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Geometry of transient chaos in streamwise-localized pipe flow turbulence
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In pipes and channels, the onset of turbulence is initially dominated by localized
transients, which lead to sustained turbulence through their collective dynamics. In the
present work, we study numerically the localized turbulence in pipe flow and elucidate a
state space structure that gives rise to transient chaos. Starting from the basin boundary
separating laminar and turbulent flow, we identify transverse homoclinic orbits, the
presence of which necessitates a homoclinic tangle and chaos. A direct consequence of
the homoclinic tangle is the fractal nature of the laminar-turbulent boundary, which was
conjectured in various earlier studies. By mapping the transverse intersections between the
stable and unstable manifold of a periodic orbit, we identify the gateways that promote an
escape from turbulence.
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In wall-bounded shear flows close to onset, turbulence can be observed as localized patches
that coexist with the orderly laminar flow that is stable against infinitesimal disturbances. In
the case of pipe flow, these localized structures are known as puffs and they have a simple
phenomenology: After a chaotic time evolution, a puff might suddenly decay and disappear or split
and give rise to a new puff. As the governing parameter, the Reynolds number (Re), is increased,
the mean puff lifetime before decaying increases while that before a splitting event decreases.
This phenomenology was recently exploited to conceptualize a spatiotemporal description of the
transition [1,2]: In an infinitely long pipe that is initially populated with many puffs, turbulence will
be sustained if the rate of puff splitting exceeds that of decay. Consequently, a critical ReC is defined
as the Re at which both rates are equal. In addition to allowing for a clear definition of the critical
ReC , the spatiotemporal dynamics also revealed universal properties of the transition to turbulence:
Critical exponents were determined in laboratory experiments for Couette flow [3] and in direct
numerical simulations for Couette [3] and Waleffe flow [4] and these suggest that the transition falls
into the universality class of directed percolation.

Key to the above scenario is the existence of spatially independent chaotic transients. While
the transient chaotic nature of the puff dynamics is evident from observations, how such dynamics
arises from the Navier-Stokes equations is not well understood. Even though localized asymptotic
states [5] and invariant solutions [6,7] at the laminar-turbulent boundary were computed, dynamical
routes for sudden puff decay across the stable manifold of such solutions were not identified. In
this paper, we demonstrate the existence of homoclinic orbits in the vicinity of a periodic solution,
which itself is on the laminar-turbulent boundary. Based on this observation, we suggest a global
picture of the state space, containing a Smale horseshoe, which gives rise to transient chaos with a
fractal basin boundary and thus infinitely many paths for puff decay.

We simulate the incompressible fluid flow through a circular pipe of diameter D and length L =
πD/0.125 663 7 ≈ 25D. For this purpose, we employ Openpipeflow [8], which integrates the per-
turbations u(z, r, θ ; t ) to the base (Hagen-Poiseuille) solution uHP(z, r, θ ; t ) = 2U [1 − (2r/D)2]ẑ
of the pipe flow under the periodic boundary condition u(z, r, θ ; t ) = u(z + L, r, θ ; t ) in the axial
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direction and the no-slip boundary condition u(z, r = D/2, θ ; t ) = 0 at the pipe wall. The Reynolds
number is defined as Re = UD/ν, where ν is the kinematic viscosity of the fluid. In our simulations,
Re = 1600 and a constant flux is ensured via a time-varying axial pressure gradient. For the
numerical representation, the flow fields are expanded in Fourier series truncated at K = 255 and
M = 47 in the axial and azimuthal directions, respectively, and with 64 finite-difference points
were used in the radial direction. The nonlinear terms are evaluated following the 3/2 rule for
dealiasing, leading to 768×144×64 grid points in the physical space. Time stepping is performed
by a second-order predictor-corrector method with a time step δt ≈ 0.002 06D/U . The adequacy
of this resolution was confirmed in previous studies in [6,9], which examined similar parameter
regimes using Openpipeflow with slightly lower resolutions. For the homoclinic orbits we describe
in the following, the exponential drop-off of the Fourier coefficients is four orders of magnitude or
more at every point along the orbit.

As in Ref. [7], the solutions that we consider are invariant under reflection symmetry and
azimuthal rotation by π ; i.e. the flow fields satisfy [u, v,w](z, r, θ ; t ) = [u, v,−w](z, r,−θ ; t )
and [u, v,w](z, r, θ ; t ) = [u, v,w](z, r, θ + π ; t ), where u, v, and w denote, respectively, the z,
r, and θ components of the velocity field. After these restrictions, the remaining symmetries of
pipe flow are the streamwise translations gz(l )u(z, r, θ ) = u(z − l, r, θ ) and the azimuthal rotation
by π/2: gθ (π/2)u(z, r, θ ) = u(z, r, θ − π/2). Here we reduce the translation symmetry via the
first Fourier mode slice method [10] following its adaptation to the pipe flow in Ref. [9]. Let
û′

i = J0(αr) cos(2πz/L), where J0 is the Bessel function of the first kind, α is chosen such that
J0(α2r/D) = 0, and i = 1, 2, 3. Then the symmetry-reduced velocity fields are given by û(t ) =
gz(Lφ/2π )u(t ), where φ(t ) = arg[〈u(t ), û′〉 + i〈u(t ), gz(−L/4)û′〉], with 〈·, ·〉 denoting the L2

inner product (see Ref. [9] for details). In the remainder of this paper we use the symmetry-reduced
description and drop the circumflexes.

Avila et al. [7] showed that in the above-described symmetry-invariant subspace, the laminar-
turbulent boundary is set by the stable manifold of a relative periodic orbit, which is a periodic orbit
with a streamwise shift. This orbit, which from here on we refer to as the LB, belongs to the lower
branch of a pair of orbits that appear in a saddle-node bifurcation at Re ≈ 1450 in our domain.1

After the symmetry reduction, the LB becomes a periodic orbit, which satisfies uLB = f T (uLB),
where f t (u(0)) = u(t ) denotes the finite-time flow mapping induced by the time evolution under
the Navier-Stokes equations and the symmetry reduction, T is the period of LB, and uLB is an
arbitrary point on the LB. Numerically, we converge to this solution up to a relative error of 10−9

through Newton–Krylov–hookstep iterations [11] at Re = 1600 using 6000 equally spaced time
steps along the orbit. We found the LB period at this Re to be T ≈ 12.35D/U and in the subsequent
computations we used a fixed time step δt = T/6000.2

In order to study the linear stability and the unstable manifold of the LB, we define the Poincaré
section as the set of velocity fields ũ that satisfy

〈ũ − ũLB, ∂t ũLB〉 = 0, 〈∂t ũ, ∂t ũLB〉 > 0, (1)

where ũLB is an arbitrarily chosen point on the LB. Numerically, we approximated ∂t u as the first-
order finite difference ∂t u ≈ [ f δt (u) − u]/δt , since its accuracy does not affect the accuracy of the
steps that follow. Geometrically, (1) describes a half hyperplane in the infinite-dimensional state
space that accommodates the solutions to the Navier-Stokes equations. This construction, along
with the evolution under the Navier-Stokes equations, implies a discrete-time dynamical system,

1The exact bifurcation point varies slightly depending on the domain length and the resolution.
2This was necessary in order to compute the unstable manifold of the LB accurately since the relative periodic

orbit and its linear stability eigenvectors were converged with this time step. We confirmed that this behavior
is consistent by repeating parts of the computation with a time step of δt/2.
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FIG. 1. (a) Two-dimensional projection of the unstable manifold of the LB computed within the Poincaré
section (1) by forward integration of the initial points (4). Nearby trajectories that laminarize around the same
time are colored pink. (b) Time series of the kinetic energy for the initial conditions (4) with δ ∈ [0.0, 0.08]
and δ ∈ [0.97, 0.99]. The latter are shifted by T in time to better illustrate the similarity of the time series. Here
δ = 0.08 and 0.97 are shown gray and the rest, which laminarize around the same time, are shown in pink.

i.e., the Poincaré map

ũ[n + 1] = P (ũ[n]) = f 	tn (ũ[n]), (2)

where n is the discrete-time variable and 	tn is the first return time, which is the minimum time
that is necessary for the state space trajectory to intersect the Poincaré section (1) after leaving it.
In order to find 	tn in simulations, we first integrate a trajectory with our fixed time step δt and
identify consecutive states for which the hyperplane condition in (1) changes its sign from − to +.
We then carry out a bisection search in time steps until the hyperplane condition is satisfied with a
relative error of 10−9.

By construction, ũLB is a fixed point of the Poincaré map. Linear stability of ũLB is then described
by the eigenvalue problem

[DP (ũLB)]Ṽi = 
iṼi, (3)

where [DP (·)] is the Jacobian of the Poincaré map and 
i and Ṽi are, respectively, the stability
eigenvalues and eigenvectors of ũLB. We approximate the five leading stability eigenvalues and
eigenvectors of the LB using Arnoldi iteration [12] such that Re
1 � Re
2 � · · · � Re
5. We
found that the LB has one unstable direction with the associated eigenvalue 
1 ≈ 2.52 and its
leading stable eigenvalue is 
2,3 ≈ 0.638 ± i0.409.

In order to approximate the LB’s unstable manifold, we iterate the Poincaré map (2), starting
with the initial conditions

ũ(δ) = ũLB ± ε
δ
1Ṽ1, (4)

where ε = 10−6 is a small constant, δ ∈ [0, 1) is a cyclic [ũ(1) ≈ P (ũ(0))] variable that
parametrizes the manifold along with the discrete time n, and Ṽ1 is normalized such that
‖Ṽ1‖ = ‖ũLB‖ in the (energy) L2-norm. We approximate the unstable manifold of the LB by
iterating the initial conditions (4) using 10 and 100 equally spaced points for δ in the −Ṽ1 and +Ṽ1

directions, respectively. We visualize this manifold as a projection onto Ṽ1 and ReṼ2 in Fig. 1(a),
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FIG. 2. (a) Approximations to the homoclinic orbits (blue and red) and the unstable manifold of the LB.
Arrows show the direction of time. The inset shows a closeup of the indicated region in order to better visualize
that the homoclinic orbits lie in between the orbits that laminarize together and those that further explore
turbulent parts of the state space. (b) Cartoon of the state space based on the results shown in (a). Here Ws and
Wu denote, respectively, stable and unstable manifolds; the laminarizing trajectories and the homoclinic orbits
use the same color scheme as in (a).

where the origin is located at ũLB. Explicitly, the projections are obtained as e1 = 〈ũ − ũLB, Ṽ1〉 and
e2 = 〈ũ − ũLB, ReṼ2〉.

Figure 1(a) shows few points in −Ṽ1 since all of these points uneventfully laminarize.3 In
contrast, the trajectories, which are initiated in the +Ṽ1 direction, explore the chaotic regions
of the state space before eventually laminarizing. We observe that the trajectories of the initial
conditions (4) with δ = 0.0, 0.01, . . . , 0.07 and δ = 0.98, 0.99, which are colored pink in Fig. 1,
laminarize around the same time when the time series for δ = 0.98 and 0.99 is shifted by one period
T [see Fig. 1(b)]. This observation suggests that these orbits cross the laminar-turbulent boundary,
which is set by the stable manifold of the LB, in the same region of the state space. Thus, we expect
to find homoclinic orbits that lie at the transverse intersections of the LB’s stable and unstable
manifolds within the intervals δ ∈ (0.07, 0.08) and δ ∈ (0.97, 0.98). In order to test this hypothesis,
we bisect the trajectories that laminarize after t = 400D/U and those that further visit the turbulent
parts of the state space in both δ intervals. This procedure indeed yields orbits that return to the
LB, as can be seen in Fig. 2(a), where we projected these orbits on top of the unstable manifold of
Fig. 1(a). The projection coordinates are the same in both figures.

When the bisections are carried out up to numerical precision, our approximations to the
homoclinic orbits come as close as ‖ũhc − ũLB‖/‖ũLB‖ ∼ 10−3 to the LB. Further evidence can
be seen from the flow structure visualizations of Fig. 3, where the initial and final snapshots of
homoclinic orbits are virtually indistinguishable.

The presence of a transverse homoclinic point has profound consequences.

3The sign, of course, is merely a convention.
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FIG. 3. Isosurfaces of the streamwise velocity fluctuations at ±0.3U (red and blue) and the streamwise
vorticity at ±0.8U/D (purple and green) visualized for a homoclinic orbit on the Poincaré section at times
(a) n = 0, (b) n = 5, (c) n = 10, (d) n = 15, (e) n = 20, (f) n = 25, (g) n = 30, (h) n = 35, (i) n = 40,
and (j) n = 45 (t = 0.0, . . . , 486.95). A quarter (θ ∈ [0, π/2)) of the domain is shown since the rest can be
obtained from the symmetries. Similar visualization of ũLB is indistinguishable from (a), and hence is not
shown separately.

(i) Every forward or backward iteration of a homoclinic point is another crossing of the stable
and unstable manifolds; hence, when the stable and unstable manifolds intersect at one point, they
do so at infinitely many points as sketched in Fig. 2(b).

(ii) Transverse intersection of the stable and unstable manifolds implies a horseshoe [13], which
necessitates a countable infinity of periodic orbits and an uncountable infinity of aperiodic orbits,
hence chaos.

(iii) In the particular case we consider here, the stable manifold of the solution is the boundary of
the laminar equilibrium’s domain of attraction; thus, infinitely many intersections of the stable and
unstable manifolds yield infinitely many dynamical routes to puff decay.

These three points together imply transient chaos [14], which is the central assumption of the
experiments that study the transition to turbulence through a spatiotemporal intermittency [1–3].

Van Veen and Kawahara [15] computed homoclinic orbits from the edge of chaos in a small
computational cell of the plane Couette flow at Re = 400.4 At this regime, plane Couette flow can
be transient in small computational cells, however, it is sustained in large-enough domains [16].
Hence they highlighted the resemblance of the homoclinic orbits to the so-called turbulent bursting
event. Here we argue that the presence of the homoclinic structure necessitates transient chaos and
thus provides an explanation of how turbulent puffs can cross the laminar-turbulent boundary and
then rapidly decay to laminar flow.

The symmetry-invariant subspace we study in this paper carries the main features of the pipe
flow; however, one should keep in mind that the complete physics of the pipe flow is richer than
what we have considered here. We already know that there exists a relative periodic orbit with a
threefold azimuthal symmetry [6] analogous to the one we studied here, and it is conceivable that
there exists other relative periodic orbits at the laminar-turbulent boundary. We speculate that other
such relative periodic orbits would also have unstable manifolds that contain homoclinic orbits,
yielding the full complexity of the localized turbulence in pipe flow.

The existence of fractal basin boundaries in transitional shear flows was previously suggested in
the light of numerical experiments [17–19]. Our results here clearly show that this must indeed be
the case for the streamwise-localized turbulence in pipe flow as a consequence of the homoclinic
tangle [20].

In the first stage of our investigation, we identified a set of trajectories that belong to a continuum
of trajectories that leave the turbulent part of the state space. While not at the focus of the present

4The Re is based on half the velocity difference between the two walls and half the wall separation.
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work, we would like to remark that this methodology might be exploited for control purposes. In
order to eliminate turbulence in a transitional setting like ours, the flow must be driven towards
the laminarizing side of the edge state’s stable manifold. However, there exists no method for
approximating this manifold since time-backward integration is not possible. Therefore, locating
parts of the unstable manifold that intersect the stable manifold could be a starting point for
perturbing the system in this direction.

We confirmed the existence of homoclinic orbits at higher resolutions by partially repeating our
computations with (K, M, N ) = (383, 47, 96) and half of the time step. We note that increasing the
resolution changes the appearance of the computed manifold and precise location of homoclinic
orbits. We believe that these variations are due to the differences in the flow regime upon changing
the resolution. Avila et al. [7] already reported that the changes in resolution shifted the bifurcation
points while leaving the qualitative scenario unchanged and we think that our situation here is
similar. Our result, along with the recent paper by Lustro et al. [21], who followed a very similar
methodology to elucidate the homoclinic tangency in a minimal plane Couette flow, suggests
numerical methods for computing homoclinic orbits in high-dimensional systems as an important
technical challenge.

In summary, we have studied the unstable manifold of a streamwise-localized relative periodic
orbit on the laminar-turbulent boundary of pipe flow and showed that it accommodates homoclinic
orbits. We argue that this structure qualitatively explains the transient chaos that is observed in
computer and laboratory experiments of spatially localized turbulence in pipe flow.
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