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Understanding macroscopic behaviors of suspensions of active particles is a challenging
issue in the study of living fluids. We investigate the response of shape-change driven
microswimmers to an external flow. In particular, we calculate the viscosity of the dilute
suspension of active microswimmers when the flow timescale is close to that of the
swimmer activity, resulting in an ample contribution of the swimmer activity to rheology.
We find that the shape activity leads to either an increase or a decrease of the effective
viscosity, depending on the shear rate. These opposite behaviors occurring for the same
microswimmer originate from a phase-locking phenomenon between the swimmer shape
oscillations and the applied flow. A simplified analytical model remarkably reproduces
the results of full simulations, and offers a promising framework for the derivation of
macroscopic constitutive laws for active matter.
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I. INTRODUCTION

Because of the wide variety of environments and ecosystems where microorganisms live, their
evolution has resulted in various ways of moving (gliding, twitching, swimming) towards their
favorite chemical or food sources [1,2]. Examples of propulsion machinery include the cyclic
beating of two flagella in a breast-stroke manner by Chlamydomonas reinhardtii [2], rotation
of a helical flagellar bundle by Escherichia coli [1], or the repeated body deformation of the
Eutreptiella gymnastica [3]. Similarly, cells of the immune system develop ample shape changes
to fight pathogens in complex environments, such as the extracellular matrix within tissues. There
is now increasing evidence that cells of the immune system, among others, are able to swim in
a fluid [4,5]. The micron size of cells and their low velocity ensure that inertia is negligible.
Despite the diversity of microorganisms, they all share a common feature, namely, the repetitive
and nonreciprocal temporal variation of forces on the fluid.

A popular swimmer model is the constant force dipole which often discards the details of the
active force generation machinery and retains the average behavior over one cycle of time-dependent
active forces [6,7]. This swimmer can be categorized into two types: “puller” (e.g., C. reinhardtii
[7,8]) and “pusher” (e.g., E. coli [9]), depending on the sign of the dipole. A suspension of
microswimmers displays unusual macroscopic rheology [8,10–14]: a pushers’ (pullers’) suspension
exhibits a lower (higher) effective viscosity than their respective passive counterparts. Furthermore,
experimental studies have also shown a rich rheological behavior rarely recovered in theoretical
models. For instance, a shear-thinning [8] (shear-thickening [13,14]) nature of the pullers’ (pushers’)
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FIG. 1. Schematics of bead-spring and amoeboid microswimmers in shear flow.

suspensions has been reported. So far, the main key ingredient of the models explaining the rheology
of microswimmers (increase and decrease of viscosity due to activity), is rotational diffusion [15].
However, in general, microswimmers exhibit shape deformations (flagella motion, body shape
changes, etc.) and their impact needs to be explored. It has been shown recently that the cyclic
motion of flagella makes the cell follow very specific Jeffery orbits that can affect rheology [16].

In order to decipher the rheological behavior of swimmer suspensions, it seems relevant to
consider the coupling between the flow and the time-dependent active forces. More generally, in
most cases, shape changes of microswimmers are intrinsically related to propulsion mechanisms
(flagellar beating or shape deformations). We show that shape change activity not only contributes
to the viscosity of the suspension without evoking noise, but also uncovers new subtle effects. In
particular, the active contribution to the viscosity is found to switch between positive and negative
values depending on the magnitude of the applied shear flow for a given type (puller or pusher) of
microswimmer. This results from a nonlinear coupling between the swimmer and the applied flow.

A widely adopted model for swimmers consists of a thin rodlike rigid shape with a given stresslet
(force dipole), which is aligned with the rod and is either inward (puller) or outward (pusher). A
deterministic rod under linear shear flow is known to exhibit tumbling (Jeffery orbit) and spends
the same time in the upper and lower halves of the shear plane. As a consequence, no resulting
active contribution to the viscosity is expected on average. Noise breaks this symmetry (the rod then
spends more time in the upper half plane), giving rise to a net contribution of the active stress to
the rheology [6,12]. Hence, in all available models, noise (due, for instance, to rotational diffusivity
or tumbling of the microswimmers) is a crucial ingredient to recover a net effect of average active
stresses on viscosity. Real swimmers undergo repeated shape changes, which lead to a nontrivial
contribution to the active stress. Here we will address the effect of shape activity on the rheology of
microswimmer suspensions in two cases: amoeboid swimmer and bead-spring microswimmer.

II. RHEOLOGY OF MICROSWIMMER SUSPENSIONS

A. Amoeboid microswimmer

We begin our study by considering an amoeboid microswimmer in two-dimensional space
(Fig. 1) characterized by a fluid-filled impermeable membrane of perimeter P0 and enclosed area
A0 immersed in another fluid [17,18]. The swimmer has reduced area � = 4πA0/P2

0 (measuring
deviation from a circle for which � = 1), which allows the microswimmer deformation.

η and λη denote the respective viscosities of external and internal fluids, where λ is the viscosity
contrast. We consider the flow in and outside of the swimmer to be in the Stokes regime, obeying

∇ · u = 0, ηi∇2u(r, t ) = ∇P(r, t ), (1)

where u and P are the fluid velocity and pressure, respectively, and ηi = η or λη outside and inside
the swimmer, respectively. The shape of the swimmer at time t is described by a closed curve
X(s, t ) in the x-y plane, where s is the curvilinear coordinate along the membrane. We represent the
membrane position X by a Fourier series

X(s) =
kmax∑

k=−kmax

Xk exp (2π iks) (2)
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with complex amplitudes Xk . Given the inextensibility of the membrane, the application of active
force results in the generation of tension ξ (s, t ). The resultant passive force density on the swimmer
surface is, therefore, given by

f (s, t ) = −ξ (s, t )c(s, t )n(s, t ) + dξ (s, t )

ds
t(s, t ), (3)

where n and t are the normal and tangential unit vectors to the membrane surface, respectively. In
addition to the passive membrane forces, we have to specify the active forces. For simplicity, these
are taken to be normal (i.e., Fan) to the membrane and are decomposed in Fourier harmonics as

Fa(s, t ) =
n=nmax∑

n=−nmax,n �=−1,0,1

fn(t )eins. (4)

In the above, due to the fluid incompressibility the term corresponding to n = 0, which corresponds
to a constant pressure jump across the membrane, plays no role. For simplicity we set f±1(t ) = 0
(we have kept the model as simple as possible by considering only the second and third harmonics).
We require at least two harmonics to induce shape deformations which are not invariant under
time reversal, a necessary condition for autonomous swimming (Scallop theorem [19]). We set
f2 = − fa cos(ωat )/2 and f3 = fa sin(ωat )/2, where ωa is the stroke frequency and fa is the active
force amplitude. By considering only the real part of the Fourier harmonics expansion, we get the
following active force:

Fa(s, t ) = − fa cos(ωat ) cos (2s) + fa sin(ωat ) cos (3s). (5)

Including higher harmonics is not decisive for the swimming phenomenon [20]. Therefore, the total
force density on the swimmer surface is given by

F(s, t ) = Fa(s, t )n + f (s, t ) + fo(t ) + ft (t )t(s, t ), (6)

where fo(t ) and ft (t )t(s, t ) allows one to fulfill the force-free and torque-free conditions on the
swimmer surface [18].

We define the nondimensional active force amplitude f = fa/(ηωa) as the ratio between the
timescales of the swimming strokes and fluid flow. This, together with hydrodynamic interactions,
results in autonomous propulsion along a straight line [17,20,21]. We make use of Green’s
function techniques to write the membrane velocity as an integral equation expressing nonlocal
hydrodynamics effects [22]. Details of the boundary integral method based numerical technique are
given in Appendix A.

The system is subjected to a linear shear flow of strength γ̇ (Fig. 1) and the effective viscosity
ηeff = 〈σxy〉/γ̇ is measured as the ratio of average shear stress (active+passive) and applied shear
rate. For a suspension with swimmer volume fraction φ, the intrinsic viscosity of the suspension
[η] = (ηeff − η)/φη is obtained by Batchelor’s formula [23] as

[η] = 1

A0γ̇ η

〈
−

∫
Fxy ds + η(λ − 1)

∫
(uxny + uynx )ds

〉
, (7)

where the x and y subscripts denote the x and y components, respectively, and u is the membrane
velocity. Here the integral is performed over the membrane and 〈·〉 refers to the time average (to be
specified later). We define the contribution of activity to viscosity as �η = [η] − [η]p, where [η]p
is the intrinsic viscosity of the passive suspension, obtained by setting the active force to zero.

The dependence of intrinsic viscosity on the applied shear rates is summarized in Fig. 2. We
observe that the contribution of activity switches from positive to negative at some critical shear
rate γ̇c. Three successive regimes of [η] are observed. For low values of shear rates (γ̇ < γ̇−),
d[η]/d γ̇ > 0 followed by d[η]/d γ̇ < 0 for intermediate values of shear rates. Finally, for high shear
rates (γ̇ > γ̇+), [η] again starts to increase with γ̇ . The transitions occur at shear rates γ̇∓ which
depend on the active force amplitude. A remarkable observation is that the normalized transition
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FIG. 2. (a) Intrinsic viscosities of passive vesicles ( f = 0) and amoeboid microswimmers ( f > 0) for � =
0.75. γ̇c marks the shear rate at which �η = 0. Inset shows [η] for different � with f = 40. (b) For small f ,
the normalization of the shear rate difference γ̇ /γ̇c − 1 and the active contribution to viscosity �η/[η]p by f
results in a reasonable collapse of the curves, especially in the central region; λ = 20.

shear rates (γ̇∓/γ̇c − 1)/ f do not depend on the active force amplitudes f [Fig. 2(b)] (see Sec. III A
for the motivation for this scaling).

In two dimensions a dilute passive suspension of disks provides [η]p = 2 [equal to 5/2 for
spheres in three dimensions (3D)] [24,25]. For vesicles, it is about 1.8 for � = 0.75 [Fig. 2(a),
black]. In the presence of activity, the intrinsic viscosity attains values close to 3 [Fig. 2(a), green],
showing the importance of activity (in the same proportion as found experimentally in 3D for
Chlamydomonas [8]). From the data shown in Fig. 2(a) (inset) obtained for two different deflation
parameters �, we expect this value to be significantly larger than 3 for more deflated shapes such
as that of Eutreptiella gymnastica. An estimate of active forces generated by the cells shows that
the dimensionless force f � 1 (assuming η ≈ 1 cP and ωa ≈ 1 s−1) [26]. Owing to the membrane
incompressibility [η] saturates beyond a value of f of a few tens for � = 0.75 [Fig. 2(b)]. In order
to gain insights into this rheological behavior, we estimated the effective viscosity of the dilute
suspension of a much simpler system of active swimmer composed of beads and springs.

B. Bead-spring microswimmer

We consider a bead-spring microswimmer where three identical beads (radius a each) are
connected by linear springs (length l � a, stiffness k = force/strain) in a triangular manner (Fig. 1)
[27]. This is a variant of the model of flagellar swimming of C. reinhardtii proposed in [28,29]. In
the Stokes regime, that is, Re = 0, we can write the equations of motion for each bead as

dri

dt
= μfi(r, t ) +

∑
j �=i

Gi j · f j (r, t ) + u∞, (8)

where μ = (6πηa)−1 is the bead mobility, u∞ is the externally imposed flow, and Gi j is the Oseen
tensor

Gi j (ri j ) = 1

8πη

(
I

ri j
+ ri j ⊗ ri j

r3
i j

)
(9)

describing the hydrodynamic interaction between the ith and jth beads, and fi is the total force
acting on the ith bead.

By virtue of the hydrodynamic interactions among the beads, the active forces fi j = fa sin(ωat +
αi j ) between the ith and jth beads along the connecting spring lead to autonomous translation
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FIG. 3. (a) The intrinsic viscosities [|χ |/ fa = 0, 0.04 without (solid) and with (dashed) noise, respectively]
and (b) normalized active viscosities, which follow Eq. (15) in the phase-locked regime, for the bead-spring
triangles.

and/or rotation for appropriate values of αi j [27]. In the absence of any external flow, and for
α12 = α13 = 0 and α23 = α �= 0, the swimmer performs translational motion.

In general, the nonlinear nature of Eq. (8) precludes analytical tractability. However, for fa � k,
the magnitude of swimmer deformation remains small (proportional to fa/k), and an analytical
perturbation analysis around the equilibrium shape of the triangular microswimmer becomes
possible. As shown previously [27], in the absence of any external flow the stresslet associated
with this triangular microswimmer vanishes over the course of one cycle of active force. Therefore,
for u∞ = 0 it is a neutral swimmer and cannot be classified as puller or pusher [27]. However, we
will see later that this result does not hold anymore in the presence of shear flow and the average
stresslet takes a nonzero value (Sec. III A).

Under a linear shear flow, the contribution of the triangle to the suspension viscosity is given by
the Kramers-Kirkwood formula [30]

[η] = − 1

vbγ̇ η

∑
i

〈yi(t ) f x
i (t )〉, (10)

where vb is the swimmer volume, yi(t ) is the y coordinate of the ith bead, and f x
i is the x component

of the total (active+passive) force acting on it. The resulting rheology is obtained numerically and
shows the same qualitative features as in the case of the amoeboid model (Fig. 3). To unravel the
mechanisms that govern the observed transitions (from positive to negative active viscosity as a
function of shear rate) we will, in the following, analytically quantify the coupling of the active
forces and applied flow.

III. ANALYTICAL CALCULATIONS

A. Triangle dynamics and phase-locking

For a passive vesicle or bead-spring triangle, one can describe the respective dynamics under
shear flow in terms of the particle orientation ϕs (see Appendix B for details). Therefore, the time
averaging in Eqs. (7) and (10) for the passive particles can also be achieved by an averaging
over ϕs. On the other hand, activity affects shape and thus the swimmer orientation. The phase
related to activity is ϕa = ωat , whereas the phase related to shear flow driven shape change is
ϕs = ωst where, due to symmetry (rear-front symmetry), the shape changes occur at a frequency
twice the tumbling frequency (ωs � γ̇ ; as for the classical Jeffery orbit). This means that the
shape configuration depends on both phases. For γ̇ � ωa and γ̇ � ωa (weak coupling), ϕs can
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be considered independent of the activity and the time averaging in Eqs. (7) and (10) has to be
performed over the larger period (4π/γ̇ or 2π/ωa). For γ̇ ≈ ωa, however, there is a strong coupling
between the swimmer orientation ϕs and its activity, so that ϕa becomes relevant as well. For weak
deformation we have (which is an exact relation for a rigid object)

dϕs

dt
≈ 1

l2

∣∣∣∣∣
3∑

i=1

ri(ϕs, ϕa) × ṙi(ϕs, ϕa)

∣∣∣∣∣, (11)

where ri is the position vector of the ith bead. The evolution equation of a bead position is expressed
as a proportionality between ṙi(ϕs, ϕa) and the total force acting on the bead. The active part contains
obviously ϕa and the beads positions (via the spring force), which can be written as a function of
ϕs to leading order in deformation. Together with definition (11) the time evolution of ϕs can be
derived (see Appendix B).

If hydrodynamic interactions are ignored, along with the assumptions fa � k and γ̇ , ωa � kμ/l ,
the phase equation assumes a simple analytical form, known as the Adler equation [31],

dδ

dt
≈ −(γ̇ − ωa) + Aγ̇ sin(δ + δ0), (12)

where δ = ϕs − ϕa,

cos δ0 = 3 − 3 cos α − 2 sin α/ζ√
2(1 − cos α)(9 + 4/ζ 2)

, (13)

and

A = 2
√

2

(√
1 − cos α√
9 + 4/ζ 2

)
fa

k
(14)

depends on the magnitude of the triangle deformation ( fa/k) due to the active force (see Appendix B
for a more general form of the Adler equation for the active triangle). In the above expressions, ζ =
kμ/ωal is the ratio of the timescales associated with active force (∼1/ωa) and elastic deformation
(∼l/kμ).

Equation (12) is a well-known equation in nonlinear systems and is used as a model for
synchronization of oscillators [32,33]. It is apparent from Eq. (12) that for −A � (γ̇ /ωa − 1) � A
there is a “locking” of the two phases (dδ/dt = 0) and we obtain γ̇∓ = ωa(1 ∓ A) as the boundaries
of the “phase-locked” regime (see Supplemental Material movies in [34]). The phase-locking range
−A � (γ̇ /ωa − 1) � A evolves linearly with the active force (A is proportional to the active force).
This behavior is also observed for the amoeboid swimmer [Fig. 2(b)].

The phase-locking phenomenon can be appreciated by analyzing the dependence of angular
frequency of the shear flow driven triangle dynamics (ωs) on the applied shear. By definition,
the angular frequency ωs is twice the tumbling frequency due to the symmetry of the shear flow.
Figure 4(a) shows that ωs increases with the shear rate monotonically, except in the phase-locked
regime where the synchronization of shear and activity modes results in ωs = ωa. The phase-locking
phenomenon also influences the “puller/pusher” nature of the swimmer as the swimmer stresslet
changes its sign in the phase-locked regime, Fig. 4(b) (more details in Sec. IV). The effect of
phase-locking is further reflected in the time dependence of the shear stress applied by the swimmer
on fluid (Fig. 5). In the absence of activity under flow the particle has a cyclic motion with frequency
ωs (with the leading deformation mode behaving as eiωst + c.c.). The mode associated with activity
is eiωat + c.c. Due to nonlinear coupling, this generates new modes having frequencies ωs ± ωa. In
the phase-locked regime (ωs ≈ ωa) the system shows two frequencies: the basic one ωa and 2ωa

(Fig. 5, middle panels). Outside the phase-locked regime the system shows three disparate basic
frequencies (generically, not rationally related to each other) ωa and ωs ± ωa, as seen in Fig. 5 (top
and bottom panels).
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(a) (b)

FIG. 4. Dependence of (a) ωs, the angular frequency of the shear flow driven dynamics, and (b) the average
stresslet � for the bead-spring swimmer, as a function of applied shear rate, γ̇ .

B. Effect of phase-locking on effective viscosity

In the phase-locked regime by using Eq. (10) we get

�η

[η]p
≈ [3ζ (cos α − sin α − 1) + 2(cos α + sin α − 1)]√

(9ζ 2 + 4)(1 − cos α)

(
ωa

γ̇

)2(
γ̇

γ̇c
− 1

)
, (15)

where

γ̇c = ωa

[
1 + 3ζ 2

√
2(1 − cos α)

9ζ 2 + 4

(
cos α + sin α − 1

3ζ (cos α − sin α − 1) + 2(cos α + sin α − 1)

)(
fa

k

)]
. (16)

A first important result is that the active viscosity contribution changes sign at γ̇ = γ̇c. As we have
seen before, this change of sign is related to a change of sign of the stresslet (pusher-puller transition;
Fig. 4(b); see also next section). The value of this critical shear rate (due to the α dependence),
γ̇c, can increase or decrease with fa. It is remarkable that �η/[η]p is independent of fa in the
phase-locked regime [Fig. 3(b)], which is also observed for the amoeboid swimmer [Fig. 2(b)]. The
effect of active force amplitude fa, however, does reflect in the maximum change in the viscosity,

(a) (b)

FIG. 5. Time dependence of the shear stress for (a) amoeboid and (b) bead-spring swimmers. Each panel
also shows the evolution of swimmer conformations, showing a periodic character in the phase-locked regime
(middle panels). The red bars designate the duration of the active force cycle.
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FIG. 6. Phase-locked regimes of the amoeboid swimmers for different f . �η/[η]p for f = 5.0 is shown as
a reference.

that is, |�η/[η]p|max, which is obtained by substituting γ̇ = γ̇∓ in Eq. (15). Since γ̇∓ scale linearly
with fa (at least for fa � k), we have |�η/[η]p|max ∼ fa. It needs to be noted that this linear relation
between maximum viscosity change and fa holds for fa � k. For large fa the deformation of the
triangle with linear springs may become so large that the perturbation analysis ceases to be valid.

Further, note that higher order phase-locking may also take place and Eq. (12) can be extended
for δmn = mϕs − nϕa where m �= 0 and n �= 0 are arbitrary integers. The occurrence of higher
order phase-locking suggests multiple values of critical shear rates γ̇c where a transition between
shear-thickening and shear-thinning behaviors can be observed (Fig. 6). A noteworthy point is that
hydrodynamic interaction is not essential for the reported feature in Fig. 3(a), albeit necessary for
the self-propulsion.

The phase-locking is found to be robust against several perturbations. For microscopic swimmers
noise may have a significant effect on their behavior. In order to study the influence of noise
on the swimmer behavior under shear flow and the phase-locking phenomenon we consider the
noise to be of two origins. The first one is intrinsic: originating from activity. The intrinsic nature
ensures that it does not contribute to the total force and torque. The second origin stems from
fluctuations in the surrounding fluid. These fluctuations in fluid flow result in additional velocities
to each bead of the triangular swimmer, which we assume to be uncorrelated over time as well as
among the beads. We consider the combined effect of noise from these two sources in the form of
random forces (proportional to the velocity fluctuations in the fluid) χi(t ) on each bead such that
they are uncorrelated, that is, χi(t )χ j (t ′) = |χ |2δi jδ(t − t ′) where |χ | is the noise amplitude. The
noise from the fluid perturbations (external to the swimmer) results in a nonzero contribution to
the total force and torque, resulting in translational and rotational diffusion of the swimmer. We
performed numerical simulations of the bead-spring swimmer with noise under shear flow using
the Euler-Maruyama method for the stochastic ordinary differential equations [35]. As shown in
Fig. 3(a) the noise does not affect the qualitative features of the suspension viscosity as long as
|χ | � fa. The consideration of noise reflects in the form of an additional diffusive term in the
Adler equation [Eq. (B7)] resulting in the diffusion of the phase difference δ on a tilted washboard
potential with occasional phase slips [33] as opposed to its deterministic behavior.

IV. MECHANISMS LEADING TO THE VISCOSITY BEHAVIOR

The microswimmers are usually categorized as puller or pusher depending on the far-field
velocity field generated by the swimmer. The leading order contribution in the far-field velocity
due to the swimmer can be written in terms of the first moment of the force distribution, that is,
�i j = ∑3

i=1 fi ⊗ r j for the bead-spring swimmer where ri and fi are the position and the total
force on the ith bead. In the absence of any external flow (such as shear flow in this paper), the
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FIG. 7. Probability density of the presence of a bead (for triangle, upper panels) and swimmer membrane
(for amoeboid, lower panels) under shear flow in the reference frame cotranslating with the swimmer center.

symmetric nature of the swimmer results in an average velocity field over one active force cycle
to be proportional to the average stresslet �s = �xx − �yy where x is the direction of the swimmer
propulsion. The puller and pusher nature of the swimmer is characterized by the sign of the stresslet
�s (�s < 0 for puller and �s > 0 for pusher). The bead-spring triangular swimmer with three
identical beads is known to demonstrate a puller and pusher characteristic within an active force
cycle, so that on average it acquires a neutral nature (�s = 0) [27]. In the presence of a shear flow
the triangle demonstrates tumbling and we can define the stresslet in the reference frame attached
to the swimmer as � = �x′x′ − �y′y′ where the swimmer propulsion direction x′ is corotating with
it. We calculated the average value (over sufficiently long time to capture the effects of interaction
between shear and activity modes) of stresslet � of the bead-spring swimmer under different shear
rates. Figure 4(b) shows the transition of the swimmer nature from pusher (� < 0) to puller (� > 0)
at a shear rate close to the angular frequency of the active force. This transition between the two
swimmer states coincides with the transition from �η > 0 to �η < 0. This demonstrates that for
shape-deformation driven swimmers the puller-pusher nature is not an intrinsic property but depends
on the external conditions, such as external flow (as shown here) or confinement [17].

In order to dig further into the origin of the viscosity change, we investigated the probability
density of the microswimmer surface (or beads in the case of the bead-spring microswimmer) being
at any location in the reference frame comoving with the swimmer center of mass. This density
represents the average microswimmer shape in the steady state (Fig. 7). For low γ̇ the average shape
first has an increasing cross section against the flow (meaning shear thickening), then a decrease of
cross section until alignment with the flow in phase-locked regime, then an increase of cross section
with γ̇ . These behaviors are fully correlated with the finding presented in Figs. 2 and 3. In the phase-
locked regime the swimmer takes only a certain sequence of shapes (see Supplemental Material
movies [34]) and its average orientation gets aligned with the flow direction on increasing γ̇ (Fig. 7).
This alignment results in the shear-thinning behavior in the phase-locked regime. Outside the phase-
locked regime, however, the swimmer attains many more shapes (see Supplemental Material movies
[34]) and the average orientation distribution is relatively isotropic, resulting in shear-thickening
behavior.

V. DISCUSSION

The phase-locking is very generic due to nonlinear coupling of two oscillators. Shear flow
can lead to tumbling (which is the first autonomous oscillator). This is the case, for example, for
Chlamydomonas, which undergoes (more or less complex) tumbling (see [8]). On the other hand, the
activity is materialized by a periodic beating of flagella (the second oscillator). The flow affects the
motion of flagella, which in turns affects the tumbling dynamics, resulting in an effective coupling
between the two oscillators (the activity mode and the tumbling one). We thus expect phase-locking
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to occur for various swimmers since tumbling and shape activity are quite common. Phase-locking
(at least the first order) seems to be absent for shakers [Eq. (B7)]. It should be pointed out that the
mechanism of viscosity modulation by the swimmer activity shown here is fundamentally different
from the previously known mechanisms which rely primarily on the stochastic effects arising from
the rotational diffusion or run-and-tumble nature [6,10,12,15] of the microswimmer. In general,
however, the two mechanisms, deterministic (shape activity as reported here) and stochastic, can be
visible under different applied shear rates for the same microswimmer. For shear rates significantly
different from that of the angular frequency ωa of the swimming strokes, we may expect the
stochastic mechanism to prevail. In contrast, in the regime where the shear rate is close enough
to ωa the deterministic mechanism takes over. Equation (15) shows that in the phase-locked region
(but for γ̇ �= ωa) the active contribution to viscosity scales as �η/[η]p ∼ (ωa/γ̇ )2 ∼ 1. On the other
hand, for fixed shapes (slender body) with noise it is of the order of �η/[η]p ∼ tr/15ts [15], where tr
and ts are reorientation and swimming time (over swimmer size), respectively. For several swimmers
[8,13,15] the latter leads to �η/[η] ∼ 1, meaning that shape activity contribution may be of the same
order as that of noise. A systematic analysis will be needed before drawing conclusive answers about
relative contributions of the two mechanisms.

Known experimental measurements of the active suspension viscosity have been performed for
γ̇ � ωa [8,13,14]. Explorations in the regime γ̇ ≈ ωa are needed to unravel the effect of shape
deformation. For flagellar microswimmers such as E. coli and C. reinhardtii, ωa ≈ 100π s−1. Thus
high enough shear rates are required for the phase-locking. In contrast, amoeboid swimmers [3,4]
are endowed with much longer stroke duration, approximately a few seconds, requiring much
lower shear rates. Finally, it will be an interesting task for future research to study multiple
swimmers in order to analyze the interplay between their mutual coupling (which may trigger their
synchronization) and the effect of external flow.
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APPENDIX A: NUMERICAL SIMULATION OF AMOEBOID MICROSWIMMER
USING BOUNDARY INTEGRAL METHOD

We consider a single swimmer in a linear shear flow

u∞ = γ̇ yêx. (A1)

Considering very small Reynolds number, the flow can be regarded as a Stokes flow and we can
use the boundary integral method [22] to convert the Stokes equations into an integral form over the
swimmer shape. The velocity at any point r in the domain can then be calculated by the boundary
integral equation

�(r)u(r) = u∞(r) + 1

η

∮
F(s′) · G(X(s′), r)ds′

+ (1 − λ)
∮

u(X(s′)) · T (X(s′), r) · n(X(s′))ds′, (A2)
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where G and T are the single- and double-layer Green’s functions, respectively, and the integrals
are performed over the swimmer surface. The term � is defined as

�(r) =
⎧⎨
⎩

λ, if r is inside the swimmer
(1 + λ)/2, if r is on a swimmer surface
1, if r is outside of the swimmer.

(A3)

Once the velocity on the membrane is known, the evolution of vesicle shape is obtained from a
simple fixed time step Euler scheme

Xk (t + �t ) = Xk (t ) + uk (t )�t, (A4)

where uk (t ) is obtained by taking Fourier transform of the velocity calculated from Eq. (A2) at
time t . Ideally, fluid incompressibility and membrane impermeability should automatically ensure
the swimmer volume to be a constant but a drift due to numerical scheme cannot be ruled out. To
correct this drift, we inflate or deflate the swimmer through homogeneous normal deformation.

We performed several confirmatory simulations with refined meshes and time steps, sampling
points, and Fourier harmonics to ensure the numerical accuracy of the scheme. This verification led
us to compromise between efficiency and accuracy and characterize each swimmer surface by 63
Fourier harmonics. Further, we used 2048 sampling points to resolve the short-range hydrodynamics
interactions. We calculated the swimmer surface velocity at 128 sampling points.

APPENDIX B: BEAD-SPRING MICROSWIMMER

1. Passive triangle in shear flow

We can obtain the passive counterpart of the active bead-spring microswimmer by setting fa = 0.
Once it is placed in shear flow γ̇ it undergoes rotation and also oscillatory deformations. For γ̇ �
kμ/l it is easy to see that the timescale of triangle rotation and deformation is 4π/γ̇ . For small γ̇ we
can define the phase of the passive triangle ϕs as the angle made by one of the triangle beads with
some prespecified direction in the triangle plane. Therefore, all the properties of the passive triangle
under shear can be written in terms of ϕs. We can write the contribution of the passive triangle to
total shear stress in the form of Kramers-Kirkwood stress [30] as

σ
xy
KK =

〈
3∑

i=1

f x
i (ϕs)yi(ϕs)

〉
, (B1)

where averaging is performed over ϕs ∈ [0, 2π ], that is, all triangle configurations. For
small triangle deformation, the force on any bead can be approximated as f x,y

i (ϕs) =∑3
n=1

∑
j �=i[P

x,y
i j sin(nϕs) + Qx,y

i j cos(nϕs)], where the nϕs dependence is due to the threefold
symmetric shape of the triangle. Similarly, the small deformation assumption also gives yi(ϕs) =
Ri sin ϕs + Si cos ϕs. The coefficients Px,y

i j , Qx,y
i j , Ri, and Si are determined from the equations of

motion of the beads [Eq. (8)]. Substituting the values of these coefficients in Eq. (B1) gives the
effective viscosity of the passive bead-spring triangle suspension to be

ηp = η + φ

vb

σ
xy
KK

γ̇
≈ η + φ

vb

9l2

4μ

(
1

c2 + 9

)
, (B2)

where vb is the swimmer volume, φ is the swimmer volume fraction in the suspension, and c =
γ̇ l/kμ is the capillary number. This demonstrates a shear-thinning behavior of the passive triangle
under shear flow.
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2. Active triangle in shear flow

a. No coupling between the shear flow driven dynamics and activity

For the active triangle in shear flow, if we do not consider any coupling between the shear
flow and activity driven dynamics, the triangle undergoes tumbling at a constant rate (due to
shear flow) and deformation (due to activity as well as flow). In the absence of the coupling,
the two modes, activity and shear flow, are independent of each other and all dynamical
variables can be written in terms of ϕs = γ̇ t/2 and ϕa = ωat . Therefore, we can follow the
same steps as for the passive triangle above. However, there are additional terms due to the
triangle activity in the expressions for the force on the bead and with additional dependence
on activity which gives f x,y

i (ϕs) = ∑
j �=i{[Pa

i j sin(ωat ) + Qa
i j cos(ωat )] sin(ϕs) + [P̃a

i j sin(ωat ) +
Q̃a

i j sin(ωat )] cos(ϕs)} + passive force, where coefficients Pa
i j , Qa

i j , P̃a
i j , and Q̃a

i j can be obtained by
solving Eq. (8) for an isolated active triangle without any external shear flow. We substitute these
values in Eq. (B1) and take an average over one cycle of active force to obtain

ηa ≈ ηp − φ

vb

(
fa

k

)2 l2

2μ

×
(

54[cos(α−β )+ cos α+ cos β+3] + 4
√

3(9cζ+c/ζ )[sin β− sin α+ sin(α−β )]+729ζ 2

(9ζ+1/ζ )(9ζ+4/ζ )
(
9+c2

)
)

(B3)

to be the effective suspension viscosity in the absence of coupling between activity and shear flow
driven dynamics. It can be seen that for a purely translation microswimmer (β = 0), we get

ηa ≈ ηp − φ

vb

(
fa

k

)2 l2

2μ

(
108(2 + cos α) + 729ζ 2

(9ζ + 1/ζ )(9ζ + 4/ζ )(9 + c2)

)
, (B4)

which has a monotonic dependence on γ̇ contrary to the observation in Fig. 2. Therefore, the
interaction between the two modes of triangle deformation cannot be ignored and the assumption of
ϕs ∼ t breaks down.

b. With coupling between the shear flow driven dynamics and activity

In order to study the effect of coupling we first need to obtain the dependence of ϕs on t . Under
the assumption of small deformation of the triangle, we can write

dϕs

dt
≈ 1

l2

3∑
i=1

(
xi(ϕs, ϕa)

dyi

dt
(ϕs, ϕa) − yi(ϕs, ϕa)

dxi

dt
(ϕs, ϕa)

)
, (B5)

where (xi, yi ) are the coordinates of the ith bead. In this condition we can take
xi(ϕs(t ), ϕa(t )) = Rx

i sin ϕs(t ) + Sx
i cos ϕs(t ) + Rax

i sin ϕa(t ) + Sax
i cos ϕa(t ) and yi(ϕs(t ), ϕa(t )) =

Ry
i sin ϕs(t ) + Sy

i cos ϕs(t ) + Ray
i sin ϕa(t ) + Say

i cos ϕa(t ). Substituting these values in the following
equation for the phase difference

dδ

dt
= dϕs

dt
− dϕa

dt
(B6)

gives us the time dependence of the ϕs since the phase of the activity ϕa = ωat is already known. In
a more general setup, we can also have the activity described not by explicit time dependence but
triangle configuration. We do not consider those cases here. Assuming the change in the phase ϕs

to be slower than the swimmer activity, we can use a method of averaging. After substituting the
aforementioned expressions for xi and yi in Eq. (B5) and taking the average over one cycle of the
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active force, we obtain the following Adler equation:

dδ

dt
≈ −(γ̇ − ωa) + fa

k

γ̇

9ζ + 4/ζ
(Ac cos δ + As sin δ) (B7)

with

Ac = −2(2 cos α − 3ζ sin α) + 3
√

3ζ (cos β − 1) + 2(cos β + 1) + sin β(3ζ + 2
√

3), (B8)

As = −2(2 sin α + 3ζ cos α) + 2
√

3ζ (cos β − 1) + 3ζ (cos β + 1) + sin β(2 − 3
√

3ζ ). (B9)

This demonstrates that for different α and β (which correspond to the distribution of the active
force on the amoeboid swimmer surface) the phase-locking is observed under shear flow. The
corresponding window of the shear rates, however, is dependent on the nature of the active force
distribution (α and β). It can be seen that for α = β = 0 (no propulsion) we get Ac = As = 0,
implying lack of phase-locking.

[1] Eric Lauga and Thomas R. Powers, The hydrodynamics of swimming microorganisms, Rep. Prog. Phys.
72, 096601 (2009).

[2] J. Elgeti, R. G. Winkler, and G. Gompper, Physics of microswimmers—Single particle motion and
collective behavior: A review, Rep. Prog. Phys. 78, 056601 (2015).

[3] J. Throndsen, Flagellates of Norwegian coastal waters, Nytt. Magasin for Botanikk 16, 161 (1969).
[4] N. P. Barry and M. S. Bretscher, Dictyostelium amoebae and neutrophils can swim, Proc. Natl. Acad. Sci.

USA 107, 11376 (2010).
[5] M. Bergert, A. Erzberger, R. A. Desai, I. M. Aspalter, A. C. Oates, G. Charras, G. Salbreux, and E. K.

Paluch, Force transmission during adhesion-independent migration, Nat. Cell Biol. 17, 524 (2015).
[6] D. Saintillan, The dilute rheology of swimming suspensions: A simple kinetic model, Exp. Mech. 50,

1275 (2010).
[7] K. Drescher, R. E. Goldstein, N. Michel, M. Polin, and I. Tuval, Direct Measurement of the Flow Field

Around Swimming Microorganisms, Phys. Rev. Lett. 105, 168101 (2010).
[8] S. Rafai, L. Jibuti, and P. Peyla, Effective Viscosity of Microswimmer Suspensions, Phys. Rev. Lett. 104,

098102 (2010).
[9] K. Drescher, J. Dunkel, L. H. Cisneros, S. Ganguly, and R. E. Goldstein, Fluid dynamics and noise in

bacterial cell-cell and cell-surface scattering, Proc. Natl. Acad. Sci. USA 108, 10940 (2011).
[10] Y. Hatwalne, S. Ramaswamy, M. Rao, and R. A. Simha, Rheology of Active-Particle Suspensions, Phys.

Rev. Lett. 92, 118101 (2004).
[11] D. Saintillan, Extensional rheology of active suspensions, Phys. Rev. E 81, 056307 (2010).
[12] S. C. Takatori and J. F. Brady, Superfluid Behavior of Active Suspensions from Diffusive Stretching,

Phys. Rev. Lett. 118, 018003 (2017).
[13] J. Gachelin, G. Mino, H. Berthet, A. Lindner, A. Rousselet, and E. Clement, Non-Newtonian Viscosity of

Escherichia Coli Suspensions, Phys. Rev. Lett. 110, 268103 (2013).
[14] H. M. Lopez, J. Gachelin, C. Douarche, H. Auradou, and E. Clement, Turning Bacteria Suspensions Into

Superfluids, Phys. Rev. Lett. 115, 028301 (2015).
[15] D. Saintillan, Rheology of active fluids, Annu. Rev. Fluid Mech. 50, 563 (2018).
[16] L. Jibuti, W. Zimmermann, S. Rafai, and P. Peyla, Effective viscosity of a suspension of flagellar-beating

microswimmers: Three-dimensional modeling, Phys. Rev. E 96, 052610 (2017).
[17] H. Wu, M. Thiébaud, W.-F. Hu, A. Farutin, S. Rafaï, M.-C. Lai, P. Peyla, and C. Misbah, Amoeboid

motion in confined geometry, Phys. Rev. E 92, 050701(R) (2015).
[18] H. Wu, A. Farutin, W. F. Hu, M. Thiebaud, S. Rafai, P. Peyla, M. C. Lai, and C. Misbah, Amoeboid

swimming in a channel, Soft Matter 12, 7470 (2016).
[19] E. M. Purcell, Life at low Reynolds number, Am. J. Phys. 45, 3 (1977).

103302-13

https://doi.org/10.1088/0034-4885/72/9/096601
https://doi.org/10.1088/0034-4885/72/9/096601
https://doi.org/10.1088/0034-4885/72/9/096601
https://doi.org/10.1088/0034-4885/72/9/096601
https://doi.org/10.1088/0034-4885/78/5/056601
https://doi.org/10.1088/0034-4885/78/5/056601
https://doi.org/10.1088/0034-4885/78/5/056601
https://doi.org/10.1088/0034-4885/78/5/056601
https://doi.org/10.1073/pnas.1006327107
https://doi.org/10.1073/pnas.1006327107
https://doi.org/10.1073/pnas.1006327107
https://doi.org/10.1073/pnas.1006327107
https://doi.org/10.1038/ncb3134
https://doi.org/10.1038/ncb3134
https://doi.org/10.1038/ncb3134
https://doi.org/10.1038/ncb3134
https://doi.org/10.1007/s11340-009-9267-0
https://doi.org/10.1007/s11340-009-9267-0
https://doi.org/10.1007/s11340-009-9267-0
https://doi.org/10.1007/s11340-009-9267-0
https://doi.org/10.1103/PhysRevLett.105.168101
https://doi.org/10.1103/PhysRevLett.105.168101
https://doi.org/10.1103/PhysRevLett.105.168101
https://doi.org/10.1103/PhysRevLett.105.168101
https://doi.org/10.1103/PhysRevLett.104.098102
https://doi.org/10.1103/PhysRevLett.104.098102
https://doi.org/10.1103/PhysRevLett.104.098102
https://doi.org/10.1103/PhysRevLett.104.098102
https://doi.org/10.1073/pnas.1019079108
https://doi.org/10.1073/pnas.1019079108
https://doi.org/10.1073/pnas.1019079108
https://doi.org/10.1073/pnas.1019079108
https://doi.org/10.1103/PhysRevLett.92.118101
https://doi.org/10.1103/PhysRevLett.92.118101
https://doi.org/10.1103/PhysRevLett.92.118101
https://doi.org/10.1103/PhysRevLett.92.118101
https://doi.org/10.1103/PhysRevE.81.056307
https://doi.org/10.1103/PhysRevE.81.056307
https://doi.org/10.1103/PhysRevE.81.056307
https://doi.org/10.1103/PhysRevE.81.056307
https://doi.org/10.1103/PhysRevLett.118.018003
https://doi.org/10.1103/PhysRevLett.118.018003
https://doi.org/10.1103/PhysRevLett.118.018003
https://doi.org/10.1103/PhysRevLett.118.018003
https://doi.org/10.1103/PhysRevLett.110.268103
https://doi.org/10.1103/PhysRevLett.110.268103
https://doi.org/10.1103/PhysRevLett.110.268103
https://doi.org/10.1103/PhysRevLett.110.268103
https://doi.org/10.1103/PhysRevLett.115.028301
https://doi.org/10.1103/PhysRevLett.115.028301
https://doi.org/10.1103/PhysRevLett.115.028301
https://doi.org/10.1103/PhysRevLett.115.028301
https://doi.org/10.1146/annurev-fluid-010816-060049
https://doi.org/10.1146/annurev-fluid-010816-060049
https://doi.org/10.1146/annurev-fluid-010816-060049
https://doi.org/10.1146/annurev-fluid-010816-060049
https://doi.org/10.1103/PhysRevE.96.052610
https://doi.org/10.1103/PhysRevE.96.052610
https://doi.org/10.1103/PhysRevE.96.052610
https://doi.org/10.1103/PhysRevE.96.052610
https://doi.org/10.1103/PhysRevE.92.050701
https://doi.org/10.1103/PhysRevE.92.050701
https://doi.org/10.1103/PhysRevE.92.050701
https://doi.org/10.1103/PhysRevE.92.050701
https://doi.org/10.1039/C6SM00934D
https://doi.org/10.1039/C6SM00934D
https://doi.org/10.1039/C6SM00934D
https://doi.org/10.1039/C6SM00934D
https://doi.org/10.1119/1.10903
https://doi.org/10.1119/1.10903
https://doi.org/10.1119/1.10903
https://doi.org/10.1119/1.10903


MOHD SUHAIL RIZVI et al.

[20] A. Farutin, S. Rafai, D. K. Dysthe, A. Duperray, P. Peyla, and C. Misbah, Amoeboid Swimming: A
Generic Self-Propulsion of Cells in Fluids by Means of Membrane Deformations, Phys. Rev. Lett. 111,
228102 (2013).

[21] Q. Wang and H. G. Othmer, Computational analysis of amoeboid swimming at low Reynolds number,
J. Math. Biol. 72, 1893 (2016).

[22] C. Pozrikidis, Boundary Integral and Singularity Methods for Linearized Viscous Flow, 1st ed. (Cambridge
University Press, Cambridge, UK, 1992).

[23] G. K. Batchelor, The stress system in a suspension of force-free particles, J. Fluid Mech. 41, 545 (1970).
[24] John F. Brady, The Einstein viscosity correction in n dimensions, Int. J. Multiphase Flow 10, 113 (1983).
[25] Vincent Doyeux, Stephane Priem, Levan Jibuti, Alexander Farutin, Mourad Ismail, and Philippe Peyla,

Effective viscosity of two-dimensional suspensions: Confinement effects, Phys. Rev. Fluids 1, 043301
(2016).

[26] J. Fouchard, C. Bimbard, N. Bufi, P. Durand-Smet, A. Proag, A. Richert, O. Cardoso, and A. Asnacios,
Three-dimensional cell body shape dictates the onset of traction force generation and growth of focal
adhesions, Proc. Natl. Acad. Sci. USA 111, 13075 (2014).

[27] M. S. Rizvi, A. Farutin, and C. Misbah, Three-bead steering microswimmers, Phys. Rev. E 97, 023102
(2018).

[28] Benjamin M. Friedrich and Frank Julicher, Flagellar Synchronization Independent of Hydrodynamic
Interactions, Phys. Rev. Lett. 109, 138102 (2012).

[29] Kyriacos C. Leptos, Kirsty Y. Wan, Marco Polin, Idan Tuval, Adriana I. Pesci, and Raymond E. Goldstein,
Antiphase Synchronization in a Flagellar-Dominance Mutant of Chlamydomonas, Phys. Rev. Lett. 111,
158101 (2013).

[30] M. Doi and S. F. Edwards, The Theory of Polymer Dynamics (Oxford University Press, New York, 1998).
[31] R. Adler, A study of locking phenomena in oscillators, Proc. IRE 34, 351 (1946).
[32] Yoshiki Kuramoto, Self-entrainment of a population of coupled non-linear oscillators, in International

Symposium on Mathematical Problems in Theoretical Physics, edited by Huzihiro Araki (Springer, Berlin,
Heidelberg, 1975), pp. 420–422.

[33] A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization, A Universal Concept in Nonlinear Sciences,
1st ed. (Cambridge University Press, Cambridge, UK, 2001).

[34] See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevFluids.4.103302 for
movies showing the dynamics of amoeboid and bead-spring microswimmers for three shear rates (γ̇ <

γ̇−, γ̇− < γ̇ < γ̇+, and γ̇ > γ̇+) in the reference frame comoving with the swimmer center of mass.
[35] Peter E. Kloeden and Eckhard Platen, Numerical Solution of Stochastic Differential Equations (Springer

Science and Business Media, Berlin, 1992).

103302-14

https://doi.org/10.1103/PhysRevLett.111.228102
https://doi.org/10.1103/PhysRevLett.111.228102
https://doi.org/10.1103/PhysRevLett.111.228102
https://doi.org/10.1103/PhysRevLett.111.228102
https://doi.org/10.1007/s00285-015-0925-9
https://doi.org/10.1007/s00285-015-0925-9
https://doi.org/10.1007/s00285-015-0925-9
https://doi.org/10.1007/s00285-015-0925-9
https://doi.org/10.1017/S0022112070000745
https://doi.org/10.1017/S0022112070000745
https://doi.org/10.1017/S0022112070000745
https://doi.org/10.1017/S0022112070000745
https://doi.org/10.1016/0301-9322(83)90064-2
https://doi.org/10.1016/0301-9322(83)90064-2
https://doi.org/10.1016/0301-9322(83)90064-2
https://doi.org/10.1016/0301-9322(83)90064-2
https://doi.org/10.1103/PhysRevFluids.1.043301
https://doi.org/10.1103/PhysRevFluids.1.043301
https://doi.org/10.1103/PhysRevFluids.1.043301
https://doi.org/10.1103/PhysRevFluids.1.043301
https://doi.org/10.1073/pnas.1411785111
https://doi.org/10.1073/pnas.1411785111
https://doi.org/10.1073/pnas.1411785111
https://doi.org/10.1073/pnas.1411785111
https://doi.org/10.1103/PhysRevE.97.023102
https://doi.org/10.1103/PhysRevE.97.023102
https://doi.org/10.1103/PhysRevE.97.023102
https://doi.org/10.1103/PhysRevE.97.023102
https://doi.org/10.1103/PhysRevLett.109.138102
https://doi.org/10.1103/PhysRevLett.109.138102
https://doi.org/10.1103/PhysRevLett.109.138102
https://doi.org/10.1103/PhysRevLett.109.138102
https://doi.org/10.1103/PhysRevLett.111.158101
https://doi.org/10.1103/PhysRevLett.111.158101
https://doi.org/10.1103/PhysRevLett.111.158101
https://doi.org/10.1103/PhysRevLett.111.158101
https://doi.org/10.1109/JRPROC.1946.229930
https://doi.org/10.1109/JRPROC.1946.229930
https://doi.org/10.1109/JRPROC.1946.229930
https://doi.org/10.1109/JRPROC.1946.229930
http://link.aps.org/supplemental/10.1103/PhysRevFluids.4.103302

