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Classical modes of one-dimensional (1D) detonation characterized by a simplified
reaction model are reproduced by using a real chemical kinetics for the H2-O2 system with
argon dilution. As Ar dilution is varied, the bifurcation points of pulsating instability are
identified and a formed bifurcation diagram is compared with that obtained by the one-step
reaction model. Eventually, the numerical results demonstrate that, for real detonations
with detailed chemistry, the criterion of Ng et al. works well on prediction of the 1D
detonation instability. Furthermore, the detonability limits are found respectively at low
and high Ar dilutions. Above the high Ar dilution limit, detonations decays to the minimum
level where long autoignition time and small heat release rate make reestablishment
impossible for both 1D and 2D simulations. However, below the low Ar dilution limit, a
1D detonation cannot be sustained due to high instability, while the corresponding cellular
detonation can propagate sustainably due to the role of transverse instability.
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I. INTRODUCTION

A detonation wave manifests pulsations in one dimension [1] and cellular instability in multiple
dimensions [2–5], depending on the initial conditions and mixture properties. For a pulsating
detonation near the Chapman-Jouguet (CJ) state, extensive experiments and theoretical analyses
have observed longitudinal oscillation of the detonation front [6–11]. Specially, the theoretical
studies of Clavin and Williams [2,3,12] have milestone significance for the physical explanation
of origin of one-dimensional (1D) instability and the relation of pulsating and cellular instabilities.
He and Lee [13] examined the 1-D instability of detonation and demonstrated that 1-D detonations
in planar geometry are classified into three classes through identifying the boundary of detonation
stability and observing different modes of shock oscillation: neutral stability, pulsation with a single-
mode oscillation and with multiperiod mode, and highly nonlinear and even chaotic oscillations.
Sharpe and Falle [14] observed a series of failures followed by reignition for a highly unstable
detonation with a large activation energy and found the cause of instabilities in the reaction zone by
using a one-step overall reaction. Romick, Aslam, and Powers [15] studied the effect of diffusion
on the dynamics of unsteady detonations with a one-step overall reaction, and found that diffusion
influenced strongly the dynamics of unstable detonation. Ng et al. [16] examined the study of 1D
detonation using a two-step reaction model and proposed a universal criterion for 1D detonation
instability by defining a stability factor, and gave the bifurcation diagram of a pulsating detonation.
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A three-step chain-branching reaction model was used to predict the detonability limit by Short
and Quirk [17]. As the studies of chemical reaction kinetics are advanced, realistic chemistry is
used to calculate the stability of 1D detonations. Radulescu et al. [18] used a seven-step chemistry
model to simulate 1D detonation propagation in an acetylene-oxygen mixture and investigated the
effect of argon dilution in stabilizing detonations. Yungster and Radhakrishnan [19] investigated
the high-frequency and small-amplitude pulsation for overdriven detonations supported by a piston
and revealed the effect of initial pressure on pulsating mode. Romick, Aslam, and Powers [20] used
a detailed H2-air mechanism to establish a bifurcation diagram of peak shock pressure with the
change in overdriven factor determined by a piston velocity through calculation of the 1D viscous
detonation with a supporting piston [21,22]. Sussman [23] simulated pulsating detonations by using
a detailed H2-air mechanism, concluding that the pulsating propagation depends on the ratio of heat
release time to induction time. In general, however, the studies of 1D detonations with real chemistry
have been few for pulsating instability of detonations globally close to CJ state.

The present work aims to examine the propagation mode of 1D detonation driven by real
chemistry and to give the pulsation bifurcation diagram for the H2-O2-Ar system. In the following
we shall first state the governing equations and the numerical method, and then present and discuss
the results.

II. GOVERNING EQUATIONS

The governing equations are the one-dimensional, reactive, compressible Navier-Stokes (NS)
equations:

∂ρ

∂t
+ ∂ρu

∂x
= 0, (1)

∂ρu

∂t
+ ∂ (ρu2 + p − τ )

∂x
= 0, (2)

∂ρE

∂t
+ ∂ρuE + (p − τ )u + q

∂x
= 0, (3)

∂ρYi

∂t
+ ∂ρuYi + ζi

∂x
= W̄iω̇i, i = 1, . . . , N − 1, (4)

E = h + p

ρ
+ u2

2
, (5)

p =
N∑

i=1

ρYiRiT = ρ

(
N∑

i=1

YiRi

)
T, Ri = Ru

W̄i
, (6)

h =
N∑

i=1

Yihi, (7)

hi(T ) = h f
i +

∫ T

T0

cp,i(T̂ )dT̂ , (8)

where p, ρ, E , T, u, h are the pressure, the density, the total energy per unit mass, the temperature,
the x velocities, and the enthalpy per unit mass; Y1, . . . ,YN is the mass fraction of ith species, with∑N

i=1 Yi = 1; Wi, Ri, cpi, and h f
i are the molecular weight, the specific gas constant, the specific heat,

and the enthalpy of formation of ith species, and Ru = 8.31 J/(mol K) is the universal gas constant.
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To close the system, constitutive relations are specified for an ideal mixture of N species:

τ = 4μ∂u

3∂x
, (9)

ζi = −DT
i ∂T
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k �=i
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1
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1
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∂ p

∂x
, (10)
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Xi = W̄

W̄i
Yi, (12)

W̄ =
(

N∑
i=1

Yi

W̄i

)−1

, (13)

where W̄ is the mixture molecular mass, Dιk the multicomponent diffusion coefficient between the
ith and kth species, DT

i the thermal diffusion coefficient of the ith species, T the temperature, μ

the dynamic viscosity of the mixture, κ the thermal conductivity of the mixture, and X1, . . . , XN

are the mole fractions of species i, with
∑N

i=1 Xi = 1. The mixture properties are evaluated using
the CHEMKIN [24] and TRANSPORT [25] packages. We adopt the San Diego mechanism [26] which
comprises the eight species H2, O2, OH, O, H, H2O, HO2, and H2O2.

III. NUMERICAL METHOD

The semidiscretization of governing Eqs. (1)–(4) is as follows:

dU

dt
= Ha(U ) + Hd (U ) + Hs(U ), (14)

where Ha(U ), Hd (U ), and Hs(U ) are approximations of advection term, diffusion term, and reaction

source term, respectively. The numerical flux F̂a,i+1/2 in the advection term Ha(U ) = − F̂a,i+1/2−F̂a,i−1/2

	x
is obtained with fifth-order WENO reconstruction [27] as presented in the following. The physical
flux Fa can be divided by using Lax-Friedrichs flux splitting,

F±
a = 1

2 (Fa ± αU ), (15)

where α = max |λ| and λ are the eigenvalues of Jacobian Matrix for Fa.
For simplicity, we only present the reconstruction of numerical flux F̂

+
a,i+1/2, which is an

approximation of F+
a,i+1/2. The fifth-order numerical flux is given by

F̂
+

a,i+1/2 =
2∑

r=0

ωrF+,(r)
a,i+1/2, (16)

where the third-order numerical fluxes on three small stencils are given by

F̂
+,(0)

a,i+1/2 = 1
3 F+

i−2 − 7
6 F+

i−1 + 11
6 F+

i , (17)

F̂
+,(1)

a,i+1/2 = − 1
6 F+

i−1 + 5
6 F+

i + 1
3 F+

i+1, (18)

F̂
+,(2)

a,i+1/2 = 1
3 F+

i + 5
6 F+

i+1 − 1
6 F+

i+2, (19)
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and the nonlinear weights ωr are defined as

ωr = αr∑2
s=0 αs

, αr = dr

(ε + βr )2 (20)

Here the linear weights dr are given by

d1 = 1
10 , d2 = 3

5 , d3 = 3
10

and the smoothness indicators βr are given by

βr = 13
12 (F+

i−2 − 2F+
i−1 + F+

i )2 + 3
12 (F+

i−2 − 2F+
i−1 + F+

i )2, (21)

β2 = 13
12 (F+

i−1 − 2F+
i + F+

i+1)2 + 3
12 (F+

i−1 − F+
i+1)2, (22)

β2 = 13
12 (F+

i − 2F+
i+1 + F+

i+2)2 + 3
12 (3F+

i − 4F+
i+1 + F+

i+2)2, (23)

The parameter ε = 10−6 is to ensure that the denominator is not zero. The diffusion term Hd is
discretized by the sixth-order central difference scheme.

To solve the stiffness problem, an explicit-implicit additive Runge-Kutta scheme [28] was used
in the time discretization. Equation (14) is written as

dU
dt

= Hns(U) + Hs(U),

Hns(U) = Ha(U) + Hd (U). (24)

The additive Runge-Kutta scheme is used mainly to separate the stiff term Hs(U) and nonstiff term
Hns(U). The explicit Runge-Kutta (ERK) scheme is utilized to integrate Hns(U), while Hs(U) is
handled by the explicit singly diagonally implicit Runge-Kutta (ESDIRK) scheme:

U (i) = U (n) + X (i) + (	t )a[I]
ii H (i)

s , X (i) = (	t )
i−1∑
j=1

(
a[E ]

i j H ( j)
ns + a[I]

i j H ( j)
s

)
, i = 2, . . . , s + 1,

U(n+1) = U(n) + (	t )
s∑

j=1

(
b[E ]

j H ( j)
ns + b[I]

j H ( j)
s

)
, (25)

where 	t is the time step size; U (n) is the initial physical value; U (i) is the intermediate physical
value; U (n+1) is the final physical value; a[E ]

i j , a[I]
i j , b[E ]

j , and b[I]
j are the Butcher coefficients, which

are constrained by some accuracy and stability considerations; X (i) is calculated with the given
data U (n) explicitly; and H (i)

s and U (i) are calculated by an implicit method for solving nonlinear
equations with Newton iteration. The first term of form (11) is developed into

Md (i)
k = r(i)

k ,

M =
(

I − (	t )a[I]
ii

∂Hs

∂U

∣∣∣∣
k

)
,

d (i)
k = (

U (i) − U (i)
k

)
,

r(i)
k = −(

U (i)
k − U (n)) + X (i) + (	t )a[I]

ii H (i)
s

(
U (i)

k

)
, (26)

where subscript k is variable value of the kth iteration; M is the iterative matrix; d (i)
k is the difference

between the iterative and real value; and r(i)
k is the remainder value of the iteration equation. When

|d (i)
k | � ε or |r(i)

k | � ε, the iteration terminates. The iteration value U (i)
k can be used as U (i), and

thereby H (i)
s is calculated with U (i). Finally, the physical value U (n+1) is calculated by the terms of

form (25) with H (i)
s and H (i)

ns .
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FIG. 1. Induction length, reaction length, and CJ velocity for H2-O2 detonations with different argon
dilutions at T0 = 298 K and p0 = 1 atm.

The Courant-Friedrichs-Lewy (CFL) number is 0.2 in the simulations. Eventually, the method
based on conservation variables was used to solve the equations, which guarantees conservation
and also yields good solutions with the shock speed evaluated accurately [29].

IV. RESULTS AND DISCUSSIONS

A. Numerical specifications

The mixture has constant initial pressure and temperature of p0 = 1 atm and T0 = 298 K,
respectively. Induction length is defined as the distance from the shock front to the maximum
thermicity, while the reaction zone is the length between peak thermicity and the reaction equi-
librium. With argon dilution, the change of post-shock temperature TV N is small, with the bounds
of 1920 < TV N < 2050 K for 15%−85%, while it is ∼1491 K for 90% Ar. The corresponding CJ
detonation velocity DCJ, the ignition delay time τ , the reaction length lR, and the induction length li
as functions of Ar dilution were calculated by CANTERA, as shown in Fig. 1.

The steady Zel’dovich–von Neumann–Döring (ZND) solution including species information is
set as the initial condition in the unsteady 1D simulation, and the resulting detonation is allowed to
propagate into the mixture at rest to observe the long-time behavior of the detonation propagation.
As the overdriven detonation is close to the CJ state, boundary conditions at the piston are then
replaced by the condition at the downstream end of the reaction zone, where there is no acoustic
wave propagation in the burnt gas directed upstream towards the reaction zone [12]. For freely
propagating detonations, disturbance at the rear boundary always is reflected in the laboratory frame.
Although it is usually assumed that its influence is small, it is not confirmed whether it changes the
dynamics of detonation. To avoid the influence, the rear boundary in the downstream is placed at
x = −0.01 m and is far enough away from the detonation front so that the solution is not affected by
the disturbance from the rear boundary. The value at the CJ state with flow and chemical equilibria is
fixed at the rear boundary. The computational domain is 0.12 m and the grid resolution is 60 pts/l1/2,
where l1/2 is half of reaction length, lR, and corresponds to each Ar dilution, as shown in Fig. 1. The
numerical scheme reaches fifth order at the smooth region [29] and hence the grid resolution of
60 pts/l1/2 is sufficient to capture detonation structures.

We assess the effect of diffusion on the 1D detonation pulsation. Figure 2 shows the maximum
pressure histories of detonations with the NS and Euler equations for 35% Ar and 50% Ar,
respectively. It is seen that, for 35% Ar, detonation takes on a highly unstable mode, and the
pulsations obtained with the NS and Euler equations have obvious differences in the amplitude
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FIG. 2. Maximum pressure histories of 1D detonations with and without diffusion for 35% Ar (a) and 50%
Ar (b): pV N is the steady von-Neumann value and ps is shock pressure.

of oscillations, indicating that diffusion has an obvious effect on the chaotic characteristics. The
viscous detonation has smaller amplitude of oscillations than that solved by the Euler equations,
which agrees with the findings of Romick, Aslam, and Powers [20]. For 50% Ar, both the NS
and Euler equations show almost uniform evolution of single-period pulsation, with small disparity
appearing just at peaks of the pulsation. Consequently, this indicates that diffusion plays a role in
an unstable detonation, while the influence is minor for the detonation with a single-period mode.
Generally, viscosity is minor for a global CJ detonation. Nevertheless, we still use reactive flow NS
equations in the following simulations.

From Fig. 3, the detonations with 60 and 120 pts/l1/2 are consistent for 35% Ar, with minor
difference at the peaks of oscillations. This demonstrates that the present grid resolution is enough
to capture the detonation structure. In this result, the numerical scheme can reach fifth order when a
smooth initial solution assumed, while it goes back to first order at the discontinuity. In fact, for all
numerical schemes, to treat strong discontinuity the order drops to the first order.

B. Propagation modes of 1D detonations for different Ar dilutions

Figure 4 shows typical modes of 1D detonations for different Ar dilutions. It is seen that the
high-frequency pulsation appearing in the initial stage oscillates globally and then develops into
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FIG. 3. Maximum pressure histories and detonation structure with 60 and 120 pts/l1/2 for 35% Ar.
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FIG. 4. Maximum pressure histories for different Ar dilutions: The region with low pressure is the steady
ZND structure as initial condition; the induction length li corresponds to each Ar dilution, and pV N is the steady
von-Neumann value corresponding to each case.

different propagation modes for the different cases. It is seen that the detonation fails to sustain after
several high-frequency oscillations for 15% Ar dilution. As the dilution increases, pulsation shifts
from the chaotic mode to the stable mode. From 35% to 40% Ar dilution, detonation pulsations
are chaotic, as shown in Figs. 4(b)–4(d). From 44% to 48%Ar dilutions, multiperiod modes are
eventually formed; as Ar dilution increases, the minimum peak increases while the maximum peak
decreases, as shown in Figs. 4(e)–4(g), showing that the pulsation tends to be regular. Single-period
modes appear in the cases with 50%–58% Ar dilutions, as shown in Figs. 4(h)–4(j). For 65%–85%
Ar dilutions, detonations tend to be stable after several small pulsations, as shown in Figs. 4(k)–4(l).
As 90% Ar, the initially established detonation decays and quenches after a strong pressure pulse,
showing that the detonability limit is reached and a sustaining propagation is not formed due to the
low heat release rate for the large dilution.

Figure 4 shows that for 15% Ar the detonation fails to sustaining after several high-frequency
oscillations, which is substantiated by complete decoupling of the leading shock with the reaction
front at x/li ∼ 150 shown in Figs. 5(a) and 5(b). The reaction zone in the detonation structure
is rather short and the detonation is highly unstable for 15% Ar dilution. During the phase of

103202-7



HAN, MA, QIAN, WEN, AND WANG

x /li

T 
/T

VN

p 
/p

VN

50 100 150

0.5

1

1.5

(a) (b)

0

0.4

0.8

1.2

x /li

H
2 m

as
s f

ra
ct

io
n 

50 100 150

2

4

6

x10-2

FIG. 5. Frontal structure in process of quenching detonation for 15% Ar dilution: t = 0.396, 0.54,0.63,
0.765, 0.899, 1.01, 1.15, 1.29, 1.41 μs. TV N is the steady von-Neumann value.

decay, bulk unreacted gas escapes from the leading shock and is left behind the front, leading to
failure of the propagation. Investigation of the reaction zone structure during the decay revealed
that failure occurs due to highly pulsating instability. When the post-shock temperature decays
below ∼0.7TV N , the reaction rate is found to be too slow to maintain the coupling with the
exothermic part of the reaction zone that is required to drive the wave. As a result, the reaction
layer then completely decouples from the shock and the detonation quenches. This failure scenario
was previously observed and studied by Short et al. [17] in their numerical simulations using a
simplified three-step chain-branching reaction scheme. Consequently, for 1D detonation at a global
CJ speed, there is also a limiting behavior at 15% Ar dilution because the instability can kill a
formed detonation.

Figure 6 shows the evolution of front structure in decay of the detonation for 90%Ar dilution.
It is seen that after several high-frequency oscillations a strong pulse appears and an overdriven
detonation forms, with a peak pressure of ∼1.8 pV N . After the strong pulse, the overdriven
detonation decays significantly and the main reaction layer recedes from the leading shock, resulting
in long induction zone with a temperature gradient. However, as it decays below the CJ state, a fast
flame in the high-temperature region fails to accelerate and cannot catch up with the leading shock
due to low heat release rate caused by the large dilution, although it propagates in the temperature
gradient. The measured speed of the leading shock wave is ∼1.2 (964.9 m/s), while the speed of
the reaction front is ∼0.8(660.4 m/s) at x/li ∼ 250−350. The shock temperature and pressure are
939.8 K and 9.1 atm respectively, and the corresponding autoignition time of the shocked gas is so
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FIG. 6. Frontal structure in process of quenching detonation for 90% Ar dilution: t = 67.75, 84.6, 104.11,
124.51, 144.9, 165.3, 185.7, 207.0, 224.7, 245.1, 266.4, 285.9, 305.4, 324.9, 346.2, and 368.4 μs.
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FIG. 7. Phase space plot for different Ar dilutions: (a) 45% Ar, (b) 48% Ar, (c) 50% Ar, and (d) 75% Ar.

long that reinitiation does not happen. Furthermore, unreacted H2 fuel shown by H2 mass fraction
in Fig. 6(b) is observed in decay of the overdriven detonation. For 90% Ar, the autoignition time
is long and the heat release rate is low due to low shock temperature and pressure. In this manner,
the coupling between the dynamical limit and the autoignition limit will produce the detonability
limits.

In summary, three detonation modes, exhibiting stable, periodic, and chaotic behavior, have been
identified with detailed reactions and by varying the mixture composition, similar to those reported
by Sharpe and Falle [14] and Ng et al. [16]. The instability increases with the thermal sensitivity
of the distribution of heat release, as is the case when decreasing the dilution. Modification of
the ZND structure produced by Ar dilution is the cause of the 1D pulsating instability because
the ignition delay time in shocked gas is changed. For 15% Ar dilution, strong instability leads to
the failure of a sustaining detonation in the 1D problem, indicating that the detonation is near the
limit of propagation. Furthermore, for the mixture with large dilution of 90% Ar, once the detonation
decays to the minimum level where the chemical reaction rate is slow and the induction time is long,
a very small quantity of heat release rate may make the reestablishment of detonation impossible.
For the 1D limit Ar dilution, the corresponding 2D simulation will be presented latter.

Figure 7 shows phase space plots for periodical pulsation with 45% Ar, 48% Ar, 50% Ar, and
75% Ar, respectively. It is seen clearly that the four-lobe phase space is exhibited for 45% Ar,
while the two-lobe phase space is observed for 48% Ar; the one-lobe phase space presents in the
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FIG. 8. Bifurcation diagram: peak shock pressure vs Ar dilution (a) and induction length (b).

single-period detonation with 50% Ar, while for 75% Ar there is no bounding of shock pressure and
the curve gradually rotates to a point (steady shock pressure). It is seen that there are the maximum
and minimum d ps/dt during the compression and expansion phases of one pulsation respectively.
During the compression phase, d ps/dt rises and reaches the maximum, while, as the pressure is
close to the peak, d ps/dt is equal to zero. During the expansion phase, d ps/dt is negative and the
shocked pressure decreases to the minimum during one pulsation. It is observed that the phase space
plots differ from that with the one-step reaction model [1]. This may be because the heat release rate
for the one-step reaction model is not controlled as in real chemistry, in which the induction zone
is not distinguished clearly from detonation structure. Consequently, the rate of change in shock
pressure differs from that with the one-step reaction model, leading to the difference in phase space
plots.

C. Bifurcation of pulsation for different Ar dilutions

Ng and Lee et al. [30] demonstrated that, for other parameters being fixed, there are two critical
reduced activation energies with which to classify planar detonation into stable, unstable, and
infinitely large-period modes, and pointed out that numerical simulations with detailed chemistry
should be carried out for the study of phenomena observed with a one-step reaction model. The
present results with detailed reactions for the H2-O2-Ar system show bifurcation diagrams, as shown
in Figs. 8 and 9. The 1D detonations with real chemistry are classified into three classes. We observe
that there exists a critical value between 65% and 50% Ar to transition from stable to single-period
pulsation. The bifurcation point from single-period to period-doubling mode appears between 50%
and 48% Ar; see Fig. 8(a). The bifurcation diagram related to the induction length is shown in
Fig. 8(b).

For the detailed reaction mechanism, the bifurcation diagram with an effective activation energy
is shown in Fig. 9. Conventionally, a reduced activation energy, Ea/RuTV N , can be obtained from an
Arrhenius plot of ln(τ ) vs 1/T, characterizing the temperature sensitivity of the induction time. For
a one-step reaction model or an elementary reaction with a single activation energy, the result is

ln(τ ) = Ea

RuT
+ constant.

For multistep kinetics, the reduced activation energy Ea/RuTV N can be determined by

Ea

RuTV N
= 1

TV N
[ln(τ+) − ln(τ−)]

/(
1

T + − 1

T −

)
.
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FIG. 9. Bifurcation diagram indicated by shock pressure as a function of effective activation energy.

Here T + and T − bracket TV N , i.e., T ± = TV N×(1 ± 0.01), and τ+ and τ−are the corresponding
induction times [31–33]. It is calculated that the stability boundary is between 31.76 and 32.08, and
the bifurcation of period doubling is approximately 32.2 in the present diagram.

The curves of the stability parameter, χ = Ea/RTV N×li/lR, are shown in Fig. 10. Generally, it is
demonstrated that Ng’s criterion [16] works for prediction of the 1D detonation instability for the
H2-O2 system with different Ar dilutions.

D. Detonation limits

From above discussion, it is found that the detonability limit is at 90% Ar dilution for propagation
starting from a steady 1D detonation at the global CJ state. However, if it can be initiated directly by
the source energy, a blasting cap is required for a highly Ar diluted mixture. Therefore, we carry out
the simulation of a direct initiation to identify the detonation limit of 90% Ar through an evolution
from a strong source energy (p = 10 atm, T = 2100 K in the initiation region). Figure 11 shows
that a strongly overdriven detonation can be produced by a high source energy, and then it decays
to a CJ state and triggers a strong pulse, demonstrating that a successful initiation can be formed.
After undergoing the strong pulse, a formed detonation fails to sustain. In the corresponding 2D
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FIG. 10. Stability factor χ as a function of dilution.
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FIG. 11. Initiation led by high energy source (a) and induced temperature gradient (b) for 90% Ar. The
black shaded region in (b) is caused by longitudinal and high-frequency oscillation of shock pressure for the
1D case.

case, eventually the detonation still does not sustain, as substantiated by the maximum pressure in
Fig. 11. Consequently, for 90% Ar, failure happens again for a direct initiation from a strong source
energy. Furthermore, we study the detonation initiation by setting a temperature gradient to identify
whether a detonation eventually quenches. Due to the gradient mechanism, a detonation can be
triggered. A strongly overdriven detonation is formed in the region with the temperature gradient.
When the detonation goes out of the region with the gradient, it undergoes a strong pulse and then
decays and eventually quenches in the uniform region. This also substantiates that the detonation
limit is at 90% Ar dilution.

Radulescu et al. [18] demonstrated that a highly unstable detonation in 1D simulation was prone
to failure to survive for a highly active mixture. The present simulations show that, as Ar dilution
decreases to 15% Ar, the detonation becomes more unstable and cannot sustain. It is interest to
identify whether there is a limiting behavior at 15% Ar dilution. Hence, we select 15% Ar dilution to
carry out 1D and 2D simulations with a grid resolution of 1×10−6 mm (60 pts/l1/2), identifying the
propagation of 1D and 2D detonations produced by a subcritical direct initiation with T = 2100 K
and p = 4 atm. For the 1D case, the detonation wave decays from the initial overdriven to the CJ
state and undergoes a low-velocity phase. During the low-velocity phase, the leading shock decays.
Although the leading shock decays below approximately 0.8pV N , it can reinitiate unreacted gas to
form a detonation, with a pressure pulse at x/li ∼ 70; subsequently it decays again below ∼0.6 pV N

at x/li ∼ 140 and quenches eventually. This demonstrates that the 1D initiation fails via subcritical
initiation; see the black line in Fig. 12(a). However, for 2D instability, a cellular detonation appears
at x/li ∼ 50 and sustains, with irregular cells shown in Fig. 12(b). Consequently, the initiation fails
in the 1D simulation, while it succeeds in the 2D case, demonstrating that cellular instability is
beneficial for sustaining a detonation in the confinement domain.

In summary, using the realistic chemical kinetic model for H2-O2 mixtures, the present numerical
results indicate that for 15% Ar dilution the 1D pulsating detonation cannot sustain due to high
instability, while the 2D cellular detonation can sustain. In the 1D detonation, ignition can only
be achieved via adiabatic shock induction. Therefore, there are no other mechanisms to effect
ignition. However, in multidimensional detonations, ignition behind the strong transverse shocks, by
transverse wave interactions and turbulent mixing, can provide alternate means to effect autoignition
and thus maintain the detonation propagation. The role of transverse waves thus becomes essential
to sustain the detonation propagation for highly unstable detonations [34,35]. For 15% Ar dilution,
transverse waves play an important role in self-sustaining propagation in the confined domain; the
detonation always fails when transverse waves are eliminated [35]. In unconfined space, as the role
of transverse waves weakens and the reamplification of transverse waves disappears, it is more
difficult to sustain a cellular detonation [36].
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FIG. 12. 1D and 2D initiation by a subcritical way for 15% Ar dilution: (a) red line is maximum pressure
history along the center of the 2D domain; (b) cellular feature.

V. CONCLUSIONS

The structure and propagation of one-dimensional (1D) detonations are investigated by high-
resolution simulation for the H2-O2 system with different Ar dilutions. Three detonation modes
are observed, namely the highly unstable, chaotic detonation, the mildly unstable detonation with
either multi- or single-period pulsations, and the stable detonation. As Ar dilution increases, the
detonability limit is found, which is caused by low heat release rate due to the dilution effect. The
bifurcation diagram of 1D detonation instability is established, and the global bifurcation diagram
is similar to that by the one-step model. Eventually, the numerical results demonstrate that for real
chemistry the criterion of Ng et al. [16] still works well for prediction of 1D detonation instability.
Ng et al. [16] studied the pulsating instability of 1D detonation for different reaction parameters
in a two-step simplified model, and established a bifurcation diagram as a parameter controlling
a reaction time in the model. It is of interest to compare the present results with the two-step and
three-step models in future work.

ACKNOWLEDGMENTS

This research is supported by the National Natural Science Foundation of China under Grants
No. 11972090 and No. 11732003, and by the Science and Technology on Transient Impact
Laboratory Foundation (Grant No. 6142606182104). The research is also supported by the European
Commission for the Marie Curie International Fellowships Grant TurbDDT (Grant No. 793072).

[1] J. H. S. Lee, The Detonation Phenomena (Cambridge University Press, Cambridge, 2008).
[2] P. Clavin and L. T. He, Stability and nonlinear dynamics of one dimensional overdriven detonations in

gases, J. Fluid Mech. 306, 353 (1996).
[3] P. Clavin and B. Denet, Diamond Patterns in Cellular Fronts of Overdriven Detonation, Phys. Rev. Lett.

88, 044502 (2002).
[4] P. Clavin, L. He, and F. A. Williams, Multidimensional stability analysis of overdriven gaseous detona-

tions, Phys. Fluids 9, 3764 (1997).

103202-13

https://doi.org/10.1017/S0022112096001334
https://doi.org/10.1017/S0022112096001334
https://doi.org/10.1017/S0022112096001334
https://doi.org/10.1017/S0022112096001334
https://doi.org/10.1103/PhysRevLett.88.044502
https://doi.org/10.1103/PhysRevLett.88.044502
https://doi.org/10.1103/PhysRevLett.88.044502
https://doi.org/10.1103/PhysRevLett.88.044502
https://doi.org/10.1063/1.869520
https://doi.org/10.1063/1.869520
https://doi.org/10.1063/1.869520
https://doi.org/10.1063/1.869520


HAN, MA, QIAN, WEN, AND WANG

[5] G. Lodato, L. Vervisch, and P. Clavin, Direct numerical simulation of shock wavy-wall interaction:
Analysis of cellular shock structure and flow patterns, J. Fluid Mech. 789, 221 (2016).

[6] J. B. McVey and T. Y. Toong, Mechanism of instabilities of exothermic hypersonic blunt body flows,
Combust. Sci. Technol. 3, 63 (1971).

[7] A. Matsuo, K. Fujii, and T. Fujiwara, Flow features of shock-induced combustion around projectile
traveling at hypervelocities, AIAA J. 33, 1056 (1995).

[8] H. I. Lee and D. S. Stewart, Calculation of linear detonation instability-one-dimensional instability of
plane detonation, J. Fluid Mech. 216, 103 (1990).

[9] M. Short, A. K. Kapila, and J. J. Quirk, The chemical-gas dynamic mechanisms of pulsating detonation
wave instability, Philos. Trans. R. Soc. London A 357, 3621 (1999).

[10] M. Short and G. J. Sharpe, Pulsating instability of detonations with a two-step chain-branching reaction
model: Theory and numerics, Combust. Theor. Model. 7, 401 (2003).

[11] C. Leung, M. I. Radulescu, and G. J. Sharpe, Characteristics analysis of the one-dimensional pulsating
dynamics of chain-branching detonations, Phys. Fluids 22, 126101 (2010).

[12] P. Clavin and F. A. Williams, Dynamics of planar gaseous detonations near Chapman-Jouguet conditions
for small heat release, Combust. Theor. Model. 6, 127 (2002).

[13] L. He and J. H. S. Lee, The dynamical limit of one-dimensional detonations, Phys. Fluids 7, 1151 (1995).
[14] G. J. Sharpe and S. A. E. G. Falle, One-dimensional numerical simulations of idealized detonations,

Proc. R. Soc. London 455, 1203 (1999).
[15] C. M. Romick, T. D. Aslam, and J. M. Powers, The effect of diffusion on the dynamics of unsteady

detonations, J. Fluid Mech. 699, 453 (2012).
[16] H. D. Ng, M. I. Radulescu, A. J. Higgins, N. Nikiforakis, and J. H. S. Lee, Numerical investigation

of the instability for one-dimensional Chapman-Jouguet detonations with chain-branching kinetics,
Combust. Theor. Model. 9, 385 (2005).

[17] M. Short and J. J. Quirk, On the nonlinear stability and detonability limit of a detonation wave for a model
three-step chain-branching reaction, J. Fluid Mech. 339, 89 (1997).

[18] M. I. Radulescu, H. D. Ng, J. H. S. Lee, and B. Varatharajan, The effect of argon dilution on the stability
of acetylene-oxygen detonations, Proc. Combust. Inst. 29, 2825 (2002).

[19] S. Yungster and K. Radhakrishan, Pulsating one-dimensional detonations in hydrogen-air mixtures,
Combust. Theor. Model. 8, 745 (2004).

[20] C. M. Romick, T. D. Aslam, and J. M. Powers, Verified and validated calculation of unsteady dynamics
of viscous hydrogen-air detonations, J. Fluid Mech. 769, 154 (2015).

[21] J. M. Powers and S. Paolucci, Accurate spatial resolution estimates for reactive supersonic flow with
detailed chemistry, AIAA J. 43, 1088 (2005).

[22] J. L. Ziegler, R. Deiterding, J. E. Shepherd, and D. I. Pullin, An adaptive high-order hybrid scheme for
compressive, viscous flows with detailed chemistry, J. Comput. Phys. 230, 7598 (2011).

[23] M. A. Sussman, Numerical simulation of shock-induced combustion, Ph.D. thesis, Stanford University
(1995).

[24] R. J. Kee, F. M. Rupley, and J. A. Miller, Chemkin II: A Fortran chemical kinetics package for the
analysis of gas phase chemical kinetics, Sandia National Laboratories Technical Report No. SAND89-
8009B (1992).

[25] R. J. Kee, G. Dixon-Lewis, J. Warnatz, M. E. Coltrin, and J. A. Miller, A Fortran computer code package
for the evaluation of gas-phase multi-component transport properties, Sandia National Laboratories
Technical Report No. SAND86-8246 (1991).

[26] A. L. Sánchez and F. A. Williams, Recent advances in understanding of flammability characteristics of
hydrogen, Prog. Energ. Combust. 41, 1 (2014).

[27] G. S. Jiang and C. W. Shu, Efficient implementation of weighted ENO schemes, J. Comput. Phys. 126,
202 (1996).

[28] C. A. Kennedy and M. H. Carpenter, Additive Runge-Kutta schemes for convection diffusion reaction
equations, Appl. Numer. Math. 44, 139 (2003).

[29] C. Wang, C. W. Shu, W. H. Han, and J. G. Ning, High resolution WENO simulation of 3D detonation
waves, Combust. Flame 160, 447 (2013).

103202-14

https://doi.org/10.1017/jfm.2015.731
https://doi.org/10.1017/jfm.2015.731
https://doi.org/10.1017/jfm.2015.731
https://doi.org/10.1017/jfm.2015.731
https://doi.org/10.1080/00102207108952273
https://doi.org/10.1080/00102207108952273
https://doi.org/10.1080/00102207108952273
https://doi.org/10.1080/00102207108952273
https://doi.org/10.2514/3.12527
https://doi.org/10.2514/3.12527
https://doi.org/10.2514/3.12527
https://doi.org/10.2514/3.12527
https://doi.org/10.1017/S0022112090000362
https://doi.org/10.1017/S0022112090000362
https://doi.org/10.1017/S0022112090000362
https://doi.org/10.1017/S0022112090000362
https://doi.org/10.1098/rsta.1999.0513
https://doi.org/10.1098/rsta.1999.0513
https://doi.org/10.1098/rsta.1999.0513
https://doi.org/10.1098/rsta.1999.0513
https://doi.org/10.1088/1364-7830/7/2/311
https://doi.org/10.1088/1364-7830/7/2/311
https://doi.org/10.1088/1364-7830/7/2/311
https://doi.org/10.1088/1364-7830/7/2/311
https://doi.org/10.1063/1.3520188
https://doi.org/10.1063/1.3520188
https://doi.org/10.1063/1.3520188
https://doi.org/10.1063/1.3520188
https://doi.org/10.1088/1364-7830/6/1/307
https://doi.org/10.1088/1364-7830/6/1/307
https://doi.org/10.1088/1364-7830/6/1/307
https://doi.org/10.1088/1364-7830/6/1/307
https://doi.org/10.1063/1.868556
https://doi.org/10.1063/1.868556
https://doi.org/10.1063/1.868556
https://doi.org/10.1063/1.868556
https://doi.org/10.1098/rspa.1999.0355
https://doi.org/10.1098/rspa.1999.0355
https://doi.org/10.1098/rspa.1999.0355
https://doi.org/10.1098/rspa.1999.0355
https://doi.org/10.1017/jfm.2012.121
https://doi.org/10.1017/jfm.2012.121
https://doi.org/10.1017/jfm.2012.121
https://doi.org/10.1017/jfm.2012.121
https://doi.org/10.1080/13647830500307758
https://doi.org/10.1080/13647830500307758
https://doi.org/10.1080/13647830500307758
https://doi.org/10.1080/13647830500307758
https://doi.org/10.1017/S002211209700503X
https://doi.org/10.1017/S002211209700503X
https://doi.org/10.1017/S002211209700503X
https://doi.org/10.1017/S002211209700503X
https://doi.org/10.1016/S1540-7489(02)80345-5
https://doi.org/10.1016/S1540-7489(02)80345-5
https://doi.org/10.1016/S1540-7489(02)80345-5
https://doi.org/10.1016/S1540-7489(02)80345-5
https://doi.org/10.1088/1364-7830/8/4/005
https://doi.org/10.1088/1364-7830/8/4/005
https://doi.org/10.1088/1364-7830/8/4/005
https://doi.org/10.1088/1364-7830/8/4/005
https://doi.org/10.1017/jfm.2015.114
https://doi.org/10.1017/jfm.2015.114
https://doi.org/10.1017/jfm.2015.114
https://doi.org/10.1017/jfm.2015.114
https://doi.org/10.2514/1.11641
https://doi.org/10.2514/1.11641
https://doi.org/10.2514/1.11641
https://doi.org/10.2514/1.11641
https://doi.org/10.1016/j.jcp.2011.06.016
https://doi.org/10.1016/j.jcp.2011.06.016
https://doi.org/10.1016/j.jcp.2011.06.016
https://doi.org/10.1016/j.jcp.2011.06.016
https://doi.org/10.1016/j.pecs.2013.10.002
https://doi.org/10.1016/j.pecs.2013.10.002
https://doi.org/10.1016/j.pecs.2013.10.002
https://doi.org/10.1016/j.pecs.2013.10.002
https://doi.org/10.1006/jcph.1996.0130
https://doi.org/10.1006/jcph.1996.0130
https://doi.org/10.1006/jcph.1996.0130
https://doi.org/10.1006/jcph.1996.0130
https://doi.org/10.1016/S0168-9274(02)00138-1
https://doi.org/10.1016/S0168-9274(02)00138-1
https://doi.org/10.1016/S0168-9274(02)00138-1
https://doi.org/10.1016/S0168-9274(02)00138-1
https://doi.org/10.1016/j.combustflame.2012.10.002
https://doi.org/10.1016/j.combustflame.2012.10.002
https://doi.org/10.1016/j.combustflame.2012.10.002
https://doi.org/10.1016/j.combustflame.2012.10.002


BIFURCATION OF PULSATION INSTABILITY IN …

[30] H. D. Ng, A. J. Higgins, C. B. Kiyanda, M. I. Radulescu, J. H. S. Lee, K. R. Bates, and N. Nikiforakis,
Nonlinear dynamics and chaos analysis of one-dimensional pulsating detonations, Combust. Theor.
Model. 9, 159 (2005).

[31] J. M. Austin, F. Pintgen, and J. E. Shepherd, Reaction zones in highly unstable detonations,
Proc. Combust. Inst. 30, 1849 (2005).

[32] F. Pintgen and J. E. Shepherd, Pulse detonation engine impulse analysis for partially-oxidized jet fuel,
GALCIT Technical Report No. FM2003.001 (2003).

[33] E. Schultz and J. E. Shepherd, Validation of detailed reaction mechanisms for detonation simulation,
GALCIT Technical Report No. FM99-5 (2000).

[34] A. Teodorczyk and J. H. S. Lee, Detonation attenuation by foams and wire meshes lining the walls,
Shock Waves 4, 225 (1995).

[35] M. I. Radulescu, The failure and initiation mechanism of detonations propagating in porous wall tubes,
Ph.D. dissertation, McGill University, Montreal, Quebec (2002).

[36] W. H. Han, C. Wang, and C. K. Law, Pulsation in one-dimensional H2-O2 detonation with detailed
reaction mechanism, Combust. Flame 200, 242 (2019).

103202-15

https://doi.org/10.1080/13647830500098357
https://doi.org/10.1080/13647830500098357
https://doi.org/10.1080/13647830500098357
https://doi.org/10.1080/13647830500098357
https://doi.org/10.1016/j.proci.2004.08.157
https://doi.org/10.1016/j.proci.2004.08.157
https://doi.org/10.1016/j.proci.2004.08.157
https://doi.org/10.1016/j.proci.2004.08.157
https://doi.org/10.1007/BF01414988
https://doi.org/10.1007/BF01414988
https://doi.org/10.1007/BF01414988
https://doi.org/10.1007/BF01414988
https://doi.org/10.1016/j.combustflame.2018.11.024
https://doi.org/10.1016/j.combustflame.2018.11.024
https://doi.org/10.1016/j.combustflame.2018.11.024
https://doi.org/10.1016/j.combustflame.2018.11.024

