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Birth of microbubbles in turbulent breaking waves
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Microbubbles have been observed in large-scale two-phase flows like breaking waves [1,2],
seafaring vessel wakes [3,4], and raindrops impacting liquid pools [5,6]. These microbubbles rise
slowly [3,7] and reside for a long time in oceans, thereby influencing interfacial transport [1,8],
surface reflectance [4,9,10], and acoustic wave propagation [3,11]. Researchers have measured
the distribution of bubble sizes in laboratory breaking waves, including Deane and Stokes [2] and
Blenkinsopp and Chaplin [12], who measured bubbles with sizes of 0.1-10 mm. Microbubbles with
sizes of 10-100 wm, however, were difficult to characterize due to resolution limitations [13]. These
microbubbles are hypothesized to form when liquid interfaces collide and entrap thin gas films,
which subsequently rupture and retract. Here, the stages involved in this postulated mechanism are
outlined, from large to progressively smaller scales.

FIG. 1. Snapshot of the side view of the simulated breaking wave, shortly after the wave has broken.
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Free surface collisions generate microbubbles

FIG. 2. (a) Close-up view of an imminent collision between interfaces after the wave has broken. Inset:
Schematic illustrating the drop-pool model problem. The imminent collision (dashed lines, main image) may be
mapped to drop impact on a deep liquid pool (dashed lines, inset). (b) Simulation snapshot depicting drop-pool
impact and the ensuing air film entrapment.

To investigate the large scales, a geometric volume-of-fluid-based incompressible two-phase
solver with consistent mass and momentum advection [14,15] was used to simulate a 27-cm-long
breaking Stokes water wave in air [16,17] with a minimum grid size of 0.6 mm, as depicted in Fig. 1.
The simulation revealed that turbulent breaking waves entrain large gas cavities that break up into
smaller bubbles. Collisions between interfaces that may trap thin gas films and generate microbub-
bles were also observed. These films and microbubbles cannot be resolved by this simulation.

The impact of a drop on a deep liquid pool is a suitable model problem for studying how colli-
sions between two arbitrarily curved interfaces may lead to microbubble entrainment, as suggested
in Fig. 2(a). This is motivated by the observation of Mesler entrainment of microbubbles in drop-
pool impact experiments [18-20], which revealed that these microbubbles are remnants of a thin
gas film sandwiched between the colliding interfaces. Simulations employing the boundary integral
method (similar to [21,22]) were performed to capture the film geometry. A simulated water-air im-
pact event with an impact velocity of 0.5 m/s and a drop diameter of 1.3 mm is depicted in Fig. 2(b).

Experiments [20] have shown that once the entrapped gas film ruptures and retracts, transverse
edge instabilities will trigger microbubble shedding. Three-dimensional simulations of retracting
thin gas films performed using a conservative diffuse interface method developed by Mirjalili
et al. [23] also capture this. Retraction of a 2-um-thick air film in water is shown in Fig. 3.
Microbubbles with diameters of 30—40 um were shed due to these instabilities [24].

Microbubble

FIG. 3. Simulation snapshot depicting the formation of microbubbles due to the retraction of a thin air film.
The large arrows indicate the direction of retraction of the rim of the film.
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Rich multi-scale nature of microbubble generation
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FIG. 4. Schematic describing the various stages in the potential pathway for microbubble formation in
breaking waves described in this work, along with the characteristic length scales associated with each stage.
The top row comprises sketches of each stage, while the bottom row comprises snapshots of simulations that
were performed in this work.

This work outlines a potential pathway for microbubble formation in breaking waves, which is
summarized in Fig. 4. Preliminary application of a collision detection algorithm [16] to the wave
simulation suggests up to hundreds of microbubble-producing collisions may occur every second,
thus creating up to a million microbubbles per cubic meter every second. The sheer number of
expected microbubbles, which cannot be resolved in large-scale simulations and require additional
modeling, motivates further study of their formation and evolution.
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