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Stratified flow past a prolate spheroid
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The effect of ambient stratification on flow past a prolate spheroid is investigated using
large-eddy simulation. The aspect ratio of the body is L/D = 4 and the major axis (L)
is aligned with the incoming flow. The Reynolds number based on the minor axis (D)
and the incoming velocity (U ) is Re = 104. The stratification is set using a linear density
background with constant buoyancy frequency (N). Three simulations with stratification
levels, Fr = U/ND = 0.5, 1, 3 and one unstratified simulation, Fr = ∞, are performed.
The influence of the body slenderness ratio is assessed by comparing the present results
with previous work on a sphere. An overall result is that the flow past a slender body
exhibits stronger buoyancy effects relative to a bluff body. At Fr ∼ O(1), there is a strong
interaction between the body-generated internal gravity waves (IGW) and the flow at
the body. This interaction gives rise to a critical Froude number, Frc = L/Dπ , which is
proportional to the aspect ratio. When Fr ≈ Frc boundary layer separation is delayed and
wake turbulence is strongly suppressed. If Fr � Frc, wake turbulence is only partially
suppressed and, when Fr � Frc, boundary layer separation is promoted and turbulence
reappears. To elucidate the effect of body slenderness on stratification effects, the IGW
field, the boundary layer evolution and separation are studied. Analysis of the wake
reveals the strong influence of the type of separation, and therefore the body shape, on
the dimensions and the energetics of the near and intermediate wake. However, the decay
rate of the stratified wake in the nonequilibrium region is the same as that of a sphere.
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I. INTRODUCTION

Flow over slender bodies has been extensively studied due to its wide applicability to aerospace
and marine engineering. As a canonical, well-defined geometry for flow past three-dimensional
objects, the prolate spheroid has received much attention. Special focus has been given to flow
separation at different angles of attack [1–3] and the structure of near-body flow [4–6]. Although
slender bodies are commonly operated underwater, where the environment has density stratification,
fundamental investigations of buoyancy effects on translating objects have neglected slender bodies
for the most part. Stratification induces changes in the flow such as the appearance of coherent
structures, the generation of internal gravity waves, and alteration in the level and spatial distribution
of wake turbulence. This motivates the present computational study of stratified flow past a prolate
spheroid. In this work, we examine the influence of the body slenderness on buoyancy effects by
comparing our results with previous studies on stratified flow past spheres. To do so, the aspect ratio
of the spheroid is set to L/D = 4 and the stratification level is increased systematically.
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Most of the past work on stratified flow past translating bodies has addressed the wake of bluff
bodies as reviewed by Lin and Pao [7] and Spedding [8]. The wake of a body with characteristic
vertical length D that translates with speed U in a stable background with buoyancy frequency N
is governed by the Froude number, Fr = U/ND, and the Reynolds number, Re = UD/ν, where
ν is the kinematic viscosity of the ambient fluid. Once buoyancy effects have set in, the defect
velocity Ud in stratified wakes is larger than in unstratified wakes. Owing to this feature, stratified
wakes are said to have a “longer lifetime” relative to their unstratified counterpart. It is worth noting
that, even in the case of a weakly stratified environment (Fr � 1), the local wake Froude number,
Frd = Ud/NLV , based on the mean values of the defect velocity (Ud ) and vertical size (LV ) at a given
downstream distance, will eventually approach O(1). Therefore, a stratified wake always differs
from its unstratified counterpart at a sufficient downstream distance or, equivalently, after sufficient
time (Nt) has passed.

Based on the competition of buoyancy forces with inertial forces, three wake regimes can be
distinguished in the evolution of high-Fr wakes [9]: a 3D regime until Nt = x/DFr ≈ 2, where
the wake is unaffected by buoyancy and behaves as an unstratified wake, a nonequilibrium regime,
where buoyancy forces start suppressing vertical motions and the wake height stops increasing, and,
finally, after Nt = x/DFr ≈ 50 (a point that likely occurs further downstream at high Re [10,11]), a
quasi-two-dimensional regime where buoyancy forces dominate the flow, and the flow organizes into
pancake eddies. In the transition from the 3D regime to the nonequilibrium regime, Nt = x/DFr ≈
π marks an important transition point where Pal et al. [12] found oscillatory modulation of the wake.
The oscillatory modulation induced by the lee wave results in a transition from the usual decrease
of the defect velocity to an increase in Fr = O(1) wakes.

Until recently, when body-inclusive direct numerical simulations (DNS) have become feasible,
experiments and temporal simulations were the only available tools to study the near-to-far wake
transition in stratified flow. In temporal simulations, the wake generator is not included in the domain
and a reference frame that moves with the mean flow velocity is used. The streamwise variations
of the mean flow are assumed to be negligible and periodic boundary conditions are imposed so
that the cost of the simulation can be reduced. After the early work reviewed by Lin and Pao [7],
there was a hiatus followed by experimental investigations of sphere wakes by Spedding [9] and
Bonnier and Eiff [13]. The former identified the three regimes with different power laws for the wake
decay and the latter observed a “collapse” where the defect velocity exhibited a short interval of
increase (now understood as a manifestation of lee-wave induced “oscillatory modulation”). During
the same period, Gourlay et al. [14], in the first temporal DNS of a stratified wake, found that
pancake vortices emerge in the late wake independent of the initial conditions and, Dommermuth
et al. [15] developed an improved method to initialize the temporal model of large-eddy simulation
(LES) and further characterize the wake. Some years later, Brucker and Sarkar [10] conducted
temporal DNS at Re up to 5 × 104 and, besides characterizing differences between self-propelled
and towed wakes, described buoyancy and internal wave effects on wake evolution in the framework
of mean and turbulence energetics. At the same time, Diamessis et al. [11] employed implicit LES to
characterize wake evolution over a broad range of Froude (2 < Fr < 32) and Reynolds (5 × 103 <

Re < 105) numbers. The nonequilibrium regime was found to last longer as Re increases by both
Brucker and Sarkar [10] and Diamessis et al. [11], and the latter identified secondary KH instabilities
that led to turbulence at large Nt . De Stadler and Sarkar [16] found that, in the temporal model,
the addition of moderate excess momentum to a momentumless wake led to quantitative but not
qualitative changes. Redford et al. [17] studied high-Fr wakes and utilized energy budgets to further
clarify the change of wake decay induced by stratification.

Body-inclusive spatially evolving simulations of the stratified turbulent wake, like the ones
employed in this work, are recent, e.g., Refs. [12,18–20], and have been limited to flow past a sphere.
The study by Orr et al. [18] at Re = 200 and 1000 found that neither the internal waves nor the drag
increment due to stratification exhibited significant dependence on Re. Pal et al. [19] conducted
DNS in the strongly stratified regime (0.025 � Fr � 1) and showed that the usual suppression
of turbulence with increasing stratification in flow past a sphere is followed by reappearance of
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fluctuations in the near wake when Fr < 0.5. The fluctuations in these highly stratified wakes are
even more energetic than in their unstratified counterpart. Further examination of the enstrophy and
its balance in these Fr < 0.5 wakes by Chongsiripinyo et al. [20] revealed 3D vortex dynamics
as well as dominance of vortex stretching that confirmed the turbulent nature of the fluctuations.
The value of Re = 3700 in this DNS was higher than the Reynolds number in previous laboratory
measurements of low-Fr flow over a sphere that did not show the reappearance of turbulence.

The role of the wake-generator shape in modifying the downstream evolution of stratified wakes
has received little attention. An exception is the experimental study by Meunier and Spedding [21]
of stratified wakes at moderately high Fr. The work concludes that, far from the body, scaling
laws of wakes generated by different body shapes can be collapsed when the shape-dependent drag
coefficient is taken into account. In their experiments, the memory loss of initial conditions and the
universality of wake decay were only observed in the far wake, where the flow dependence on Fr is
partially lost and the local Froude number (Frd ) governs the evolution. In the present work, however,
we wish to ascertain buoyancy effects on the establishment of the near and the intermediate wake
that could conceivably depend on the shape of the wake generator.

The stratified flow at and near bodies has also received some attention. Hanazaki [22] conducted
the first DNS of stratified flow past a sphere. This DNS, conducted for laminar flow at Re = 200,
provided visualizations that revealed the imprint of body-generated lee waves on flow separation and
the near wake. The drag increase experienced by the body when moving in a stratified environment
was quantified, and flow transition to a quasi-two-dimensional regime when Fr � 1 was observed.
Following this computational work, Lin et al. [23] and Chomaz et al. [24,25] reported results from
experimental studies of flow past a sphere where the separation topology was found to change
qualitatively in {Fr, Re} phase space. Additional work on stratified flow past bodies has been done
using bottom-mounted 3D obstacles. This work, motivated by the importance of flow-topography
interactions in the atmosphere and the ocean, has also revealed the significance of lee waves in flow
separation at Fr = O(1), e.g., Refs. [26,27].

Finally, the generation of body generated lee waves in stratified flow over bodies has also been
the subject of much study. Voisin [28] continued previous asymptotic theory [29–32] and applied the
Green’s function method to the generation of internal gravity waves by a moving point mass source
in a weakly stratified environment with Fr � O(1). In followup studies like Dupont and Voisin
[33] and Voisin [34], the specific example of internal waves generated by a sphere is described for
both Fr � O(1) and Fr � O(1) regimes, and the variation of drag coefficient with Fr is obtained
theoretically. It is worth noting that not only the body but also the turbulent wake generates internal
waves [35–40].

The considerable body of work on stratified flow past spheres has led to much of our present
understanding of buoyancy effects parametrized by Fr = U/ND. Slender bodies have two length
scales, the major axis (L) and the minor axis (D), so that flow past a slender body (oriented with D
perpendicular to the flow) may not have the same Fr dependence as flow past a sphere, particularly
in the near and intermediate wake. In the present work, we consider the specific case of a prolate
spheroid to assess the influence of the aspect ratio L/D > 1 on the effects of buoyancy in the flow.
We will explore the following issues: (1) body-generated internal gravity waves, (2) surface forces,
(3) confinement effects, (4) evolution of the boundary layer, (5) flow separation, and (6) near and
intermediate wake. The overarching question is how are buoyancy effects different in the case of
flow past a slender body with respect to a sphere?

II. PROBLEM FORMULATION

Figure 1 shows the prolate spheroid and the structure of the unstratified wake. The flow
is simulated by numerically solving the three-dimensional filtered Navier-Stokes equations in
cylindrical coordinates together with a transport equation for density. The coupling between
momentum conservation and density transport is simplified using the Boussinesq approximation.
A 4:1 aspect ratio prolate spheroid with major axis, L, and minor axis, D, is immersed in a flow
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FIG. 1. Isocontour of Q = 1
2 |�2 − S2| = 0.1 at Fr = ∞ to visualize the unstratified wake. Here, Si j =

1
2 (∂ui/∂x j + ∂uj/∂xi ) is the strain-rate tensor and �i j = 1

2 (∂ui/∂x j − ∂uj/∂xi ) is the rate of rotation
tensor.

with velocity, U , that is aligned with the major axis of the body. The cylindrical coordinate system
(r,�, x) is transformed to Cartesian (x, y, z) when necessary to simplify the discussion. In both
systems, the x coordinate is aligned with the incoming flow, z (vertical) is aligned with gravity, and
y (horizontal) with � = 0.

The density field is split into the background (constant plus a linear variation) and a density
deviation: ρ(x, t ) = ρ0 + ρl (z) + ρd (x, t ), where ρl = Cz corresponds to linear stable stratification.
Typically, ρd/ρ0 � 1 and ρl/ρ0 � 1, which leads to the Boussinesq simplification of the momen-
tum equation. The Reynolds number is Re = UDρ0/μ and the Froude number is Fr = U/ND,
where N = √−gC/ρ0 is the buoyancy frequency. The ratio between momentum and density
diffusion coefficients, denoted by the Prandtl number (Pr = μ/κ), is set to one instead of Pr = 7,
the typical value for temperature diffusion in water. de Stadler et al. [41] showed that this change
of Pr had a negligible effect on wake statistics and, by setting Pr = 1, the computational cost of the
simulations can be significantly reduced. In the LES model, Prsgs = μsgs/κsgs = 1.

The nondimensional governing equations are as follows:

∂ui

∂xi
= 0, (1)

∂ui

∂t
+ u j

∂ui

∂x j
= − ∂ p

∂xi
+ 1

Re

∂

∂x j

(
(1 + μsgs)

∂ui

∂x j

)
− ρd

Fr2 δi3, (2)

∂ρ

∂t
+ u j

∂ρ

∂x j
= 1

Re Pr

∂

∂x j

(
(1 + κsgs)

∂ρ

∂x j

)
. (3)

Henceforth, ui, xi, p, and ρ will denote nondimensional quantities. For nondimensionalization, the
incoming streamwise velocity U is used as the velocity scale and the minor axis D is used as the
length scale. Here, p is the nonhydrostatic pressure, nondimensionalized with ρ0U 2. In Eq. (2) and
Eq. (3), μ and κ have been used to nondimensionalize the subgrid diffusion coefficients, μsgs and
κsgs. The subgrid diffusion coefficients are computed using the dynamic eddy viscosity model pro-
posed by Germano et al. [42] and improved by Lilly [43]. This LES closure estimates the Smagorin-
sky coefficient by dynamically filtering the flow field with a coarse test filter. By doing so, the contri-
bution of the resolved stresses to the test filter scales can be estimated together with a Smagorinsky
constant. This closure has been broadly used and it reproduces the correct behavior in laminar
regions, high-shear regions, and near walls when enough points are used in the boundary layer.

Boundary conditions suitable for this problem are

u = U, v = w = p = 0, ρ = ρ0 + ρl at the inlet, (4)

∂t u = U∂xu, ∂x p = 0, ρ = ρ0 + ρl at the outlet, (5)

lim
r→0

∂θu = 0, lim
r→0

∂θ p = 0, lim
r→0

∂θρ = 0 on axis, (6)
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TABLE I. Simulation parameters. The value of Fr is changed among cases by changing N .

Case Re Fr Lr Lθ L−
x L+

x Nr Nθ Nx

1 104 ∞ 10 2π 10 18.5 830 128 5120
2 104 3 60 2π 33 30 600 128 5120
3 104 1 60 2π 33 30 600 128 5120
4 104 0.5 60 2π 33 30 600 128 5120

∂ru = 0, ∂r p = 0, ∂zρ = C at the lateral wall, (7)

u = 0, ∂n p = 0, ∂nρ = 0 on the body surface, (8)

and periodicity in the azimuthal direction for all the variables.

III. NUMERICAL METHOD AND VALIDATION

The governing equations are discretized with finite differences on a cylindrical staggered grid.
The solver advances in time using a fractional step method that combines a third-order low storage
Runge-Kutta method for the convective terms with Crank-Nicolson for the viscous terms. The
implicit treatment alleviates the stiffness of the system, especially due to the small r�� values near
the axis. The use of cylindrical coordinates has two main advantages. First, the periodicity of the
domain can be leveraged to reduce the cost of solving the pressure Poisson problem. The periodic
condition in the azimuthal coordinate reduces the discretized Poisson equation to a pentadiagonal
system that is solved using a direct solver [44]. Second, the cylindrical topology of the grid is an
appropriate choice for the axisymmetric surface of the body, the boundary layer, and the high shear
regions in the wake.

The body is represented as a forcing term in the right hand side of the equations with the
immersed boundary method introduced by Balaras [45] and Yang and Balaras [46]. To enforce
the wall boundary conditions, the force exerted by the body on the fluid is interpolated from the
body surface to the adjacent fluid points at every time step.

To avoid spurious reflection of the waves, a sponge layer is introduced in the inlet, the outlet,
and the lateral wall of the domain. The sponge takes the form of a Rayleigh damping function
given by φ(x)(u − U ) and φ(x)[ρ(x) − ρbg(z)], where U = (U, 0, 0) is the freestream velocity and
ρbg = ρ0 + ρl (z) is the background density. The sponge strength, φ, is given by a quadratic profile
that gradually relaxes the velocities and the density to their respective values at the boundaries.

The Reynolds number based on the minor axis is set to Re = 104, which corresponds to
ReL = UL/ν = 4 × 104. Four cases, which are listed in Table I, are simulated with different
levels of stratification Fr = 0.5, 1, 3 and the unstratified Fr = ∞. The numerical method has been
well-validated in flow past a sphere at Re = 3700 [12,19,20] by comparing results against existing
simulations and experimental data. Here, the grid validation is performed by comparing the pressure
coefficient, Cp, and the friction coefficient, Cf , with Wang [1]. To the authors’ best knowledge, this is
the only detailed work to investigate flow over a 4:1 spheroid at zero angle of attack and moderately
high Reynolds number. Wang [1] resolves the boundary layer equations in spheroidal coordinates
using the potential solution by Lamb [47] as a matching outer boundary condition.

Figure 2 compares the results of Wang [1] with the current unstratified simulation, where Cp and
Cf are defined as

Cf = sgnτ1
|τi|

1
2ρ0U 2

, Cp = p
1
2ρ0U 2

. (9)

Here, τi = μ( ∂ui
∂x j

+ ∂u j

∂xi
)n j is the wall shear stress with n j the unitary vector normal to the surface.
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FIG. 2. Comparison of the unstratified numerical simulation with the result of Wang [1] who matches a
boundary-layer solution with the outer potential flow: (a) pressure coefficient and (b) friction coefficient and
separation point.

The solid red curve in Fig. 2(a) compares the streamwise evolution of Cp with the potential-flow
solution used to prescribe pressure by Wang [1]. Figure 2(b) represents the streamwise evolution
of the surface friction coefficient where Cf is normalized by the viscous length scale D/Re1/2 to
obtain O(1) values. The location of the separation point, where Cf = 0, is also shown. In the present
simulation, the initial pressure is not recovered at the stern of the body due to the viscous losses at
the wall and in the separated flow. This effect cannot be captured in Wang [1] because of the one-way
coupling between the potential-flow solution and the boundary layer equations.

To further assess the quality of the grid, the ratio of the grid spacing to the Kolmogorov length
scale is computed in each direction. The Kolmogorov length is defined as η = (ν3/ε)1/4. The turbu-
lent dissipation rate, ε, is computed as ε = 2νS′

i jS
′
i j , where S′

i j is the fluctuating strain-rate tensor.
The present LES has high resolution. As Fig. 3 shows, the ratio of the radial and streamwise grid
spacing to η is <2, and the ratio of the azimuthal grid spacing to η is <6. Indeed, apart from the
azimuthal grid spacing, the simulation has a DNS-like resolution. Within the boundary layer, there
are 47 grid points at x/L = 0.25 (measured from the nose), 71 at x/L = 0.5, and 100 at x/L = 0.75.
This is more than sufficient to establish good resolution of boundary-layer dynamics.

IV. VISUALIZATION

A three-dimensional view of the unstratified wake was provided in Fig. 1. To reveal the effect
of stratification on the wake, instantaneous vorticity fields are shown in Fig. 4 (vertical plane) and

FIG. 3. Grid size scaled with the Kolmogorov length η in the unstratified case: (a) radial size, (b) azimuthal
size, and (c) streamwise size.
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FIG. 4. Effect of Fr on the instantaneous lateral vorticity ωy in the vertical plane.

Fig. 5 (horizontal plane) for four different Froude numbers. The visualization of vorticity clearly
reveals the main characteristics of the flow: the growth of the boundary layer, the separation, the
breakdown of the separated shear layer, and the generation of turbulent structures in the wake. As
the stratification level is increased, the suppression of turbulent structures is progressively stronger,
eventually leading to the development of a completely laminar wake at Fr = 1; see Figs. 4(c) and
5(c). When stratification is further increased to Fr = 0.5, turbulence reappears in the wake as shown
by the fine-scale features in Fig. 4(d). This behavior differs from that of a sphere. The sphere at Re =
104 and Fr = 1 has a turbulent wake [48] and, at Fr = 0.5 and Re = 3700 [19], a fully laminar wake.
(Note that the sphere Re is based on the diameter, which is consistent with the current definition
based on the minor axis of the prolate spheroid.)
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FIG. 5. Effect of Fr on the instantaneous vertical vorticity ωz in the horizontal plane.

The unstratified case [Figs. 4(a) and 5(a)] shows an axisymmetric separated shear layer in the aft
of the body. The shear layer, identified by the intense white and black vorticity stripes, is unstable
and triggers the emergence of a coherent helical mode in the wake (Fig. 1). The inclusion of a
vertical density gradient breaks the axial symmetry of the problem. The weakly stratified Fr = 3
case shows a flattened recirculation region. Comparison of Figs. 5(b) and 4(b) reveals a turbulent
region whose width is larger than its height. Thus gravity has reduced the height of the recirculation
bubble and has accelerated the vertical contraction of the shear layer. This characteristic azimuthal
anisotropy is also observable in the near wake, which remains more wide than tall.

The strongly stratified Fr = 1 case is steady. The near wake is “locked in” by the lee wave and no
unsteadiness develops in the aft of the body. Its vorticity field displays a triple-layered structure in
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FIG. 6. Internal gravity waves, visualized by contours of vertical velocity (w): (a) Fr = 0.5, (b) Fr = 1,
(c) a zoom of Fr = 1 to highlight the inclined phase lines on the body, and (d) Fr = 3. The black solid lines in
each panel represent the w = 0 phase lines obtained with the asymptotic theory for the far field; see Eq. (11).
The gray dashed lines in each panel mark the phase lines of w = 0 obtained by the near-field theory; see
Eq. (10).

the vertical plane [Fig. 4(d)] generated by three distinguishable flow regions: the two regions where
flow goes above and below the body and the central region where the flow is unable to surmount
the body and goes around the sides [25]. Within this region, a horizontal thin shear layer develops
[Fig. 5(c)].

At Fr = 0.5, the strongest stratification considered here, there is a wider separation region and
a taller wake than at Fr = 1. Also, there are unsteady small-scale motions in the vertical plane
[Fig. 4(c)]. In the horizontal plane, high-vorticity regions are observed at the sides of the body
followed by a sinuous wake [Fig. 5(d)].

V. INTERNAL GRAVITY WAVES

The motion of a body in a stratified environment generates internal gravity waves (IGW)
that propagate energy and momentum away from the body. These waves are three-dimensional,
dispersive, anisotropic, and emitted by multiple sources. The behavior of the IGW is important to
understand the influence of stratification on the boundary layer and flow separation to be discussed
in later sections.

Figure 6 shows an instantaneous snapshot of vertical velocity in the upper vertical plane at
different Froude numbers. A periodic semicircular pattern can be distinguished in panels (a), (b), and
(d), where regions of positive and negative velocity alternate. This pattern is steady and generated
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by the body lee waves. A less coherent pattern can be observed in the wake region, near the axis
(z = 0), in panels (a) and (d). These waves are unsteady and are emitted by the fluctuating motions
of the wake. Generally, three major contributors to the IGW field can be distinguished: the body, the
coherent structures shed from the body, and the wake turbulence [35–37]. In this section, we will
describe the steady body-generated lee waves, deferring the analysis of unsteady waves to future
work.

A large body of IGW work concerns the geophysical problem of stratified currents moving past
topography (mountains, ridges, rough terrain) [49]. Additional work has been done to describe the
wave field generated by moving objects, primarily spheres. Section V A explores the similarities
between the flow past a slender body and flow over corrugated topography to describe the IGW near
field. Section V B adapts the work of Voisin [34] on stratified flow past a sphere to describe the IGW
far field generated by a slender body. Both sections aim to elucidate theoretically the role of aspect
ratio on the wave field.

A. Near-field theory

Close inspection of the wave field near the body (Fig. 6) reveals a characteristic tilt of the IGW
that depends on the Froude number. This tilt is clearly observed on the phase line which intersects
the spheroid surface and in those closest to the body, as illustrated by Fig. 6(c). However, the tilt
becomes less pronounced as we move away from the origin [Figs. 6(a), 6(b), and 6(d)]. The tilt
angle of the near-body phase lines can be estimated by drawing an analogy between the flow past a
three-dimensional spheroid and the two-dimensional flow over a surface corrugation. This analogy
has proved useful in the context of stratified flow over three-dimensional ridges [50,51].

A stratified flow over a surface corrugation of wave number ks generates an IGW field that has
the same characteristic wave number ks. This is one of the simplest configurations where IGW
develop and only a single dominant frequency appears. The IGW shows straight phase lines tilted
an angle θ from the vertical. In a case where the size of the body is finite, such as the flow past a
two- or three-dimensional ridge of finite width L, a full spectrum of wave numbers is generated, not
just ks = 2π/L. However, ks remains the dominant wave number. In this case, the IGW cannot be
simply described as a monochromatic wave, although the fundamental physics remain unchanged
[52] and the angle estimation is still relevant.

To elucidate the role of the aspect ratio on the tilt, the phase lines generated by a corrugated
topography of wavelength λs = 2L are plotted on top of the simulation results in Fig. 6. They form
an angle θ with the vertical where

ω

N
= cos θ ⇒ cos θ = πU

LN
= πFrD

L
, (10)

and ω = πU/L is the frequency measured by an observer moving with the flow. Equation (10) is
the dispersion relation obtained by assuming that the body generates a small-amplitude periodic
disturbance. The expression for ω can be obtained by forcing the phase to be constant relative to the
moving body [53]. The angle of the IGW phase lines (θ ) also describes the direction at which energy
is radiated from the body. As shown by Eq. (10), θ depends not only on Fr but also explicitly on
the body aspect ratio. Figure 6(c) shows that the inclined straight phase line obtained from Eq. (10)
agrees well with the simulated waves near the body. The effect of changing the Froude number
is shown by Figs. 6(a) and 6(d). In the Fr = 0.5 configuration, θ increases and the phase lines
are more inclined with the vertical. For the weakly stratified Fr = 3 case, where Fr > L/Dπ , the
value of ω/N > 1 would indicate that the body-generated waves cannot be sustained in the far field.
Instead, there is a decaying solution corresponding to evanescent waves whose energy is trapped
near the body and exponentially decays with height. The simulation reveals the existence of very
weak waves whose phase lines are perpendicular to the body in the near field. A similar pattern of
perpendicular phase lines is observed in the sphere of Pal et al. [12] at Fr = 1 (not shown), where
the conditions also correspond to Fr > L/Dπ and ω/N > 1.
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Figure 6(c) also shows that the phase lines are more tilted with respect to the vertical inside the
wake (θwake > θ ), a phenomenon that can also be understood through Eq. (10). The velocity relative
to the free stream is reduced in the wake, implying that ωwake < ω, and the phase lines near the
center line get closer to the horizontal.

The velocity and pressure associated with the IGW near field can influence the boundary layer
and flow separation. We will discuss these effects later in Sec. VI C.

B. Far-field theory

Far from the body and in the vertical plane, the IGW field shows a pattern of alternating
semicircular stripes of positive and negative radial velocity, as seen in Figs. 6(a), 6(b), and 6(d).
The wave number is proportional to the Froude number and the amplitude of these waves decays far
from the body as r−1/2, in agreement with the experiments of Gilreath and Brandt [35].

Asymptotic analysis has been extensively used [28,31,33,34] to estimate the wave field generated
by moving objects. This body of work seeks far-field solutions and considers the regimes of Fr � 1
or Fr � 1, where nonlinearities can be neglected. The underlying assumption of the far-field theory
is that the actual shape of the body loses significance as we move away from it. As such, the body
can be substituted by a simpler wave source as long as it generates a similar type of disturbance on
the flow field. It should be noted that, even when the exact body shape might not be very significant
in the far field, the actual size of the body is relevant (not to the frequency of the far-field waves but,
particularly, to their amplitude and the exact location of the phase lines). This is why, even when
there are analytical solutions that describe the wave field generated by a sphere, some modifications
of these solutions are required to properly describe the IGW generated by a body such as the 4:1
spheroid.

In the formulation of Voisin [28,34] for wave generation by a horizontally moving sphere, a mass
source q is included in the right hand side of the continuity equation to model the moving body.
This source term can, in general, be either a monopole, a dipole, or a combination of singularities.
After further simplifications of the linearized inviscid equations, the system is reduced to a single
propagation equation for a wave function χ [54]. The wave function is a scalar function that contains
all the wavelike components of the fluid motion, allowing us to simplify the formulation of the
problem by excluding all the nonpropagating vortical motions that are not part of the wave field.

The Green’s function associated with the internal wave equation for χ can be obtained
asymptotically for large times (N |t | � 1) and integrated in the complex plane for any forcing q
using the method of stationary phase [55] as described by Voisin [34]. Once the wave function χ

is known, the vertical velocity field can be obtained by differentiation, resulting in w = ∂2

∂t2
∂
∂z (χ ).

Taking into account that only the variations of the phase of χ are significant (to leading order), w in
the reference frame moving with the body reads

w(x, t ) ∼ N

2πUr
sin φ cos θ (1 + cot2 θ cos2 φ)1/2 Im

[
iq(k, ts) exp

(
−i

N

U
r| sin φ|

)]
, (11)

where the spherical polar coordinates (r, θ, φ) are given by

x = r cos θ, y = r sin θ cos φ, z = r sin θ sin φ, (12)

the wave number vector is

k = N

U

(
− cos θ | sin φ|, cos2 θ

sin θ
cos φ| sin φ|,− sin2 θ + cos2 θ cos2 φ

sin θ
sgnz

)
, (13)

and ts is the time of the source, which, by causality, is always ts < t .
At this point, Eq. (11) can be used to obtain the wave field generated by a spheroid instead of a

sphere. To that end, q is chosen to be the sum of two monopoles, a source and a sink, separated by
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a distance 2a, as has been done for a Rankine ovoid [31]. This yields

q(x) = m[δ(x + a) − δ(x − a)]δ(y)δ(z), (14)

which, in Fourier space, is given by

q(k) = 2im sin(akx ). (15)

Applying Eq. (15) as the forcing q(k) in Eq. (11) gives

w(x, t ) ∼ − mN

πUr
sin φ cos θ (1 + cot2 θ cos2 φ)1/2 sin

(
Na

U
cos θ | sin φ|

)
sin

(
N

U
r| sin φ|

)
,

(16)

where a and m can be obtained from the potential solution of the Rankine ovoid by imposing a
stagnation point at x = ±L/2 and taking the diameter at x = 0 to be D. This yields

L = 2a

√
m

πaU
+ 1, D = 2a cot

(
πUD

2m

)
. (17)

The strong assumptions required to obtain Eq. (16) are assumed to be valid only at large distances
from the source (r � a) in a weakly stratified environment. However, previous experiments [33]
have shown these assumptions to be valid even in the moderately stratified regime, as long as the
compactness condition (a � λ where λ is the wavelength) is met. Figure 6 shows the phase lines for
w = 0 (black solid lines) obtained from Eq. (16) in the upper vertical plane. The theoretical phase
lines agree well with the wavelength and phase of the simulated IGW field.

The steady IGW generated in the lee of the body alters the wake evolution. The effect of the
gravity waves on the wake decay will be discussed in Sec. VII.

VI. FLOW AT THE BODY

In addition to enabling gravity waves, stratification affects the flow at the body in two distinct
ways: (1) through the interaction of buoyancy force with the body curvature and (2) through vertical
confinement and blocking. These buoyancy effects change the surface forces, affect the boundary
layer evolution, and, ultimately, the flow separation. This section includes a description of these
modifications to the flow.

A. Surface forces

The drag coefficient Cd , a nondimensional measure of the streamwise (x) component of the
force, can be split into two contributions: the viscous drag coefficient C f

d and the pressure drag
coefficient Cp

d . Thus Cd = Cp
d + C f

d , where C f
d accounts for the viscous skin friction and Cp

d accounts
for pressure differences over the body surface. The component force coefficients are given by

C f
d = 1

1
2ρ0U 2 π

4 D2

∫
S
τ1dS, Cp

d = 1
1
2ρ0U 2 π

4 D2

∫
S
(−p)n1dS, (18)

where τi is the wall shear stress, n j is the unitary vector normal to the wall, and dS is a surface
differential element.

Table II shows the magnitude of the time-averaged force coefficients for the four simulated cases.
An averaging window of ≈30D/U is applied after the flow has reached steady state. The effect of
stratification is reported using �Cd (Fr) = Cd (Fr) − Cd (∞) [56,57]. As stratification increases, the
drag increases, an effect that has also been found for a sphere at Re ∼ 103 in the Fr = O(1) regime
[56,58]. As it is expected for a slender body, the major contributor to drag in the unstratified case is
the surface friction [59]. However, as the Fr decreases, the contribution of the pressure drag Cp

d due
to both internal waves and the wake overcomes the viscous drag and becomes dominant.
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TABLE II. Surface forces.

Case Re Fr Cd C f
d Cp

d �Cd

1 104 ∞ 0.161 0.121 0.041 0
2 104 3 0.164 0.119 0.045 0.003
3 104 1 0.336 0.149 0.187 0.175
4 104 0.5 0.647 0.158 0.489 0.486

To understand the effect of stratification on the surface forces, it is useful to look at the
streamwise evolution of Cf and Cp [Eq. (9)] shown in Fig. 7. As previously mentioned in the
validation section, inviscid theory leads to the following picture for an unstratified flow over an
axisymmetric body at zero angle of attack.

The nose of the body (x = −2) is a stagnation point where the flow kinetic energy is converted
into pressure. During its motion towards the center of the body (−2 < x < 0), the fluid accelerates
and the kinetic energy recovers at the expense of pressure. Downstream of the central part of the
body (0 < x < 2), the behavior is inverted, velocity decreases, and pressure rises again. Once we
introduce the effect of viscous losses, which cause the recovery of pressure to be partial, the behavior
of Cp observed in Fig. 7(a) for unstratified flow can be understood.

Gravity and stratification enter this picture through their effect on the flow acceleration. As shown
in Fig. 7(a) most of the pressure drop occurs in the foremost region of the nose, −2 < x < −1.8,
where the slope of the body is still significant. In this region, the body-tangential component of
the gravity vector is maximum and the buoyancy term in the momentum conservation equation
has maximum effect on the flow speed. Since the fluid that is transported along and over the body
in the vertical plane is denser than the background, the buoyancy term [b = −ρd/Fr2k in Eq. (2)]
is negative (downward) and its body-tangential component acts to reduce the initial increase of
velocity. Thus the pressure in the forward portion of the body increases relative to its unstratified
counterpart. When the flow reaches the rearward portion of the body, however, the effect is reversed.
The restorative buoyancy force acts to increase the flow speed and pressure remains lower than in
the unstratified case. Figure 7(a) shows that, relative to Fr = ∞, Cp in the Fr = 1 and Fr = 0.5 cases
is larger in the forward portion and smaller in the rearward portion, consistent with the preceding
qualitative argument.

Figure 7(b) shows that the azimuthally averaged friction coefficient is also affected by buoyancy
in the Fr = O(1) regime. The aforementioned reduction of flow speed in the frontal region leads to
a smaller value of Cf , whereas the enhanced flow speed on the aft increases the skin friction.

To summarize, the effect of buoyancy on the flow acceleration around the body modifies the drag
primarily by reducing the overall pressure in the back of the body and increasing the pressure in the
front, causing a major increase in Cp

d .

FIG. 7. Effect of Fr on azimuthally averaged force coefficients: (a) pressure coefficient Cp and (b) friction
coefficient Cf . The separation point is indicated by dots on the Cf curves.
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FIG. 8. Effect of Fr on the streamlines starting from the nose of the body. The streamlines are colored by
vertical velocity. The blue isosurface in the aft of the body marks the points where the streamwise velocity
u = 0.

B. Vertical confinement and upstream blocking

Stratification induces upstream blocking whereby a portion of the flow ahead of the body is
unable to travel above it and is, instead, diverted to the sides. As such, unlike in the unstratified
case, the flow is vertically confined.

Figure 8 shows a group of streamlines that start on the nose of the spheroid. In the weakly
stratified case (Fr = 3), the streamlines are evenly distributed in the azimuthal direction and their
color shows a region of positive vertical velocity at the nose of the body and negative vertical
velocity at the aft. The Fr = 1 and Fr = 0.5 cases show that the streamlines are deflected towards
the side of the body instead of going above it. In particular, the Fr = 0.5 case shows a large region
at the nose of the body where the vertical velocity is negative.

The conditions under which a parcel of fluid can surmount an obstacle is a question of
longstanding importance to the stratified-flow community [57,60,61]. To pass above an obstacle,
a parcel of fluid in a stratified medium has to overcome a potential energy barrier created by the
vertical density gradient. Drazin [61] developed a model for asymptotically low Fr that describes
the stratified flow past an obstacle as the sum of two flows: a horizontal flow that, confined by the
stratification, goes around the obstacle and a secondary three-dimensional flow that is able to go
above/below the obstacle. Based on this model, a separating stream surface that divides the flow
that goes around from the flow that goes above the body can be defined. The flow above/below
the dividing stream surface is responsible for the generation of waves and the associated
wave drag.

The remainder of the flow is blocked and induces the vertical vorticity mode rather than internal
gravity waves. According to this theory, the height of the dividing stream surface (zs) can be
estimated using Sheppard’s criterion as zs = (1 − Fr)D. Although based on asymptotic analysis
at Fr � 1, the theory has proved useful to understand the flow even at the moderate stratification of
Fr = O(1).

If mixing of density is neglected, isopycnal surfaces serve as surrogates for stream surfaces.
Figure 9 shows the projection of three-dimensional instantaneous isopycnals in the upper vertical
plane. The colored isopycnal is the highest isopycnal that is pierced by the body surface and marks
the dividing stream surface. The isopycnals in Fig. 9 that originate below the dividing stream surface
are unable to surmount the obstacle. Instead, they deflect downward and horizontally away from the
boundary of the obstacle, as was shown in Fig. 8. Consider fluid that originates from a region
R that is upstream of the body and within 0 < z < 0.5. The colored isopycnal, taken to be the
vertical x − z-plane projection of the dividing stream surface, splits the fluid that originates in R
into two classes: fluid above the dividing stream surface is able to go above the body while the fluid
below does not. Note that, by symmetry, there is a second dividing stream surface in the lower half
of the body (−0.5 < z < 0) that separates fluid that is able to go below the body from the fluid
that does not. Theory predicts that when Fr → ∞ these two dividing stream surfaces merge into
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FIG. 9. Projection of a group of instantaneous isopycnals and the spheroid onto the vertical plane is shown:
(a) Fr = 3, (b) Fr = 1, and (c) Fr = 0.5. The colored isopycnal serves as a surrogate for the dividing streamline.

the center line, since fluid is not prevented by buoyancy from going over or below the obstacle.
As Fr decreases, the suppression of vertical motions increases so that the upper dividing surface
moves upward. The dividing surface at Fr = 0.5 [Fig. 9(c)] is higher than that at Fr = 1 and Fr = 3
[Fig. 9(b)], but neither of the three simulated cases correspond to the Fr � 1 limit where the dividing
surface reaches the half-height of the body.

It is worth noting that the piercing of the isopycnals starts from the aft of the body and that
the separating stream surface is not horizontal. This small slope of the separating stream surface
has been previously reported by Dalziel et al. [53] in the case of flow over a hemisphere, and is
produced by the pressure difference that exists between the forebody and the aft. It has been shown
to be relevant for the structure of the waves and to have a minor effect on the direction at which
energy radiates from the body. The tilt of the dividing stream surface, and the location at which the
flow starts being vertically constrained to go sideways and around the spheroid, are also reflected in
the boundary layer evolution and the topology of flow separation as described below.

C. Boundary layer

The boundary layer (BL) on slender bodies and its separation has been extensively studied
[5,6,62–64]. However, stratification effects on BL growth and separation on a slender body have
received scant attention and will be discussed in this section.

To quantify the impact of buoyancy on the BL, the streamwise evolution of the displacement
thickness (�) is computed at different Froude numbers and shown in Fig. 10. In nondimensional
form, � is defined as

� =
∫ ∞

0

(
1 − ut

Uo

)
dn, (19)

where ut is the wall-tangential velocity, Uo is the outer flow velocity, and n is the wall-normal
distance coordinate. Note that � is normalized by the viscous length scale D/Re1/2 to obtain O(1)
values.
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FIG. 10. Effect of Fr on the evolution of the boundary-layer displacement thickness: (a) in the central
vertical plane (�v) and (b) in the central horizontal plane (�h). Dots show the separation locations.

In the Fr = ∞ case, shown as a red line in Fig. 10, the displacement thickness (� = �v = �h)
monotonically increases due to the viscous losses near the wall. Buoyancy induces azimuthal
anisotropy on the evolution of the BL displacement thickess � [Eq. (19)] in contrast to the
axisymmeric BL evolution in the unstratified case. Thus the normalized BL thickness in the vertical
center plane �v [Fig. 10(a)] at a given x is not equal to the corresponding measure in the horizontal
center plane [Fig. 10(b)].

In the vertical plane [Fig. 10(a)], buoyancy reduces �v in the rearward region of the body prior
to the increase that precedes separation. In the forebody, relative to the unstratified counterpart,
the weakly stratified Fr = 3 case behaves similarly, the moderately stratified Fr = 1 case shows a
slight increase in �v , while the Fr = 0.5 case exhibits a significant increase of �v . This increase
is associated with the blocking of the flow near the nose that leads to a thickening of the layer of
low-momentum fluid. The three factors that contribute to the aforementioned effects in the vertical
plane are (1) IGW, (2) body curvature, and (3) vertical flow confinement.

The nature of the IGW field was discussed in Sec. V. The closeup of the wave near field shows
that the waves induce a change of sign of w [Fig. 6(c)]. The location where this change of sign occurs
can be estimated as the intersection of the phase line passing through the center of the body with the
surface of the body. The location of this intersection, which depends on the angle θ [Eq. (10)], marks
the beginning of a region with inward near-body flow that helps the BL thin, so that �v reduces with
respect to the unstratified case.

The influence of body curvature and buoyancy was discussed in Sec. VI A to describe the
force coefficients. A fluid parcel that climbs up the body “feels” gravity through bt = b · t that
is tangential to the surface and through the surface-normal component bn = b · n. In the forebody,
bt reduces the magnitude of acceleration that the flow normally experiences due to curvature causing
the BL thickness to increase. The component bn, however, tends to reduce �v . At the nose, the effect
of the tangential component dominates and the BL thickness increases as observed in Fig. 10(a) for
Fr = 1. As the flow reaches a flatter part of the body, the normal component of buoyancy becomes
more important and �v tends to decrease. In the aft of the spheroid, both bt and bn act in tandem to
decrease �v .

Finally, vertical confinement and upstream blocking, that were discussed in Sec. VI B, also play
a major role on BL evolution. Owing to vertical confinement, the near-body flow is able to follow
the body curvature in the vertical plane for only a fraction of the half-height. Instead, it is deflected
towards the sides of the body and downward. This feature contributes to the reduction of �v .

The behavior of the BL thickness in the horizontal central plane with decreasing Fr is qual-
itatively different from that in the vertical, as can be seen upon comparison of Fig. 10(b) with
Fig. 10(a). In the forebody, buoyancy tends to increase �h. However, the evolution of �h at the
center and the aft of the body is more complex. At Fr = 3, �h monotonically increases with
increasing x. At Fr = 1 and Fr = 0.5, however, there is a region where �h exhibits a strong decrease
before commencing the preseparation increase.

The behavior of the BL in the horizontal plane can be understood as the flow response to two flow
features that have been discussed, namely, vertical confinement and IGW. The vertical confinement
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FIG. 11. Effect of Fr on the BL velocity profiles along the vertical (top row) and horizontal (bottom row)
planes. The velocity is shown as a function of the nondimensional normal distance to the wall, n. Different
streamwise locations are shown: left column corresponds to x = −1, middle column to x = 0, and right column
to x = 1.

leads to deflection of the flow from the vertical towards the horizontal plane. This redirection of the
flow enhances the growth of �h. In the weakly stratified Fr = 3 case, it leads to a monotone increase
of �h [Fig. 10(b)] as is also evident from vorticity visualization. In the more stratified Fr = 1 and
Fr = 0.5 cases, the vertical confinement is stronger and the fluid that goes around the body leads to
a large increase of �h.

After this rapid increase of the BL thickness as the flow traverses the forebody, the evolution of
�h exhibits a streamwise decrease that commences at a stratification-dependent location. In the
Fr = 1 case, the decrease of �h occurs at x ≈ 0.25. However, at Fr = 0.5, this reversal of BL
growth occurs at a much shorter distance from the nose, x ≈ −0.5. The reversal of BL growth
is caused by the response of the flow in the horizontal plane to the body-generated gravity wave.
At Fr = O(1), the IGW influence the near-body flow through the impressed radial velocity and the
induced favorable pressure gradient in the rear part of the body. Indeed, the increase and subsequent
decrease of �h before the preseparation increase can be viewed as an oscillatory modulation of the
BL thickness by the oscillatory wave.

The effect of stratification on the BL can be further clarified through the BL velocity profiles.
Figure 11 shows profiles of tangential velocity (ut ) at different positions along the body surface
in the vertical (top row) and horizontal (bottom row) planes. At x = −1, Fig. 11(a) shows minor
differences among Fr = 1, 3 and ∞ in the vertical plane. Only the Fr = 0.5 case shows low-
momentum fluid over a thicker region consistent with the substantially larger �v shown in Fig. 10.
Figure 11(b) shows that, already by x = 0, the BL in the stratified cases is thinned in the vertical
by the normal component of the buoyancy force. The BL thinning is more pronounced further
downstream as observed at x = 1 [Fig. 11(c)].

The thickening of the horizontal BL can also be observed in the BL profiles (bottom row of
Fig. 11). Using the unstratified case as a reference, Fig. 11(d) shows that the BL profiles for the
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FIG. 12. Rear view of the prolate spheroid showing the effect of the stratification on the time-averaged
separation line.

Fr = 0.5 and Fr = 1 cases are thicker at x = −1. At x = 1, Fig. 11(f), the Fr = 3 BL is separated.
The Fr = 0.5 BL, which was substantially thicker than its unstratified counterpart at x = 0, has
thinned to approach the unstratified thickness and the Fr = 1 BL is the thinnest of all. Notice how the
change in the shape of the horizontal BL profiles at Fr = 0.5 between x = −1 and x = 0 is the same
change experienced by the BL at Fr = 1 between x = 0 and x = 1. This reinforces the preceding
argument that it is essentially the same mechanism, the interaction with the body-generated internal
wave, that is operative in both cases to modulate the BL thickness.

D. Separation

The strong effect of buoyancy on the BL substantially affects flow separation. The line defined by
connecting the points where Cf = 0 is an estimate of the location where the laminar BL separates
from the body. The projection of this line on the back of the spheroid is shown in Fig. 12.

In the Fr = ∞ case, where there is no vertical density gradient in the flow, there is no preference
among azimuthal directions. Therefore, on average, separation occurs at the same radial location for
any azimuth and the separation line is a circle [Fig. 12(a)].

At the relatively mild stratification of Fr = 3, the circle deforms into an ellipse. The vertical
confinement of the flow, albeit weaker than in the other stratified cases, promotes sideways motion
and flow detachment in the horizontal plane, while the restoring force of buoyancy retards the
separation in the vertical. When stratification is further increased to Fr = 1 and Fr = 0.5, there
is a major qualitative change in the topology of the separation line as elaborated below.

As described in the previous section, the body-tangential component of buoyancy causes the
flow to accelerate in the aft of the body. The increase in flow speed reduces the pressure on the tail
sufficiently at Fr = 1 so that the flow in the horizontal plane remains attached for a long rearward
portion of the body. The increase in attachment length is particularly pronounced in the central
horizontal plane leading to the inward displacement of the separation line in the neighborhood of
z = 0 [Fig. 12(c)].

When the Froude number is further reduced to Fr = 0.5, the separation region becomes larger
instead of the shrinkage observed at Fr = 1. The strong difference between the Fr = 1 and Fr = 0.5
separation location can be attributed to the resonance between the spheroid and the lee waves. This
resonant interaction was pointed out by Hunt and Snyder [26] in the case of submerged topography
(a 3D hill), and by Hanazaki [22] and Chomaz et al. [24] in the case of the sphere, although at lower
Re than in the present series. In the near field, discussed in Sec. V A, the body of length L forces an
oscillatory response of the flow given by the wavelength 2L. According to linear theory, discussed
in Sec. V B, the oscillatory response of the far field is determined by the buoyancy frequency,
the freestream velocity, and the body diameter as λ/D = 2πU/ND = 2πFr. A critical Frc can
be defined when the IGW half-wavelength (λ/2) coincides with the body length (L) leading to
Frc = L/Dπ . At Fr ≈ Frc, the lee-wave response matches the body shape leading to the maximal
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suppression of separation, and the entry of the flow into the resonant or saturated lee wave (SLW)
regime.

In the case of the sphere, low-Re studies of the SLW regime show that the lee wave is able to
totally suppress separation when Fr ≈ Frc. The simulations of Hanazaki [22] and the experiments
of Chomaz et al. [24] show suppressed separation and a laminar wake at Fr = 0.45 and Fr = 0.5,
respectively. Both values are near the critical value of Frc = 1/π for the sphere. In the case of the 4:1
spheroid at Re = 104, when Fr = 1 ≈ Frc = L/Dπ = 4/π , the steady lee wave is also sufficiently
strong to lock in the wake and keep it steady and laminar.

When Fr � Frc, there is inhibition of turbulence as was observed in the visualization of Fig. 4
and will be quantified later in Sec. VII. When Fr � Frc, such as the spheroid at Fr = 0.5, the lee-
wave response induces earlier separation [see the positive w region right in the back of the body
in Fig. 6(a)] and the separated region is enlarged [Fig. 12(d)]. Wake turbulence is reestablished at
Fr � Frc, since the steady lee wave is not sufficiently strong to lock in the wake and the deflection of
the flow towards the horizontal creates different flow features susceptible to instability, e.g., strong
horizontal shear at the sides of the body.

In the case of a sphere, the deformation of the separation line has been demonstrated in laboratory
experiments by Chomaz et al. [24,25]. By varying the Reynolds and the Froude numbers, they
find that buoyancy results in three different topologies of the mean separation line: at high Froude
number (Fr � Frc), the line describes an ellipse whose minor axis is vertical; at low Froude number
(Fr � Frc) or the 2D case, the fluid is vertically confined generating a square-shaped separation line;
finally, in the SLW state (Fr ≈ Frc), the shape of the separation line exhibits a strong Re dependence.
At Re of the order of the steady-unsteady wake transition (Re ≈ 200), the flow remains completely
attached and the separation line degenerates to a point at the back of the body. At a slightly higher
Re, the horizontal separation abruptly changes and a bowtie/peanut separation shape appears. This
shape appears because at higher Re the flow in the horizontal plane separates at 90◦ (measured from
the nose), while in the vertical plane the flow remains attached far longer to a location closer to 180◦
[25]. This bowtie shape has also been found in numerical simulations of a sphere wake [20].

In the spheroid case, the elongated horizontal axis of the body leads to a Fr-dependent
deformation of the separation line that is different with respect to the sphere. The panels of Fig. 12
span Fr � Frc for the spheroid. They show that, as stratification increases, the separation location
of the vertical and the horizontal planes is modified in a more correlative manner than in the bluff
body case. Instead of the bowtie shape observed in the sphere [25] at similar conditions, the Fr = 1
and 0.5 cases for the spheroid show that flow separation in the vertical and horizontal planes occurs
approximately at the same angle measured from the nose.

Figure 13 illustrates the lee-wave induced pressure field in the vertical plane. Together with
Fig. 6, which showed the lee-wave induced vertical velocity w (Sec. V B), it provides a full picture
of the influence of the IGW on the separation of the BL. In the Fr = 1 case, the IGW field presents
a wide region of low pressure in the back of the body Fig. 13(b), where the vertical velocity w

of the IGW is negative [Fig. 6(c)]. Both features cause the reduction of the BL separation and
the establishment of a laminar wake. However, at Fr = 0.5 the opposite effect is observed. The
low-pressure region in the back of the body is smaller and the pressure gradient weaker [Fig. 13(a)],
the vertical velocity induced in the rear part of the body is positive [Fig. 6(a)], and the IGW enlarges
the separation region.

To elucidate the influence of the aspect ratio, Fig. 13 also compares the pressure contours of
the present simulations with the pressure contours of a Re = 3700 flow past a sphere. Among
the cases shown, the sphere with Fr = 1 and the spheroid at Fr = 0.5 have wake instabilities and
turbulence. In contrast, the sphere with Fr = 0.5 and the 4:1 spheroid at Fr = 1 are cases where the
Fr is sufficiently close to the critical value (Frc = L/Dπ ) required to establish a SLW specific to
each body shape. In the SLW state, the favorable pressure gradient is sufficiently strong to prevent
transition to turbulence. There is possibly an effect of body Re, and it remains to be seen if the
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FIG. 13. Instantaneous pressure fields. Top row shows spheroid at Re = 104: (a) Fr = 0.5 and (b) Fr = 1.
Bottom row shows sphere at Re = 3700: (c) Fr = 0.5 and (d) Fr = 1.

absence of wake turbulence found here for the Fr = 1 spheroid persists at higher values of local
wake Reynolds number.

VII. WAKE

The effects of stratification on the flow at the body ultimately affect the establishment of the
wake and its downstream evolution. This section describes the structure and the decay of the near
and intermediate wake by looking into its size, energy, and frequency content.

In the discussion, the results are often contrasted with previous findings on the wake of the sphere
to elucidate the role of the wake-generator shape. An overall finding is that, for the same value of
Fr, the 4:1 spheroid exhibits a stronger effect of buoyancy than the sphere.

Figures 14(a) and 14(b) show the evolution of the wake half-thickness defined as the radial
distance where the mean defect velocity, Ud = U − ū, is half of its center line value. In the stratified
cases, the magnitude of the half-thickness depends on the azimuthal location and we will refer to
its vertical value as half-height LV and its horizontal value as half-width LH . The dimensions of the
near wake are directly correlated with the size and shape of the separated region. Figures 14(a) and
14(b) show that, using as a reference the neutral case, the Fr = 3 wake is shorter and wider, the
Fr = 1 wake is the thinnest of all, and the Fr = 0.5 wake is the thickest.

In the case of Fr = 1 ≈ Frc, the wake is in the SLW state. In this regime, the steady lee wave
dominates the wake evolution so that the wake is steady and the thickness growth rate is relatively
small. The oscillations in the wake height are opposed in phase with respect to the wake width and
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FIG. 14. Effect of stratification on the streamwise evolution of overall wake properties: (a) half-height (LV ),
(b) half-width (LH ), (c) center line defect velocity (Ud ), and (d) turbulent kinetic energy (TKE).

they oscillate with a wavelength of λ/D = 2πFr. This oscillatory modulation is weaker for both
Fr = 3 > Frc and Fr = 0.5 < Frc cases.

At Fr = 3 and Fr = 1, the wake height saturates around LV ≈ 0.3, which coincides with the
result of Pal et al. [12] for a sphere. At Fr = 0.5, LV saturates at ≈0.7. This larger value is caused
by the earlier flow separation induced by the lee wave, as was described in the preceding section.
Although the wake height (LV ) saturates, the wake width (LH ) keeps growing. In the Fr = 3 wake,
we observe a growth slightly larger than the unstratified counterpart of LH ∝ x1/2. In the Fr = 1 and
Fr = 0.5 cases, however, the growth rate is found to be low, LH ∝ x0.1.

Figure 14(c) shows the evolution of Ud along the streamwise direction. Once buoyancy effects
have set in, the defect velocity Ud in stratified wakes is larger than in unstratified wakes. Owing
to this feature, stratified wakes are said to have a “longer lifetime” relative to their unstratified
counterpart. The decay of Ud in the nonequilibrium regime is similar between Fr = 1 and Fr = 3
cases, and is close to Ud ∝ x−0.22 ≈ x−1/4, consistent with previous findings for the sphere [9,10].
The decay also shows the imprint of the lee wave oscillations. At Fr = 0.5, the value of Ud initially
decays at a higher rate than its unstratified counterpart. Between x = 5 and 20, Ud ∝ x−1 is similar
to the unstratified case and, only after x = 20, the decay rate exhibits the flattening trend that was
observed at larger Fr. In the case of Fr = 0.5, the imprint of the oscillatory modulation is only
observed in this later region.

In the unstratified wake, the decay rate of the defect velocity is close to Ud ∝ x−0.98 ≈ x−1 and
the growth of the wake thickness is close to LH = LV ∝ x0.48 ≈ x1/2. These power-law exponents
should not be misinterpreted as the low-Re scaling [65], since the Reynolds number chosen in this
work is not small. The mean-field dissipation is much smaller than the turbulent production in
the mean kinetic energy equation and the Reynolds number (Reλ = urmslT /ν) based on the Taylor
microscale (lT ) is O(100), showing that the wake is not laminar. The power laws are established at
x ≈ 8, similar to the location where the sphere of Pal et al. [12] at Re = 3700 started showing the
same power laws.

Relative to the sphere, the difference in the near wake between the moderately stratified Fr = 3
and the unstratified Fr = ∞ cases is substantially stronger for the 4:1 spheroid. In the case of a
sphere at Fr = 3 and Re = 104, the evolution of Ud is identical between Fr = 3 and Fr = ∞ until
x ≈ 6 or Nt ≈ 2 [48]. In contrast, the spheroid wake deviates from its unstratified counterpart much
closer to the body, x ≈ 2–3, as can be seen from the evolution of defect velocity [Fig. 14(b)], the
vertical contraction of the postseparation shear layer (Fig. 4), and the wake-thickness anisotropy,
which is visible right behind the body [Fig. 14(a)]. Thus it is evident that the minimum Froude
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number that must be exceeded for the spheroid to exhibit the 3D regime (near wake that is nominally
unstratified [9]) is larger than the minimum Fr for a sphere. Since slender bodies present smaller
recirculation regions than bluff bodies (they have wakes with lower turbulent production [66] and
lower local Red = Ud LV /ν for the same body Re) it might be tempting to think that, owing to lower
local Re, the turbulence “feels” gravity effects closer to the body. However, a close comparison of
the present results with those of a sphere at Re = 104 and Fr = 3 of Chongsiripinyo and Sarkar
[48] reveals that the buoyancy Reynolds number (Reb = ε/νN2) at the same x locations takes
similar values in the sphere and the spheroid wakes. This suggests that the present finding of the
nonexistence of a 3D, unstratified regime behind the spheroid at Fr = 3 is not a lowering of Reb in
the spheroid wake. It is rather because the interaction of the near wake with the body-generated lee
wave is stronger for the spheroid than for the sphere.

To quantify the impact of background stratification on the turbulent behavior of the wake,
Fig. 14(d) shows the evolution of turbulent kinetic energy (TKE), K = 1

2 u′
iu

′
i, integrated over the

domain cross section (0 � dr � Lr , 0 � d� � 2π ).
Figure 14(d) shows that, as Fr decreases, the TKE in the intermediate wake tends to decrease with

respect to the unstratified value until at Fr = 1 ≈ Frc it becomes negligible. A remarkable result is
that, upon further decrease of Fr to 0.5 < Frc, TKE increases to a value that is even larger than
in the unstratified case. In the unstratified case, the TKE evolution shows a peak at x ≈ 4, which
corresponds to the end of the recirculation region [see Fig. 4(a)]. In the Fr = 3 case, the recirculation
region ends at x ≈ 3 [Fig. 4(b)], closer to the body, due to the vertical confinement by buoyancy and
the modified separation topology. Accordingly, the peak TKE is also at x ≈ 3. Regarding the TKE
evolution, the Fr = 3 case shows a slightly faster decay than the unstratified case. The Fr = 0.5
wake also shows a peak followed by a decrease, but in this case K is significantly larger than in the
other cases throughout the domain.

As was previously mentioned, the Fr = 1 wake is steady, laminar, and thinner than taller
(LH < LV ), as is evident from comparison of Figs. 14(a) and 14(b). The shape of the wake is
shown at various streamwise locations with more detail in Fig. 15. This configuration had not been
reported before in the literature and it is remarkable, since stratification is associated with vertical
confinement of the wake, and it normally leads to LH > LV wakes. Initially, the LH < LV feature
in the Fr = 1 wake is caused by the different body type (slender instead of bluff) that leads to a
different IGW effect on flow separation. Further downstream, it is the lack of turbulent mixing that
keeps the wake from rapidly transitioning to a LH > LV configuration.

Spectra

Apart from introducing N as a natural frequency of the flow, and causing the oscillatory
modulation of the wake, stratification and buoyancy also lead to changes in vortex shedding from
the body. Consequently, there are changes in the frequency of the dominant modes in the velocity
spectra.

Figure 16 shows the energy spectrum (Euu) obtained from the time series of streamwise
velocity (u) at different locations in the wake. The energy content is shown as a function of the
nondimensional frequency or Strouhal number (St). Here, St = f D/U , where the dimensional
f is in cycles per second. At Fr = ∞ [Fig. 16(a)], Euu at x = 4, a location at the end of the
recirculation region, shows a peak at St ≈ 0.59, which coincides with the value reported by Tezuka
and Suzuki [67] for the same body at Re = 7 × 103. The value of St ≈ 0.59 corresponds to the
m = 1 vortex shedding mode associated with the helicoidal shape of the unstratified wake, which
was presented in Fig. 1. Moving downstream, the spectral peak associated with the shedding
frequency is less noticeable as a discrete peak in the spectrum since the energy gets distributed
among more frequencies.

At Fr = 3 [Fig. 16(b)], the vortex shedding peak at St = 0.59 is observed at x = 6 but is not
prominent at locations further downstream. In the horizontal plane (not shown), Euu at Fr = 3
does not reveal any characteristic shedding frequency, which is consistent with the visualization
of Fig. 5(a) that shows horizontal broadband structures without a dominant mode.
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FIG. 15. Azimuthal planes of streamwise velocity in the Fr = 1 wake at different streamwise locations.
Note that the Fr = 1 wake is steady and the flow is close to the resonant condition of Fr = Frc.

In the strongly stratified Fr = 0.5 case, Euu at x = 6 [Fig. 16(c)] shows a peak at St = 0.33, which
is lower than the frequency peak (St = 0.59) at Fr = ∞. The spectrum also shows a secondary peak
at St = 2 that corresponds with the buoyancy frequency N . The differences in spectra between
the � = 45◦ [Fig. 16(c)] and horizontal planes [Fig. 16(d)] at Fr = 0.5 reveal the azimuthal
anisotropy of the flow. This observation is consistent with the change of wake instability induced
by stratification. As stratification is increased, the three-dimensional helical structure observed at
Fr = ∞ is altered so that there is a significant wavy component in the horizonal plane [Fig. 5(d)]
but not in the vertical plane [Fig. 5(d)]. Therefore, Fig. 16(d) shows a substantial peak at St = 0.4
for � = 0◦ but not for � = 90◦.

VIII. SUMMARY AND CONCLUSIONS

The present work examines stratified turbulent flow past a 4:1 prolate spheroid. The aim is to
elucidate the role that the aspect ratio greater than one (L/D > 1) has in the way that buoyancy alters
the flow. Unlike previous studies, which focus primarily on flow past spheres, the present analysis
describes the influence of the slenderness of the body on the structure of the internal gravity waves
(IGW), the evolution of the boundary layer, flow separation, and the near-to-intermediate wake.
A highly resolved large-eddy simulation (LES) is conducted wherein the Navier-Stokes equations
under the Boussinesq approximation are solved in a cylindrical grid. The Reynolds number based
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FIG. 16. Energy spectra, as a function of Strouhal number (St), computed from the time series of
streamwise velocity at different locations. The quantity St is the nondimensional frequency, St = f D/U , where
the dimensional f is in cycles per s. The azimuthal location of the velocity probes of (a), (b), and (c) is � = 45◦,
while (d) corresponds to probes located in the horizontal (� = 0◦) and the vertical (� = 90◦) direction.

on the minor axis (D) is set to Re = UD/ν = 104 and the level of stratification is changed so that
the Froude number is Fr = U/ND = 0.5, 1, and 3. The unstratified (Fr = ∞) case is also simulated.

At the same value of Fr, the spheroid exhibits a stronger effect of buoyancy than the sphere.
This is caused by the interaction of the IGW, which has a characteristic wavelength λ = 2πU/N
with the body major axis L. Based on this interaction, a critical Froude number (Frc) can be defined
at which the half-wavelength of the IGW matches the body length. Imposing λ/2 = L leads to
Frc = L/Dπ as the criterion for the saturated lee wave (SLW) regime. When Fr ≈ Frc, the delay
of flow separation caused by the IGW is maximal, and the turbulent kinetic energy in the wake
becomes minimal. When Fr � Frc, stratification partially suppresses the turbulence in the wake.
However, when Fr � Frc, the IGW induce earlier separation and the turbulent kinetic energy in
the subsequent wake is larger than under unstratified conditions. The simulations of Pal et al. [19]
at Re = 3700 showed that the wake of a sphere is laminar at Fr = 0.5 ≈ Frc = 1/π , turbulent at
Fr = 1 > Frc, and turbulent at Fr = 0.25 < Frc. The present simulations show that the 4:1 spheroid
wake at Re = 104 is laminar at Fr = 1 ≈ Frc = 4/π , turbulent at Fr = 3 > Frc, and turbulent at
Fr = 0.5 < Frc. The SLW regime had been previously identified for a sphere at low Re [22,24] and
for flow past a 3D hill [26], but here we report the SLW regime and its influence on the wake for a
slender body.

The modification of flow separation by buoyancy is mainly caused by the imprint of the IGW on
the vertical velocity and on the pressure gradient at the back of the body. To find the dependence
of the IGW far field on the aspect ratio, L/D, the present work uses linear theory and adapts the
asymptotic work of Voisin [34] for a sphere to the prolate spheroid. In the far field, the actual shape
of the body loses significance, although it is necessary to account for its finite size to be able to
match the location of the phase lines observed in the simulation. The tilting of the IGW phase lines
in the near field depends on the body aspect ratio and a theoretical estimate of the tilt is obtained.

Apart from exploring the influence of the aspect ratio on the IGW, the present work includes a
detailed description of the flow at the body: the pressure and friction coefficients are computed as
a function of the Froude number to explain the increase in the drag force with stratification, the
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blocking effects in the nose are quantified using the separating streamline of Drazin [61], and the
evolution of the boundary layer is compared between the vertical and horizontal planes. The flow
features induced by stratification can be understood as a result of three main effects: (1) the inter-
action of the buoyancy force with the body curvature, (2) the vertical velocity induced by the IGW
in the near field, and (3) the upstream blocking and vertical confinement experienced by the flow
which forces fluid to move sideways instead of directly above or below the body.

To understand the relevance of these effects on the wake establishment, the topology of the
separation line is described and compared with the separation of the sphere. A general observation
is that, as opposed to the sphere, the separation of stratified flow at the spheroid occurs at a similar
radial location in the vertical and horizontal planes. The type of separation strongly influences the
dimensions, the decay rate, and the turbulent kinetic energy of the near wake.

Generally, stratified wakes are thought to be wider than taller, since the flow is vertically confined
by stable stratification. However, in the present simulations, the Fr = 1 and Fr = 0.5 wakes show
a taller than wider configuration. This topology, which has not been reported in previous work on
sphere wakes, is caused by the L/D > 1 geometry that has a different interaction with buoyancy.

The decay rate of the present stratified wakes is smaller than the unstratified wake, and they
show a characteristic oscillatory modulation caused by the body lee waves. These observations are
consistent with previous findings for wake decay [8] and oscillatory wake modulation [12]. The
reappearance of wake turbulence at low Fr is also consistent with previous findings for the sphere
wake [19], although the required Fr is shown here to depend on the body shape.

The present results can be employed in the future to provide inflow conditions for a spatial wake
model and initial conditions for a temporal wake model. The flow around the body no longer needs to
be simulated in these hybrid models [68]. Thus the wake evolution can be obtained in a cost effective
way while taking advantage of the realism of the body inclusive simulations. Additionally, since the
present results have been obtained at a moderate Re, we are considering stratified slender-body
wakes at higher Re in ongoing work. This work will include a tripped, turbulent boundary layer to
ascertain the robustness of the Fr dependence found here for flow past a spheroid.
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