solution due to the secular term.
The HBK1 and HBK0 solutions also deviate in amplitude due to the absence of attenuation effect
at those approximation levels. In marked contrast with them, the CI and CII solutions agree well
with the N solution including in the far field. Similar results are obtained for τ and u, though
they are omitted here. These results show that the remedy proposed in Sec. VI B is effective. The
CI and CII solutions keep the same (or practically even better) level of accuracy as the HBK2
solution in the boundary layer and the Knudsen layer, which is clearly shown in Figs. 3 and 4. In
these figures, comparisons are made among the N, HBK2, HBK1, CI, and CII solutions. Among
them, only the HBK1 solution appreciably deviates from the others, because of its lower degree of
approximation.

Finally, to examine the contributions of the non-Navier–Stokes part and of the Knudsen-layer
correction, we show the CI, CII, and V solutions near the plate for k = 0.02 in Fig. 5. In
Figs. 5(a)–5(d), the V solution slightly deviates from the CI and CII solutions, while the three
solutions are identical for u in Figs. 5(e) and 5(f). This difference between u and the other quantities
can be understood, by our discussions in Sec. VI B that there is no non-Navier–Stokes effect in
the boundary-layer correction nor the Knudsen-layer correction for the normal component of flow
velocity [see Eqs. (135) and (140)].

In conclusion, the numerical evidence presented in this section confirms that the Constructions I
and II are essentially identical. Moreover, it shows that they are practically most reliable asymptotic
description for acoustic phenomena in the entire region in the slip flow regime.

VIII. CONCLUDING REMARKS

In the present work, a time-evolution of a slightly rarefied monatomic gas from a reference
uniform equilibrium state at rest, which is induced by the motion or variation of the temperature of
the smooth solid boundary, is investigated on the basis of the linearized Boltzmann equation under
the acoustic time scaling. By a systematic asymptotic analysis, linearized Euler sets of equations
and boundary-layer equations are derived up to the first order of the Knudsen number, together
with their slip and jump boundary conditions, as well as the correction formula in the Knudsen
layer. Since the variation of the quantities in the normal direction is steep in the boundary layer
and the compressibility is strong in the acoustic scaling compared to the diffusion scaling, the
slips and jumps appear from an earlier stage compared with the case of diffusion scaling. Thus,
attention needs to be paid to the boundary condition in investigating the acoustic phenomena in
the slip-flow regime. The occurrence of secular terms associated with the Hilbert expansion is
pointed out and a remedy for it is also given. As an application example, a sound propagation
in a half space caused by a sinusoidal oscillation of flat boundary is examined on the basis
of the Bhatnagar–Gross–Krook equation. The asymptotic solution agrees well with the direct
numerical solution. In particular, the proposed remedy for the secular terms is confirmed to be
effective.
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APPENDIX A: ISOTROPIC FUNCTIONS AND RELATED CONSTANTS

The isotropic functions A, B, D1, D2, F , and Fd are defined as the solutions of the following
integral equations:

L[ζiA(ζ )] = −ζi

(
ζ 2 − 5

2

)
with

∫
ζ 2A(ζ )E (ζ )dζ = 0, (A1)

L[ζi jB(ζ )] = −2ζi j, (A2)

L[(ζiδ jk + ζ jδki + ζkδi j )D1(ζ ) + ζiζ jζkD2(ζ )]

= γ1(ζiδ jk + ζ jδki + ζkδi j ) − ζiζ jζkB(ζ ) with
∫

[5ζ 2D1(ζ ) + ζ 4D2(ζ )]E (ζ )dζ = 0, (A3)

L[ζi jF (ζ )] = ζi jA(ζ ), (A4)

L[Fd (ζ )] = −5

6
γ2

(
ζ 2 − 3

2

)
+ 1

3
ζ 2A(ζ ) with

∫
Fd (ζ )E (ζ )dζ =

∫
ζ 2Fd (ζ )E (ζ )dζ = 0. (A5)

The related constants γi (i = 1, 2, 3, 6, 10, 11) are defined by

γ1 = I6(B), γ2 = 2I6(A), γ3 = −2I6(F ) = I6(AB) = 5I6(D1) + I8(D2),

γ6 = 1

2
I6(BD1) + 3

14
I8(BD2), γ10 = 1

2
I6(B2),

γ11 = − 4

39

{
1

2
γ2

[
15I4(A2) + γ3

]
+ 4I6(AF ) + 15I4(AFd )

}
,

In(X ) = 8

15
√

π

∫ ∞

0
znX (z) exp(−z2)dz. (A6)

Their value depends on the intermolecular potential and is available for the BGK model, hard-sphere
molecules, ES model, and Shakhov model [17,25,28–30].

APPENDIX B: BOUNDARY-LAYER CORRECTION AND CORRESPONDING
STRESS AND HEAT FLOW

The boundary-layer corrections φB0, φB1, and φB2 are given by

φB0 = φeB0, (B1)

φB1 = φeB1 − ζiζ jB(ζ )ni(δ jk − n jnk )∂yukB0 − ζiA(ζ )ni∂yτB0, (B2)

φB2 = φeB2 − ζi jB(ζ )[ni(δ jk − n jnk )∂yukB1 + nin j∂y(nkukB1) + Di[u jB0]]

− ζiA(ζ )(ni∂yτB1 + Di[τB0]) − [nin jζi jF (ζ ) + Fd (ζ )]∂2
y τB0

+ [(ζiδ jk + ζ jδki + ζkδi j )D1(ζ ) + ζiζ jζkD2(ζ )]n jnk (δi� − nin�)∂2
y u�B0, (B3)

where

φeBm = PBm + 2ζiuiBm +
(

ζ 2 − 5

2

)
τBm, (m = 0, 1, 2), (B4)

and A, B, D1, D2, F , and Fd are defined in Appendix A.
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The stress tensor Pi jBm and heat-flow vector QiBm (m = 0, 1, 2, 3) are given by

Pi jB0 = PB0δi j, QiB0 = 0, (B5)

Pi jB1nin j = Pi jB1t (α)
i t (α)

j = PB1, (B6)

Pi jB1nit
(α)
j = −γ1∂y

(
t (α)
i uiB0

)
, Pi jB1t (α)

i t (3−α)
j = 0, (B7)

QiB1ni = −5

4
γ2∂yτB0, QiB1t (α)

i = 0, (B8)

Pi jB2nin j = PB2 + 2

3
γ3∂

2
y τB0 − 2

3
γ1

⎧⎨⎩2∂y(niuiB1) −
2∑

β=1

[
χβ,β∂χβ

(
t (β )
i uiB0

) − (−1)βg3−βt (β )
i uiB0

]⎫⎬⎭,

(B9)

Pi jB2t (α)
i t (α)

j = PB2 − 1

3
γ3∂

2
y τB0 + 2

3
γ1∂y(niuiB1) − 2

3
γ1
[
2χα,α∂χα

(
t (α)
i uiB0

)
−χ3−α,3−α∂χ3−α

(
t (3−α)
i uiB0

) + (−1)αg3−α

(
t (α)
i uiB0

) + 2(−1)αgα

(
t (3−α)
i uiB0

)]
, (B10)

Pi jB2nit
(α)
j = −γ1

[
∂y
(
t (α)
i uiB1

) − κα

(
t (α)
i uiB0

) + ϑ
(
t (3−α)
i uiB0

)]
, (B11)

Pi jB2t (α)
i t (3−α)

j = −γ1

2∑
β=1

[χβ,β∂χβ
(t (3−β )

i uiB0) − (−1)βgβ

(
t (β )
i uiB0

)
], (B12)

QiB2ni = −5

4
γ2∂yτB1, QiB2t (α)

i = −5

4
γ2χα,α∂χα

τB0 + 1

2
γ3∂

2
y

(
t (α)
i uiB0

)
, (B13)

Pi jB3nin j = PB3 + 2

3
γ3(∂2

y τB1 − κ̄∂yτB0) − 4

3
γ1∂y(niuiB2)

− 2

3
γ1

⎧⎨⎩
2∑

β=1

[
−χβ,β∂χβ

(
t (β )
i uiB1

) + (−1)βg3−β

(
t (β )
i uiB1

)] − 2κ̄ (niuiB1)

⎫⎬⎭
− 2

3
γ1y

2∑
β=1

[
κβχβ,β∂χβ

(
t (β )
i uiB0

) − ϑχβ,β∂χβ

(
t (3−β )
i uiB0

)
− (−1)β (κ3−βg3−β − ϑgβ )

(
t (β )
i uiB0

)]
, (B14)

Pi jB3nit
(α)
j = −γ1

[
∂y(t (α)

i uiB2) + χα,α∂χα
(niuiB1) − κα

(
t (α)
i uiB1

) + ϑ
(
t (3−α)
i uiB1

)]
− γ1y

[(
κ2

α + ϑ2
)(

t (α)
i uiB0

) − 2ϑκ̄
(
t (3−α)
i uiB0

)]
+ γ3χα,α∂χα

∂yτB0 +
(

1

2
γ1γ10 − γ6

)
∂3

y

(
t (α)
i uiB0

)
, (B15)

QiB3ni = −5

4
γ2∂yτB2 + 1

2
γ3∂

2
y (niuiB1) − 13

8
γ11∂

3
y τB0. (B16)

Here α = 1, 2 and γ’s are defined in Appendix A.

APPENDIX C: KNUDSEN-LAYER CORRECTION AND CORRESPONDING
STRESS AND HEAT FLOW

The Knudsen-layer corrections ϕK1 and ϕK2 are given by

ϕK1(t, η, χ1, χ2, ζ̊) = ζ̊i(δi j − nin j )∂yu jB0φ
(1)
1 (η, ζ̊n, ζ̊ ) + ∂yτB0φ

(0)
1 (η, ζ̊n, ζ̊ ), (C1)
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ϕK2(t, η, χ1, χ2, ζ̊) = ζ̊k (δk j − nkn j )[∂yu jB1 + ni(∂iu jH0 + ∂ juiH0 + D j[uiB0])]φ(1)
1 (η, ζ̊n, ζ̊ )

+ (∂yτB1 + n j∂ jτH0)φ(0)
1 (η, ζ̊n, ζ̊ )

+ ζ̊i(δi j − nin j )
(
∂ jτH0 + D j[τB0]

)
φ

(1)
2 (η, ζ̊n, ζ̊ )

+ ζ̊i(δi j − nin j )∂
2
y u jB0φ

(1)
4 (η, ζ̊n, ζ̊ ) + ∂2

y τB0φ
(0)
6 (η, ζ̊n, ζ̊ )

+ [∂y(niuiB1) + nin j∂iu jH0]φ(0)
5 (η, ζ̊n, ζ̊ ), (C2)

where the notation of functions φ(1)
p (p = 1, 2, 4) and φ(0)

q (q = 1, 5, 6) are the same as those in
Ref. [25]. They have already been obtained for the BGK model, hard-sphere molecules, ES model,
and Shakhov model under the diffuse reflection condition [17,26–30]. The slip and jump coefficients
b(1)

p (p = 1, 2, 4) and c(0)
q (q = 1, 5, 6) in the main text are determined simultaneously in solving the

problems for φ(1)
p and φ(0)

q , respectively. The Knudsen-layer functions Y (1)
p (η), H (1)

p (η), 
(0)
q (η), and

�(0)
q (η) are defined as their moment:

Y (1)
p (η) = 1

2

∫ (
ζ̊ 2 − ζ̊ 2

n

)
φ(1)

p (η, ζ̊n, ζ̊ )E (ζ̊ )d ζ̊,

H (1)
p (η) = 1

2

∫ (
ζ̊ 2 − ζ̊ 2

n

)(
ζ̊ 2 − 5

2

)
φ(1)

p (η, ζ̊n, ζ̊ )E (ζ̊ )d ζ̊,


(0)
q (η) =

∫
φ(0)

q (η, ζ̊n, ζ̊ )E (ζ̊ )d ζ̊, �(0)
q (η) = 2

3

∫ (
ζ̊ 2 − 3

2

)
φ(0)

q (η, ζ̊n, ζ̊ )E (ζ̊ )d ζ̊. (C3)

Notations b(1)
p , c(0)

q , Y (1)
p , H (1)

p , 
(0)
q , and �(0)

q are the same as those in Refs. [25,27–30]. Incidentally,
ϕK1 and ϕK2 given above automatically satisfy the initial condition ϕK1,2|t=0 = 0 as far as Eq. (80)
is satisfied.

The corrections for the stress tensor and heat-flow vector are given by

Pi jK1t (α)
i t (α)

j = 3

2
PK1, Pi jK1nin j = Pi jK1nit

(α)
j = Pi jK1t (α)

i t (3−α)
j = QiK1ni = 0, (C4)

QiK1t (α)
i = H (1)

1 (η)∂y
(
t (α)
i uiB0

)
, (C5)

Pi jK2t (α)
i t (α)

j = 3

2
PK2, Pi jK2nin j = Pi jK2nit

(α)
j = Pi jK2t (α)

i t (3−α)
j = QiK2ni = 0, (C6)

QiK2t (α)
i = H (1)

1 (η)
[
∂y
(
t (α)
i uiB1

) + nit
(α)
j (∂iu jH0 + ∂ juiH0) − κα

(
t (α)
i uiB0

) + ϑ
(
t (3−α)
i uiB0

)]
+ H (1)

2 (η)
(

t (α)
j ∂ jτH0 + χα,α∂χα

τB0

)
+ H (1)

4 (η)∂2
y

(
t (α)
i uiB0

)
. (C7)

APPENDIX D: SUPPLEMENT TO SEC. VI B

Suppose that h†
B2 is the solution of Eqs. (72)–(75) and (76) with γ3, γ6, γ10, and γ11 being zero

that meets the conditions Eqs. (101)–(103), (80), and (59). The h†
B2 is the Navier–Stokes part of

hB2. Then, the remainder h#
B2 ≡ hB2 − h†

B2 is found to satisfy the following set of equations with the
sources of the non-Navier–Stokes effects:

∂y(niu
#
iB2) = 0, (D1)

∂y

(
P#

B2 + 2

3
γ3∂

2
y τB0

)
= 0, (D2)

∂t
(
t (α)
i u#

iB2

) − 1

2
γ1∂

2
y

(
t (α)
i u#

iB2

) = −1

4
(γ1γ10 − 2γ6)∂4

y

(
t (α)
i uiB0

)
, (D3)
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∂tτ
#
B2 − 1

2
γ2∂

2
y τ #

B2 = 2

5
∂t P

#
B2 − 1

10

(
γ2γ3 − 13

2
γ11

)
∂4

y τB0, (D4)

P#
B2 = ω#

B2 + τ #
B2. (D5)

The h#
B2 is solved to give Eqs. (121)–(125). Note that h#

B2 satisfies the homogeneous Dirich-
let boundary condition h#

B2|y=0 = 0, because all the terms in the original boundary conditions
Eqs. (101)–(103) are incorporated into the problem of h†

B2 [Remind that the non-Navier–Stokes
effects do not affect the boundary conditions up to O(ε2)]. In obtaining Eqs. (122) and (124), we
have used the fact that the solution of the following problem:

∂t g − 1
2γ ∂2

y g = A∂4
y f , g = 0 (y = 0), ∂t f − 1

2γ ∂2
y f = 0, (A, γ : given constant), (D6)

can be expressed as

g = −A

γ
y∂3

y f . (D7)

The Pi jV, QiV, Pi jC, QiC, Pi jK, and QiK are obtained as follows:

Pi jV = PVδi j − γ1ε
2∂iu jV, QiV = − 5

4γ2ε
2∂iτV, (D8)

Pi jCnin j = 2
3γ3ε

4∂2
xn
τV, Pi jCt (α)

i t (α)
j = − 1

3γ3ε
4∂2

xn
τV, (D9)

Pi jCt (α)
i t (3−α)

j = Pi jCnit
(α)
j = QiCni = 0, QiCt (α)

i = 1
2γ3ε

4∂2
xn

(
t (α)
i uiV

)
, (D10)

Pi jKt (α)
i t (α)

j = 3
2 PK, Pi jKnin j = Pi jKnit

(α)
j = Pi jKt (α)

i t (3−α)
j = QiKni = 0, (D11)

QiKt (α)
i = ε2H (1)

1 (η)nit
(α)
j (∂iu jV + ∂ juiV) + ε2H (1)

2 (η)t (α)
j ∂ jτV + ε4H (1)

4 (η)t (α)
i n jnk∂ j∂kuiV. (D12)
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