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Nonlinear internal waves propagating in a quasi-two-layer stratification with a shear
background current are investigated by means of high-resolution direct numerical simu-
lations. The simulations are performed in a two-dimensional rectangular domain, repre-
senting a laboratory-scale tank of finite length. The internal waves are generated using the
lock-release mechanism, while the background shear currents are induced by basin-scale
internal seiches created using a tilted tank suddenly returned to the untilted configuration.
Both mechanisms are readily realizable in a laboratory environment. Depending on the
configuration of the initial density profile, both internal solitary-like waves (ISWs) and
finite-amplitude dispersive wave trains (DWTs) may be observed in the simulations. The
ISWs are observed when the pycnocline is located relatively far away from the middepth
and/or the background shear is oriented against the wave-induced velocity shear. Compar-
ison of the waveforms observed in the simulations to those described by the fully nonlinear
Dubreil-Jacotin–Long (DJL) theory suggests that these waves are indeed solitary-like,
implying that laboratory experiments of ISWs propagating in a shear background current
can be realized in a relatively straightforward manner. As the pycnocline approaches the
middepth and/or the background shear reverses its polarity and increases its magnitude, the
waves tend to have a smaller amplitude and a larger half-width. When a wave’s amplitude
is less than approximately 3% of its half-width, the dispersive effect becomes dominant and
the wave loses its solitary-like form. In this case, a finite-amplitude DWT is formed instead,
in which the leading wave has a reduced propagation speed from the ISW propagation
speed. Analysis based on the DJL theory suggests that exact solitary waves of similar
amplitude in such a background environment have an extremely large half-width that is on
the same order of magnitude as the finite length of the simulation domain, implying that
their formation cannot be supported in a laboratory environment.

DOI: 10.1103/PhysRevFluids.4.094801

I. INTRODUCTION

Over the past decades, field observations have demonstrated that large-amplitude, high-
frequency, nonlinear internal waves are ubiquitous features of coastal oceans. These waves are
mainly generated from stratified flows (particularly tidal flows) over rough topographical features on
the ocean floor, such as ridges, seamounts, and canyons [1]. One of the most commonly observed
types of nonlinear internal waves is internal solitary and solitary-like waves (ISWs) [2,3] whose
waveforms are maintained by a balance between nonlinear steepening and dispersive spreading.

*chengzhu.xu@ucalgary.ca

2469-990X/2019/4(9)/094801(26) 094801-1 ©2019 American Physical Society

https://orcid.org/0000-0002-2641-8785
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevFluids.4.094801&domain=pdf&date_stamp=2019-09-11
https://doi.org/10.1103/PhysRevFluids.4.094801


CHENGZHU XU AND MAREK STASTNA

In open waters with a relatively constant background environment (e.g., stratification and current),
these waves may propagate over a long distance without substantially changing form. Nevertheless,
there are circumstances in which such a balance is lost and the waves are no longer solitary-like.
This could happen, for example, during the fissioning process, in which an ISW of depression
shoals upon a gentle slope and reverses its polarity when the pycnocline center passes the middepth,
thereby producing a dispersive wave train (DWT) [4,5].

In addition to sloping topography that leads to wave shoaling, the presence of a shear background
current can also significantly alter the waveforms and even the nature of the limit on wave amplitude
of ISWs [6]. In particular, stratifications that may preclude wave breaking without a shear current
may lead to wave breaking when a background shear current is present. This can have implications
for enhanced mixing, material transport, and possibly even sediment resuspension. For example,
Lamb and Farmer [7] observed an ISW on the Oregon shelf and showed that, in the presence
of a background current with near-surface shear, an ISW of depression could develop a trapped
surface core, leading to the onset of convective instabilities. This result implies that the interaction
of the wave with a near-surface background current can profoundly change the occurrence of
instabilities in the wave. For sediment resuspension, Bogucki et al. [8] analyzed ISWs of elevation
propagating on the California shelf in the presence of a near-bottom background current oriented
against the direction of wave propagation. The passage of the ISWs was accompanied by an
increased concentration of particulate matter in the water column. Their observation has motivated
many subsequent studies of boundary-layer instabilities and sediment resuspension induced by
ISW–boundary-layer interaction, as discussed in a recent review [9].

While ISWs propagating in a shear background current have been observed in the field and
documented in the literature, investigations using laboratory experiments are lacking. This is
primarily because in a laboratory tank, the finite length of the tank imposes a significant constraint
on how a shear current can be created. One commonly used method for generating shear flow
is to fill an initially tilted tank with stratified fluid and then release the tank so that the tilted
density interface starts to evolve [10,11], creating an internal standing wave (i.e., internal seiche).
However, the resulting shear flow is not spatially or temporally uniform and hence may not be
well approximated by the type of idealized parallel flow that is convenient for theoretical studies.
Moreover, as degeneration of the initial seiche takes place, seiches may break down into solitary
waves, bores, and/or billows [11,12].

Traveling internal waves (e.g., ISWs) are typically generated using the lock-release mechanism
in a laboratory tank [13–15]. The tank is initially filled with a stably stratified fluid of two or more
layers, with a gate place near one end of the tank. Behind the gate, a volume of light fluid (or
heavy fluid, depending on the experimental setup) is added to create a depression (or elevation,
if heavy fluid is used) in the density field. Once the gate is released, the initial depression (or
elevation) develops into a train of traveling waves which propagates along the pycnocline toward
the other end of the tank. The initial condition needs to be set up carefully in order to yield waves
of desired form. Mathematical theory for the initial-value problem for weakly nonlinear equations
such as the Korteweg–de Vries (KdV) equation and Gardner equation (the latter is referred to as
the eKdV in [3]) exists; see, for example, Sec. 2.3 of [16]. However, the authors are not aware of
any instance in the literature where this theory was applied to an internal wave experiment, and in
practice laboratory initial conditions are adjusted on a trial and error basis [17].

The present work aims to identify a viable method for studying the problem of internal wave
dynamics in a shear background current in a laboratory environment, by investigating the interaction
of ISWs and DWTs with basin-scale internal seiches. The results presented here are obtained from
high-resolution direct numerical simulations performed in a two-dimensional rectangular domain,
which represents a laboratory-scale tank of finite length. The traveling waves are generated using the
lock-release mechanism, while the seiches are created using a tilted tank suddenly returned to the
untilted configuration, both of which are readily realizable in laboratory experiments. The waves ob-
tained from the simulations are compared to those described by the fully nonlinear theory, in order to
identify the regime in which ISWs can exist and the regime in which only dispersive waves can form.
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The remainder of this paper is organized as follows. The theoretical description of ISWs in a
vertically varying background current is presented in Sec. II. The problem is formulated in Sec. III.
The simulation results are presented in Secs. IV and V, with Sec. IV focusing on ISWs and Sec. V
focusing on DWTs and the connection to Gardner equation theory. The findings of this work are
summarized and discussed in Sec. VI.

II. THEORETICAL BACKGROUND

A. Fully nonlinear theory

Fully nonlinear ISWs can be computed by solving the Dubreil-Jacotin–Long (DJL) equation, an
eigenvalue problem for the isopycnal displacement η(x, z) and the solitary-wave propagation speed
c in a channel of finite depth H . The isopycnal displacement measures the vertical displacement of
the isopycnal relative to its undisturbed state in the far-upstream location. In the presence of a back-
ground current U (z) and under the Boussinesq approximation, the DJL equation takes the form [6]

∇2η + Uz(z − η)

U (z − η) − c

[
1 − η2

x − (1 − ηz )2
] + N2(z − η)

[U (z − η) − c]2
η = 0, (1)

with the boundary conditions η(x, 0) = η(x, H ) = 0 and η(x, z) → 0 as x → ±∞. In this equation,
subscripts denote ordinary and partial derivatives, and N2 is the square of the buoyancy frequency
defined by

N2(z) = −g
d ρ̄

dz
, (2)

where g is the gravitational acceleration and ρ̄(z) is the undisturbed dimensionless density profile
(i.e., the density profile scaled by the reference density ρ0) in the far field.

The DJL equation is equivalent to the full set of stratified Euler equations in the steady state, i.e.,
in a reference frame moving with the wave. In the derivation of the DJL equation, no assumption
with respect to the nonlinearity of the fluid flow is made. Hence, solutions of the DJL equation
are exact solitary-wave solutions in the inviscid limit. For large-amplitude waves, these solutions
have been shown to be different from waveforms predicted by weakly nonlinear theories, such as
the KdV equation and its higher-order extensions [18,19]. This conclusion also holds for borelike
solutions [20], referred to as DWTs in the present work.

For nonconstant N , the DJL equation does not have analytical solutions. In the present work,
the DJL equation is solved numerically using the method described in [21]. The algorithm is based
on the variational scheme developed in [22], which seeks a solution iteratively that minimizes the
kinetic energy, subject to the constraint that the available potential energy (APE) is held fixed.
The APE is a functional that maps the field η to the scalar A and when scaled by ρ0gH in a two-
dimensional domain is given by [19]

A(η) = 1

H

∫ H

0

∫ ∞

−∞

∫ η

0
[ρ̄(z − η) − ρ̄(z − s)]ds dx dz. (3)

The APE measures the amount of potential energy that can be converted into kinetic energy and is
specified a priori when solving for the DJL equation, while other wave parameters are determined
implicitly by the algorithm.

By solving for the DJL equation in prespecified background currents, Stastna and Lamb [6]
showed that the presence of a shear background current not only affects an ISW’s propagation
speed and half-width, but also alters the nature of the upper bound on wave amplitude. In particular,
for a linear background current, the maximum amplitude an ISW can have depends on the sign
and the strength of the background vorticity. In a background current whose vorticity has the same
sign as the ISW-induced current, increasing the strength of the background vorticity decreases the
maximum amplitude an ISW can have. In certain extreme cases, the polarity of the ISW may also
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be reversed. On the other hand, if the background vorticity has the opposite sign to the ISW-induced
current, then ISWs of extremely large amplitude can exist, though such waves may develop a region
of low Richardson numbers and hence become unstable.

B. Weakly nonlinear theory

Weakly nonlinear theories can provide qualitative guidance in a semianalytical setting. For a
two-layer fluid (which is a good approximation of the stratification profiles used herein), the Gardner
equation (following the notation of [3]) is given as

ηt + (c0 + α1η + α2η
2)ηx + β1ηxxx = 0, (4)

where η(x, t ) represents the displacement of the interface from its far upstream rest height, and
the various parameters are given as closed-form expressions in terms of the layer thicknesses. The
Gardner equation has solitary-wave solutions that subsume the classical sech2 soliton solution of the
KdV equation. When the interface lies near the middepth, the Gardner equation predicts flat crested
waves, in agreement with the exact DJL theory. The fidelity of the Gardner equation’s predictions
of the maximum possible wave amplitude decays as the interface moves from the middepth (see,
for example, Fig. 9 of [23]). Nevertheless, the Gardner equation can provide a ready guide to the
parameter space and will be used for this below. When a background shear current is present, the
various parameters in (4) no longer have a closed form and solving the DJL equation for exact waves
is numerically as convenient as the approximate theory.

III. PROBLEM FORMULATION

Numerical simulations presented in this work are performed in a two-dimensional rectangular
domain with a length L = 16 m and a depth H = 0.4 m, though different lengths have also been
considered. With a shorter domain, breaking down of the seiche into solitary waves and/or the
onset of shear instability is likely to happen [11,12], while longer domains are beyond the limit of
a reasonable laboratory setting. A right-handed Cartesian coordinate system is adopted, with the
origin fixed at the lower left corner of the domain, the x axis directed to the right along the flat
bottom, and the z axis pointing up toward the surface. Free-slip boundary conditions are used in
both horizontal and vertical directions.

The governing equations for the present work are the incompressible Navier-Stokes equations
under the Boussinesq and rigid lid approximations [24], given by

Du
Dt

= −∇p − ρgk̂ + ν∇2u, (5a)

∇ · u = 0, (5b)

Dρ

Dt
= κ∇2ρ, (5c)

where u = (u,w) is the velocity field, ρ is the density field, p is the pressure field, g is the
acceleration due to gravity, ν is the kinematic viscosity, and κ is the molecular diffusivity. As is
the common practice under the Boussinesq approximation, the equations are in dimensional form,
except that the density ρ and the pressure p are scaled by the reference density ρ0. The effect of the
earth’s rotation is neglected.

All simulations were carried out using the numerical model described and validated in [25].
The model employs a spectral collocation method [26], which yields highly accurate results. As
appropriate for the boundary conditions, the Fourier sine or cosine transform is used, depending on
the variable of interest. For an optimal combination of the accuracy and computational efficiency,
the grid size is chosen to be Nx × Nz = 8192 × 512, which gives a horizontal grid spacing of
approximately 1.95 mm and a vertical grid spacing of approximately 0.78 mm. In all simulations,
the viscosity and diffusivity are fixed at ν = 1 × 10−6 m2/s and κ = 2 × 10−7 m2/s, which together
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FIG. 1. Schematic diagrams of the initial density field, with the initial wave generated at the seiche’s
(a) crest and (b) trough.

give a Schmidt (or Prandtl) number Sc = ν/κ = 5. This value is chosen because recent work by Xu
et al. [27] has shown that the diffusive effect plays an important role in the “viscous” adjustment
of ISWs and that the value Sc = 1, as often adopted by literature reporting “direct numerical
simulations” [28,29], is not necessarily the best choice.

In order to obtain shear currents that are nearly parallel, we consider basin-scale internal seiches
with a single node, whose wavelength is set by L. The initial density field, illustrated in Fig. 1,
consists of a quasi-two-layer stratification with a dimensionless density difference �ρ = 0.01 and
a pycnocline whose half-width is d = 0.01 m. The analytical form of the initial density profile,
nondimensionalized by the reference density ρ0, is given by

ρ(x, z) = 1 − 0.5�ρ tanh

{
z − z0 − As cos(πx/L) + A0 exp[−(x/λ0)2]

d

}
. (6)

In this equation, z0 represents the height of the node of the seiche (i.e., the average height of the
pycnocline in the absence of an ISW), As is the amplitude of the seiche, A0 is the amplitude of the
depression in the initial density field, and λ0 is the length of the initial depression. The pycnocline
is centered above the middepth, so in the absence of a shear current ISWs are waves of depression.
The region of light fluid is always located near the left boundary of the domain, so waves generated
from this region propagate to the right initially. This region can be located at either the crest or the
trough of the seiche, depending on the sign of As. In particular, Fig. 1(a) illustrates the scenario
of positive As, while Fig. 1(b) illustrates the scenario of negative As. The initial velocity field is
identically zero.

In a two-layer stratification with a zero background current, the linear long-wave speed is defined
by

clw =
√

�ρg
z0(H − z0)

H
. (7)

It sets the upper bound for the phase and group speeds of small-amplitude periodic waves but the
lower bound for the propagation speed of finite-amplitude solitary-like waves. In a quasi-two-layer
stratification with the presence of a background current, it can still provide a good estimate for the
characteristic velocity scale of internal wave propagation, provided the pycnocline is thin relative to
the layer thickness and the background current is weak relative to the wave-induced current. Based
on the two-layer long-wave speed and the half-depth of the domain, the Reynolds-number estimate
for the present model setup is given by

Re = clwH

2ν
. (8)
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TABLE I. List of simulations presented in Sec. IV, with parameters for the initial density profile given in
Eq. (6). The dimensionless parameters, labeled with a tilde, are scaled by H . In the case labels, C (T) indicates
that the initial wave is generated at the crest (trough) of the seiche and I indicates that there is no seiche in the
background. The number indicates the depression in the initial density field (i.e., A0 measured in 10−2 m).

Dimensional parameters Dimensionless parameters

Case z0 (m) As (m) A0 (m) λ0 (m) z̃0 Ãs Ã0 λ̃0

Cases in which the ISW is generated at the seiche’s crest
C10 0.32 0.02 0.1 0.5 0.8 0.05 0.25 1.25
C15 0.32 0.02 0.15 0.5 0.8 0.05 0.375 1.25
C20 0.32 0.02 0.2 0.5 0.8 0.05 0.5 1.25
C25 0.32 0.02 0.25 0.5 0.8 0.05 0.625 1.25

Cases with ISW only (i.e., no seiche)
I10 0.32 0 0.1 0.5 0.8 0 0.25 1.25
I15 0.32 0 0.15 0.5 0.8 0 0.375 1.25
I20 0.32 0 0.2 0.5 0.8 0 0.5 1.25
I25 0.32 0 0.25 0.5 0.8 0 0.625 1.25

Cases in which the ISW is generated at the seiche’s trough
T10 0.32 −0.02 0.1 0.5 0.8 −0.05 0.25 1.25
T15 0.32 −0.02 0.15 0.5 0.8 −0.05 0.375 1.25
T20 0.32 −0.02 0.2 0.5 0.8 −0.05 0.5 1.25
T25 0.32 −0.02 0.25 0.5 0.8 −0.05 0.625 1.25

Cases with seiche only (i.e., no ISW)
C0 0.32 0.02 0 0.5 0.8 0.05 0 1.25
T0 0.32 −0.02 0 0.5 0.8 −0.05 0 1.25

We note that this choice of Reynolds number, while convenient, does not account for wave amplitude
and thus would not be appropriate for wave-induced instabilities, or other effects with a strong
amplitude dependence. Finally, note that in the Gardner equation (4), as given in [3], the linear
long-wave speed is labeled as c0.

IV. SOLITARY-WAVE REGIME

A. Parameter space

Numerical simulations presented in this section are listed in Table I, together with their
dimensional and dimensionless parameters. Here we focus on the dynamics of internal solitary-like
waves by setting z0 = 0.32 m, which is equivalent to 80% of the total depth. In this stratification,
the two-layer long-wave speed is clw ≈ 0.08 m/s and the estimated Reynolds number is Re ≈ 1.6 ×
105. As we will show later in this section, the traveling waves we studied are indeed solitary-like
and hence will be referred to as the ISWs or simply the waves, while the standing waves in the
background will be referred to as the seiches in order to distinguish from the traveling waves. We
consider background currents induced by seiches with amplitudes As = ±0.02 m. Since the ISWs
are generated near the left boundary and propagate to the right, the wave-induced vorticity is always
positive. Hence, the seiche-induced vorticity has the opposite sign to the wave-induced vorticity
if As > 0 but the same sign if As < 0. For comparison, ISWs propagating in a zero background
current are also considered (by setting As = 0). The parameter A0 is varied between 0.1 and 0.25 m
in order to obtain waves of different amplitudes, while the parameter λ0 is tuned to be 0.5 m in
order for the initial conditions to yield single-crest solitary waves in the absence of a background
current. Additionally, simulations with seiches only (by setting A0 = 0) are also performed in order
to provide the background states for quantitative measurement.
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FIG. 2. Time series plot of the maximum seiche-induced horizontal velocity (solid curve) and vertical
velocity (dash-dotted curve) for the case C0 from t = 10 to 200 s.

We let U = (U,W ) denote the background velocity induced by the seiche. For simulations
presented in this section, U can be approximated by the velocity fields of C0 or T0, because the
background shear current does not change its features during the propagation of ISWs. For the
case C0, Fig. 2 shows the maximum seiche-induced horizontal and vertical velocities (in terms
of absolute value) from t = 10 to 200 s. The figure suggests that the vertical velocity is always
two orders of magnitude smaller than the horizontal velocity and hence does not have a significant
influence on the flow dynamics. The figure also shows that, at least near t = 100 s, the change of
horizontal velocity with respect to time is relatively small and is not difficult for the solitary waves to
adjust to. At t = 100 s, we also computed the local gradient Richardson number using the formula

Ri = N2

U 2
z

(9)

and found that the minimum Richardson number is 7.06, implying that it is not possible for the
onset of shear instability in the present flow regime.

FIG. 3. Hovmöller plots of the horizontal velocity along the inviscid top boundary for the cases (a) C10,
(b) I10, and (c) T10.
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FIG. 4. Horizontal velocity fields of (a) C10, (b) I10, and (c) T10 at t = 100 s. The pycnoclines are
indicated by the black contours and the waves’ crests (determined by the locations of the maximum wave-
induced horizontal velocity) are indicated by the dashed lines.

B. Simulation results

We let uT denote the wave-induced horizontal velocity along the inviscid top boundary. Here the
wave-induced velocity is defined as the difference between the total velocity and the background
velocity U. For internal waves propagating in a domain with free-slip top boundary conditions, the
evolution of uT provides an overview of both the propagation and shape of the waves. For the cases
C10, I10, and T10, Hovmöller plots of the total horizontal velocity along the top boundary are given
in Fig. 3, where the wave-induced velocity is characterized by the diagonal patterns and can be
clearly distinguished from the seiche-induced velocity in the background. In this figure, modulation
of the ISWs due to the seiche-induced background currents can be clearly seen. This includes a
change in the maximum current induced by the ISWs and the half-width of the ISWs. In particular,
there is a decrease in the maximum current and the half-width for the case C10 shown in Fig. 3(a),
but an increase in the maximum current and the half-width for the case T10 shown in Fig. 3(c). Also
noticeable from this figure is that, as the waves propagate, their shapes are constantly changing in
order to adjust to the nonuniform background environment.

Figure 4 shows the waves in the cases C10, I10, and T10 at t = 100 s. In this figure, the location
of the waves’ crest, denoted by xC , is determined by the locations where the maximum value of uT
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TABLE II. Wave parameters of the ISWs measured at t = 100 s, for simulations listed in Table I. Here Aw

is amplitude, Lw is half-width, c is propagation speed, and Fr is Froude number.

Dimensional parameters Dimensionless parameters

Case Aw (10−2 m) Lw (m) c (10−2 m/s) Aw/H Lw/H c/clw Fr

Cases in which the ISW is generated at the seiche’s crest
C10 6.25 0.72 8.25 0.156 1.79 1.03 0.253
C15 8.67 0.80 8.73 0.217 2.00 1.09 0.239
C20 10.78 0.92 8.99 0.270 2.30 1.12 0.232
C25 12.34 1.07 9.09 0.309 2.68 1.14 0.230

Cases with ISW only (i.e., no seiche)
I10 5.32 0.92 8.91 0.133 2.29 1.11 0.234
I15 7.59 1.01 9.26 0.190 2.52 1.16 0.225
I20 9.38 1.16 9.42 0.235 2.91 1.18 0.222
I25 10.71 1.36 9.45 0.268 3.40 1.18 0.221

Cases in which the ISW is generated at the seiche’s trough
T10 4.45 1.16 9.46 0.111 2.90 1.18 0.221
T15 6.33 1.29 9.69 0.158 3.21 1.21 0.215
T20 7.89 1.48 9.76 0.197 3.71 1.22 0.214
T25 8.83 1.74 9.72 0.221 4.34 1.21 0.215

is found, i.e.,

uT (xC ) = max(uT ). (10)

For the case C10 shown in Fig. 4(a), the wave appears narrower and propagates slower, whereas
for the case T10 shown in Fig. 4(c), the wave appears wider and propagates faster. In all cases,
the waves are symmetric about their crests and, except for C10, do not have clearly visible trailing
waves.

Table II gives the quantitative measurement of the solitary-wave parameters at t = 100 s. Here
the amplitude Aw is measured based on the height where the maximum buoyancy frequency
occurs along the waves’ crests, by computing the difference between the simulation results and the
background states. The half-width Lw is measured based on uT by computing the distance between
the points xL and xR which satisfy the equation

uT (xL ) = uT (xR) = 0.5 max(uT ). (11)

The average propagation speed c is estimated based on the location of the waves’ crests at t = 100 s,
according to the formula

c = xC

t
. (12)

This estimate is applicable for the instantaneous speed as well since, as shown in Fig. 3, the
propagation speed is nearly constant in various background states. The Froude number is defined in
the context of internal wave dynamics as

Fr = U

c
. (13)

Here we do not use the vertically integrated value of U as it is essentially zero, because the flow
is nondivergent in the simulation domain. Instead, we set U = 0.021 m/s, which is the maximum
background horizontal current at t = 100 s. The table shows that for all cases Fr � 1 and that the
flow is subcritical.
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FIG. 5. Visualization of Table II, with amplitude versus (a) half-width and (b) propagation speed for the
ISWs at t = 100 s. From left to right, circles represent the cases C10, I10, and T10, triangles represent the
cases C15, I15, and T15, diamonds represent the cases C20, I20, and T20, and squares represent the cases C25,
I25, and T25.

Figure 5 provides a visualization for the wave parameters listed in Table II. In this figure, cases
with the same letter in their labels (i.e., those with the same background shear) are connected
together by the same curves, while cases with the same number in their labels (i.e., those with
the same depression in the initial density fields) are indicated by the same symbols. The figure
suggests that, in a given background environment, the wave amplitude increases as the half-width
and the propagation speed increase. It also suggests that waves in the cases connected together
by a dash-dotted curve have a larger amplitude but a smaller half-width and propagation speed,
while waves in the cases connected together by a dotted curve have a smaller amplitude but a
larger half-width and propagation speed. Note that the background current in the former cases has
a negative vorticity, while that in the latter cases has a positive vorticity. Because the ISW-induced
vorticity is positive, results presented in this figure are consistent with those concluded in [6].

We note that the analyses presented above are based on the assumptions that the waves are
evolving adiabatically and that the waves have fully adjusted to the local background environment.
This assumption is valid because the seiches that form the background state are evolving on space
scales and timescales much larger and longer than scales associated with the waves. While a longer
tank would enhance such scale separation, Fig. 6 suggests that the ISW in a 32-m tank appears
almost exactly the same as that in a 16-m tank. In this figure, the simulation labeled as C10L (not
listed in Table I) is set up with exactly the same parameters as those in C10, except that the length
of the tank is extended to 32 m. As a result, the wave reaches the center of the tank by t = 200 s
instead of 100 s in C10. The snapshot of the horizontal velocity field showing the wave at t = 200
is thus produced to compare with that at t = 100 s in C10. The difference between the two cases,
computed by carefully aligning the locations of the waves’ crests, is shown in Fig. 6(c). It suggests
that there is no significant difference in the horizontal velocity induced by the leading waves, while
the difference in the background is due to the different locations of the trailing waves. In fact, the
maximum difference along the waves’ crests is 2.2 × 10−3 m/s, which is more than an order of
magnitude smaller than the wave-induced horizontal velocity. Therefore, the wave dynamics in a
16-m tank is not fundamentally different from that in a 32-m tank, and hence a 16-m tank is long
enough for the scale separation between the waves and the seiches.

C. Comparison to exact solitary-wave solutions

Although the terminology ISW is used here, the waves examined in this section are not exact
solitary waves, since they are propagating in a spatially and temporally varying background
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FIG. 6. Comparison of the horizontal velocity fields between (a) C10L at t = 200 s and (b) C10 at t =
100 s. The difference between (a) and (b), taken by matching the locations of the waves’ crests in (a) and (b),
is shown in (c). The pycnoclines are indicated by the black curves and the waves’ crests are indicated by the
dashed lines.

environment. Hence, their waveforms are constantly changing, in order to adjust to the slowly
varying background state. To compare the waveform of the ISW in the simulation C10 at t = 100 s
and that described by the DJL theory, we extracted the density and horizontal velocity profiles
from the simulation C0 at t = 100 s and x = 8.259 m, which corresponds to the location of the
ISW’s crest in C10 at t = 100 s. We then used these profiles as the background state to compute
the DJL equation iteratively, using 16 different values of the scaled APE between 1.7 × 10−5 and
2 × 10−5 m2. Figure 7 shows the difference (in absolute values) between the simulation result and
the DJL solutions along the wave’s crest, as functions of the APE. It suggests that the difference is
minimum when the scaled APE is approximately 1.88 × 10−5 m2, where the normalized difference
in ρ and u is approximately 2% and 4.5%, respectively. This implies that the simulation result fits
the DJL solutions extremely well, at least at the location along the wave’s crest. The difference
could be due to the nonsteady, nonuniform nature of the background environment in the simulation,
the viscous adjustment of the wave, or simply numerical noise in the DJL solutions.
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FIG. 7. Comparison of the simulation result to the DJL solutions along the wave’s crest, for the case C10
at t = 100 s. (a) Maximum difference in ρ normalized by �ρ. (b) Root mean square of the difference in u
normalized by [max(u) − min(u)]. Note that the APE is scaled by ρ0gH in a two-dimensional domain and is
in units of m2; see Eq. (3).

As the ISW propagates, it is constantly adjusting its form to the background environment
upstream of its crest. For this reason, we performed the same analysis by solving for the DJL
equation in the background state extracted from C0 at t = 100 s and x = 9.259 m (i.e., the location
1 m upstream of the wave’s crest in C10 at t = 100 s). The comparison, although not shown here,
suggests that the simulation result fits the DJL solutions slightly better, where the difference is
within 2% for the density and 3.5% for the horizontal velocity. The similarity in the DJL solutions
is due to the similarity in the background states. Because the seiche has a much larger length scale
than the ISW, variation in the seiche-induced background environment is very small near the ISW’s
crest. However, we note that variation in the seiche-induced background environment depends on the
amplitude and wavelength of the seiche, as well as the layer thickness and the pycnocline thickness.

In Fig. 8 we further examine the difference between the simulation result of C10 at t = 100 s
and the DJL solution computed with the scaled APE of 1.88 × 10−5 m2 in the background state
extracted from C0 at t = 100 s and x = 8.259 m, by comparing the horizontal velocity fields and
the density fields. The figure shows that the difference is small over the majority of the wave body,
suggesting that the wave we observed in the simulation can at least be considered as a solitary-like
wave, since the majority of the wave body satisfies the DJL solution. In fact, Fig. 8(c) shows that
the major difference in the horizontal velocity and density fields comes from the trailing wave near
x = 6.5 m in the simulation, where the density difference is approximately 0.003 and the velocity
difference is approximately 0.008 m/s. Equivalently, these values are approximately 30% of �ρ

and 35% of max(u), respectively.
We have also performed the same analysis for the case C10 at t = 170 s. The result is

quantitatively similar and hence is not shown here. In particular, the DJL solution that matches
the simulation result the best is obtained by specifying the scaled APE to be 1.88 × 10−5 m2. The
fact that it has not changed since t = 100 s implies that, as the ISW propagates, there is very little
energy transfer between the ISW and the background environment. Additionally, the same analysis
has been performed for several other cases. The results are not shown here because all of them
suggest a very good match between the simulation results and the DJL solutions. The implication
of these results is that, in laboratory experiments, ISWs propagating in a shear background current
can be generated by using the lock-release mechanism in a tilted tank.
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FIG. 8. Horizontal velocity fields in (a) the simulation C10 at t = 100 s and (b) the DJL solution, with
pycnoclines indicated by the black contours. (c) Difference in the horizontal velocity (pseudocolor) and density
(black contours) between the simulation result and the DJL solution, computed by interpolating the velocity
and density fields of (a) onto the grid of (b) and then taking the difference.

V. TRANSITION TO DISPERSIVE-WAVE REGIME

A. Gardner equation predictions

As the pycnocline approaches the middepth, there are two possible issues with identifying
solitary waves in a finite-length experimental tank. First, it may be the case that no solitary waves
form for a given initial condition. Within the framework of the KdV or Gardner equations, this may
be done approximately by numerically solving the initial-value problem for a given initial profile
or theoretically by solving the scattering problem and determining if there is a discrete spectrum
[30,31]. Second, it may be that while solitary waves can form in the asymptotic limit of t → ∞,
they will not separate from linear waves and smaller solitary waves before the end of the tank is
reached. This point has been addressed in the literature by defining a sorting timescale [31], and we
visit this technique below.

In the absence of a background current, one practical way to quantify the first issue is to compute
the Gardner equation-predicted solitary-wave width for a range of amplitudes and interface heights,
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FIG. 9. Shaded contours showing (a) solitary-wave width and (b) separation length between a solitary
wave and linear waves, predicted by the Gardner equation for a two-layer fluid. In (b), the curve along which
the split length equals the tank length is shown in green. In both panels, the shaded quantities are scaled by
the tank’s length and shown as functions of dimensionless interface height z0/H and dimensionless solitary-
wave amplitude Aw/(z0 − 0.5H ).

scaled by the tank’s length. This is shown in Fig. 9(a). The interface height z0 is scaled by the total
depth H and the solitary-wave amplitude Aw is scaled by the distance from the interface height
to the middepth |z0 − 0.5H | (the so-called conjugate flow amplitude [32]). The numerical tank is
chosen to be 100 m long, a value far too large for an experimental configuration, but useful to
make the point that the first of the above-mentioned restrictions is of secondary importance in an
experimental setting. The figure indicates that the Gardner equation predicts that solitary waves are
possible in all cases, and indeed, even with a 20-m-long tank, representative of some cases below,
solitary waves would comfortably fit into the domain.

To quantify the second issue we define the sorting length in the following manner: (i) We choose
a fraction 0 < f < 1 of the predicted solitary-wave width γ we want as a target separation between
the solitary wave and other waves, (ii) we use the Gardner equation’s exact solitary-wave solution
to compute the weakly nonlinear estimate of the solitary waves’ propagation speed, and (iii) we
subtract the linear long-wave speed from the solitary-wave speed and form a separation length scale
Ls as

Ls = c f γ

c − c0
. (14)

This length scale underestimates the length traveled by the waves if two solitary waves of similar
size are present (i.e., c0 would need to be replaced by the propagation speed of the smaller solitary
wave for a better estimate) but provides a good qualitative guide. The estimate, scaled by the tank
length, is shown in Fig. 9(b). It is clear from this figure that, for the vast majority of cases with
a pycnocline near the middepth, even a 100-m-long tank is not long enough for a solitary wave
to separate from a tail of linear waves and as such from smaller solitary waves. We note that this
scaling is different from the sorting timescale defined by Eq. (18) in [31]. For the surface-wave
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FIG. 10. Predicted waveform from numerical solutions of the Gardner equation after a fixed amount of
time as a function of the length along the tank x and the scaled distance between the interface height and the
middepth (z0 − 0.5H )/H . For clarity of presentation, we have reversed the amplitude of the solutions so that
the waves appear as waves of elevation.

experiments of [31], a scaling based on tank depth and a user-chosen effective length is sensible. In
our theory the user-chosen parameter is f , the fraction of the solitary-wave width we want to set as
the separation between waves. Our method is based on the exact solution of the Gardner equation,
and thus has a more specific purpose than that in [31]; nevertheless, both techniques are similar in
spirit.

An interesting question thus follows: What does the Gardner equation predict will happen when
the tank is too short for complete sorting? In Fig. 10 we show eight sample numerical solutions of
the Gardner equation after the waveform has propagated approximately 20 m. It is clear that as z0

tends to the middepth, separation from the tail of linear waves is no longer evident, and indeed the
leading disturbance loses the hump shape associated with a Gardner solitary wave. These results
thus provide the setting for our numerical explorations with the full set of stratified Navier-Stokes
equations. While the results based on the Gardner equation are obtained without the presence of
a background current, the two suggestions are that (i) the solitary wave should be possible when
the pycnocline center lies away from the middepth even when weak shear currents associated with a
background seiche are present and (ii) the solitary wave may be lost, on the scale of the experimental
tank, when the pycnocline center moves toward the middepth. Moreover, the latter result may be
sensitive to the presence of weak shear currents.

B. Parameter space

For simulations presented in this section, parameters of their initial density profiles are given in
Table III. Here we explore the parameter space relevant to the background stratification and current
by varying z0 between 0.28 and 0.32 m (i.e., between 0.65 and 0.8 of the total depth) and As between
−0.04 and 0.02 m. By adjusting z0, we are essentially adjusting the thickness of the upper and lower
layers and hence the influence of dispersion on the waveforms. The two-layer long-wave speed
are clw = 0.079, 0.086, 0.091, and 0.094 m/s for z0 = 0.32, 0.3, 0.28, and 0.26 m, respectively.
The corresponding Reynolds numbers are not computed individually because they are all on the
same order of magnitude as that given in the preceding section. On the other hand, by adjusting
As, we are essentially adjusting the strength and polarity of the seiche-induced velocity shear in the
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TABLE III. List of simulations presented in Sec. V. The dimensionless parameters, labeled with a tilde,
are scaled by H . In the case labels, the number following Z indicates the height of the pycnocline (i.e., z0 in
10−2 m), while the dash and number following A indicates the polarity and amplitude of the initial seiche (i.e.,
As in 10−2 m).

Dimensional parameters Dimensionless parameters

Case z0 (m) As (m) A0 (m) λ0 (m) z̃0 Ãs Ã0 λ̃0

Cases in which the seiche’s node is located at z0 = 0.32 m
Z32A-4 0.32 −0.04 0.14 0.8 0.8 −0.1 0.35 2
Z32A-2 0.32 −0.02 0.14 0.8 0.8 −0.05 0.35 2
Z32A0 0.32 0 0.14 0.8 0.8 0 0.35 2
Z32A2 0.32 0.02 0.14 0.8 0.8 0.05 0.35 2

Cases in which the seiche’s node is located at z0 = 0.3 m
Z30A-4 0.3 −0.04 0.14 0.8 0.75 −0.1 0.35 2
Z30A-2 0.3 −0.02 0.14 0.8 0.75 −0.05 0.35 2
Z30A0 0.3 0 0.14 0.8 0.75 0 0.35 2
Z30A2 0.3 0.02 0.14 0.8 0.75 0.05 0.35 2

Cases in which the seiche’s node is located at z0 = 0.28 m
Z28A-4 0.28 −0.04 0.14 0.8 0.7 −0.1 0.35 2
Z28A-2 0.28 −0.02 0.14 0.8 0.7 −0.05 0.35 2
Z28A0 0.28 0 0.14 0.8 0.7 0 0.35 2
Z28A2 0.28 0.02 0.14 0.8 0.7 0.05 0.35 2

Cases in which the seiche’s node is located at z0 = 0.26 m
Z26A-4 0.26 −0.04 0.14 0.8 0.65 −0.1 0.35 2
Z26A-2 0.26 −0.02 0.14 0.8 0.65 −0.05 0.35 2
Z26A0 0.26 0 0.14 0.8 0.65 0 0.35 2
Z26A2 0.26 0.02 0.14 0.8 0.65 0.05 0.35 2

background. The parameters A0 and λ0 are fixed at 0.14 and 0.8 m, respectively. Note that for solitary
waves, the wave amplitude and half-width are related and cannot be set separately. By fine-tuning
the parameters A0 and λ0, we found that the combination A0 = 0.14 m and λ0 = 0.8 m allows the
initial condition to yield a single-crest solitary wave without visible trailing waves in the simulation
Z28A0.

For each of the cases listed in Table III, a corresponding simulation with seiche only (by setting
A0 = 0) is also performed (not listed here) in order to provide the background state for quantitative
measurement. Although the gradient Richardson number and the Froude number vary for different
cases, they are not shown here because the flow regime remains the same as that in Sec. IV for all
cases presented in this section.

C. Simulation results

In Fig. 11, the Hovmöller plots of the horizontal velocity along the inviscid top boundary provide
an overview of the shape and propagation of the waves in the cases Z32A-4, Z32A0, Z28A-4, and
Z28A0. The figure shows that, in the presence of a shear background current (as is the case in
Z32A-4 and Z28A-4), there are significant changes in both the shape and propagation of the waves.
As these waves propagate, there is an increase in the waves’ half-width and wave-induced horizontal
velocity, and a production of trailing waves. This implies that these waves are attempting to adjust
themselves to the varying background environment and may or may not be able to maintain their
solitary-like forms. In particular, the trailing waves form only at a later stage, when the background
horizontal velocity becomes large enough. This is a clear indication that the modulation of wave
dynamics occurs due to the presence of a shear background current. On the other hand, when there
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FIG. 11. Hovmöller plots of the horizontal velocity along the inviscid top boundary for the cases (a) Z32A-
4, (b) Z32A0, (c) Z28A-4, and (d) Z28A0.

is no background shear (as is the case in Z32A0 and Z28A0), the waves’ shape (e.g., half-width
and wave-induced horizontal velocity) remains unchanged and their propagation speed remains
constant, implying that these waves remain solitary-like as they propagate. While trailing waves can
be seen in Z32A0, they are generated together with the leading wave due to the initial depression
instead of the presence of a background shear current.

Figure 12 shows the waves in the cases Z32A-4, Z30A-4, Z28A-4, and Z26A-4 at t = 100 s.
These waves are propagating in shear background currents whose vorticity has the same sign as
the wave-induced currents. In the case Z32A-4, the wave is symmetric about its crest and has no
trailing waves visible, implying that it is able to maintain its solitary-like form. As the pycnocline
approaches the middepth, the leading waves become wider and propagate slower. The increase in
the waves’ half-width occurs in an asymmetric manner such that the waves flatten toward their
front while producing trailing waves of finite amplitude behind them. Judging based on both the
pycnocline displacement and the wave-induced horizontal velocity, these trailing waves are waves
of elevation instead of depression, especially those in the cases Z28A-4 and Z26A-4. The production
of trailing waves and the reversal of their polarity appears very similar to that occurred during the
fissioning process, in which an ISW of depression shoals upon a gentle slope and produces a DWT
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FIG. 12. Horizontal velocity of (a) Z32A-4, (b) Z30A-4, (c) Z28A-4, and (d) Z26A-4 at t = 100 s. The
pycnoclines are indicated by the black contours and the waves’ crests (determined by the locations of the
maximum wave-induced horizontal velocity) are indicated by the dashed lines.

(see, for example, Fig. 16 of [33]). Hence, our results suggest that these background states are not
able to support the existence of ISWs of depression but can enable the formation of DWTs, even
though the pycnocline is above the middepth.

For comparison, Fig. 13 shows the waves in the cases Z32A0, Z30A0, Z28A0, and Z26A0 at
t = 100 s, in which no background current is present (see also Table IV). The figure suggests
that, except for the case Z26A0, waves in all other three cases are solitary-like and have similar
propagation speeds. While a trailing wave is observed in the case Z32A0, unlike those shown in
Fig. 12, it is a wave of depression instead of elevation and is also solitary-like. In the case Z26A0,
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FIG. 13. Same as Fig. 12 but for (a) Z32A0, (b) Z30A0, (c) Z28A0, and (d) Z26A0 at t = 100 s.

however, the leading wave is slightly asymmetric about its crest and propagates slower, and the
trailing wave has a reversed polarity, implying that a DWT is emerging. The waves in this case
are very similar to those in Z30A-4 shown in Fig. 12(b), except for the propagation speed and the
wave-induced horizontal velocity. Nevertheless, compared with Z26A-4 shown in Fig. 12(d), in
which the pycnocline is centered at a similar depth, the leading wave in Z26A0 appears far less
asymmetric and the trailing wave has a much smaller amplitude. Thus, the comparison between
Figs. 13 and 12 suggests that, for a given stratification, the presence of a shear background current
that has the same vorticity as the wave-induced vorticity increases the dispersive effect such that
internal waves propagating in such a background current is less likely to achieve a balance between
the nonlinear steepening and dispersive spreading on the scale of the experimental tank.
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TABLE IV. Values of clw , calculated in the absence of a background current, and ωwave, the maximum
vorticity induced by the leading wave in the absence of a background current, for the four different pycnocline
heights.

Case
Pycnocline height

z0 (m)
Long-wave speed

clw (10−2 m/s)
Maximum wave-induced vorticity

ωwave (s−1)

Z32A0 0.32 7.92 3.15
Z30A0 0.30 8.58 2.76
Z28A0 0.28 9.08 2.42
Z26A0 0.26 9.45 2.17

D. Characteristics of the leading waves

For the simulations presented in this section, Table V gives the quantitative measurement of
the parameters of the leading waves at t = 100 s. Here the amplitude Aw, half-width Lw, and
propagation speed c are defined in the same way as those in Table II. The parameter ωmax represents
the maximum seiche-induced vorticity (or the minimum vorticity, in cases where it is negative) and
is computed from cases without an initial depression. It measures the background shear experienced
by the waves, while the ratio ωmax/ωwave measures the strength of the background shear relative
to the wave-induced shear. The ratio (xR − xC )/(xC − xL ) measures the asymmetry of the leading
waves, where xC is the location of the waves’ crests and satisfies Eq. (10), while xL and xR represent

TABLE V. Wave parameters measured at t = 100 s, for simulations listed in Table III. Here ωmax is
calculated from cases without an initial depression and (xR − xC )/(xC − xL ) measures the asymmetry of the
leading waves. Values of clw and ωwave are given in Table IV.

Dimensional parameters Dimensionless parameters

Case Aw Lw c ωmax
Aw

H

Lw

H

c

clw

ωmax

ωwave

xR − xC

xC − xL
(10−2 m) (m) (10−2 m/s) (s−1)

Cases in which the seiche’s node is located at z0 = 0.32 m
Z32A-4 6.02 1.89 10.23 1.48 0.150 4.72 1.29 0.470 0.99
Z32A-2 7.19 1.45 9.97 0.72 0.180 3.62 1.26 0.229 0.94
Z32A0 8.36 1.09 9.57 0 0.209 2.73 1.21 0 0.98
Z32A2 9.45 0.85 9.06 −0.72 0.236 2.11 1.14 −0.229 1.00

Cases in which the seiche’s node is located at z0 = 0.3 m
Z30A-4 5.62 2.13 9.90 1.34 0.141 5.32 1.15 0.485 1.21
Z30A-2 6.48 1.75 9.82 0.65 0.162 4.38 1.14 0.235 1.01
Z30A0 7.50 1.38 9.59 0 0.188 3.44 1.12 0 0.95
Z30A2 8.67 1.06 9.25 −0.65 0.217 2.64 1.08 −0.235 0.97

Cases in which the seiche’s node is located at z0 = 0.28 m
Z28A-4 5.39 2.31 9.47 1.23 0.135 5.78 1.04 0.507 1.59
Z28A-2 6.02 2.00 9.55 0.60 0.150 5.01 1.05 0.248 1.25
Z28A0 6.80 1.68 9.51 0 0.170 4.20 1.05 0 1.03
Z28A2 7.73 1.34 9.34 −0.60 0.193 3.35 1.03 −0.248 0.96

Cases in which the seiche’s node is located at z0 = 0.26 m
Z26A-4 5.16 2.45 9.00 1.15 0.129 6.13 0.95 0.529 2.06
Z26A-2 5.62 2.21 9.19 0.56 0.141 5.51 0.97 0.258 1.64
Z26A0 6.09 1.94 9.31 0 0.152 4.85 0.98 0 1.28
Z26A2 6.95 1.65 9.31 −0.56 0.174 4.12 0.99 −0.258 1.04
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FIG. 14. Visualization of Table V, with (a) amplitude, (b) half-width, (c) propagation speed, and (d) asym-
metry of the leading waves versus the background shear at t = 100 s. The asymmetry is measured using the
ratio (xR − xC )/(xC − xL ), while the background shear is measured based on the seiche-induced vorticity ωmax.
Cases with similar background shear are indicated by the same symbols, with black (red) symbols indicating
the existence of a solitary-like (dispersive) wave.

the downstream (left) and upstream (right) edges of the waves, respectively, and satisfy Eq. (11). If
this ratio is close to unity, then the wave is approximately symmetric about its crest and hence is
likely to be solitary-like. Otherwise, the wave is asymmetric about its crest due to dispersive effects.

Figure 14 provides a visualization for the parameters listed in Table V. In this figure, cases with
similar stratification are connected together by the same curves, while cases with similar background
shear are indicated by the same symbols. The figure shows that, for a given stratification, the
amplitude and half-width of the leading waves scales approximately linearly with respect to the
background shear. In particular, the amplitude decreases as the pycnocline height decreases and as
the background shear increases, while the half-width increases as the pycnocline height decreases
and as the background shear increases. On the other hand, the propagation speed and the asymmetry
of the leading waves do not scale linearly with respect to the stratification or the background shear.

The plot shown in Fig. 14(d) is particularly interesting because the form of the leading waves
can be identified from how symmetric they are about their crests. The plot shows that, out of
the 16 simulations that we examined, the leading waves in ten of them (indicated by the black
symbols) could be solitary-like since the ratio (xR − xC )/(xC − xL ) is close to unity, while those
in the remaining six cases (indicated by the red symbols) are dispersive waves since they are
asymmetric about their crests. With this information, revisiting Figs. 14(a) and 14(b) suggests that
all dispersive waves have an amplitude of Aw � 0.06 m and a half-width of Lw � 2 m. This implies
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FIG. 15. Stratification (measured by the pycnocline height z0 scaled by the depth H ) versus background
shear (measured by ωmax) at t = 100 s, for simulations listed in Table V. Black (red) symbols indicate cases in
which a solitary-like (dispersive) wave exists. The dashed curve indicates the approximate boundary between
the solitary-wave regime and the dispersive-wave regime.

that solitary-like waves may only exist if the amplitude is greater than 3% of the half-width, as
least in the present model setup. For waves with a more extreme aspect ratio, the dispersive effect
becomes dominant. Moreover, revisiting Fig. 14(c) suggests that the solitary-wave propagation
speed scales linearly with respect to the background shear, while the propagation speed of the
dispersive waves is always smaller. In particular, for cases in which the background vorticity is
non-negative, the propagation speed decreases as the pycnocline approaches the middepth. While
this seems counterintuitive to the fact that the long-wave speed clw increases as the pycnocline
approaches the middepth, it in fact indicates the transition from the solitary-wave regime to the
dispersive-wave regime. For example, for the case Z28A0 which has a pycnocline at z0 = 0.26 m
and a zero background vorticity, the two-layer long-wave speed is clw = 0.0908 m/s, smaller than
the leading wave’s propagation speed of c = 0.0951 m/s. In contrast, the two-layer long-wave speed
for the case Z26A0 (indicated by the red diamond) is clw = 0.0945 m/s, larger than the leading
wave’s propagation speed of c = 0.0931 m/s. This suggests that the leading wave in Z28A0 is
likely a solitary wave but that in Z26A0 is not.

Based on the information obtained from Fig. 14, we are able to determine the solitary-wave
regime and the dispersive-wave regime for waves in the 16 cases examined in this section. Figure 15
shows these cases on the plane of stratification-background shear, with cases in which solitary-like
waves exist located at the upper left part of the plane and cases in which dispersive waves
exist located at the lower right part of the plane. This means that, for large-amplitude nonlinear
internal waves propagating in a quasi-two-layer stratification, the balance between the nonlinear
steepening and the dispersive spreading (and hence the waveforms of these waves) is determined
by the combined effect of the stratification and the background shear. In a stratification in which
the pycnocline is relatively far away from the middepth, or a background shear current whose
vorticity has the opposite sign to the wave-induced vorticity, such a balance is relatively easily
maintained such that solitary and solitary-like waves are more likely to exist. On the other hand,
if the pycnocline is close to the middepth or the background vorticity has the same sign as the
wave-induced vorticity, then dispersive spreading tends to be the dominant effect, such that DWTs
are more likely to form instead. However, we note that the exact boundary between the solitary-wave
regime and the dispersive-wave regime could be dependent on the particular model setup and is
likely to be sensitive to the length scales and timescales of the experiments.
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TABLE VI. Wave parameters of five different ISWs obtained by solving for the DJL equation in the
background environment of the case Z26A-4 at t = 100 s and x = 9 m. Here the APE is scaled by ρ0gH
in a two-dimensional domain and is determined according to Eq. (3). The two-layer long-wave speed for this
stratification in a zero background current is clw = 0.0945 m/s.

Scaled APE Dimensional parameters Dimensionless parameters

(10−4 m2) ηmax (10−2 m) Lw (m) c (10−2 m/s) ηmax/H Lw/H c/clw

0.2 2.06 5.39 10.18 0.052 13.48 1.078
0.5 2.97 6.20 10.17 0.074 15.51 1.076
1 3.87 6.80 10.13 0.097 16.99 1.072
2 5.14 7.23 10.03 0.128 18.09 1.062
5 7.73 7.58 9.70 0.193 18.95 1.026

E. Exact solitary waves in the dispersive-wave regime

To determine the waveforms of exact solitary waves in the dispersive-wave regime and to
compare and contrast them to those of the dispersive waves observed in the simulations, we
computed the solutions of the DJL equation using the background profiles of the case Z26A-4
at t = 100 s and x = 9 m, which corresponds to the location of the leading wave’s crest. We
considered five different values of the scaled APE from A = 2 × 10−5 to 5 × 10−4 m2 and recorded
parameters of the five different waves in Table VI and Fig. 16. Here the amplitude is measured by
ηmax, the maximum value of (the absolute value of) the isopycnal displacement. It is similar though
not exactly equivalent to Aw reported previously, which is measured based on the location of the
maximum buoyancy frequency. The table and figure show that, in such a background environment,
exact solitary waves have an extremely large half-width, which increases as the amplitude increases,
while their propagation speed is relatively constant. The wave computed using A = 2 × 10−4 m2

has an amplitude of 0.0514 m, similar to that of the dispersive wave in the simulation Z26A-4 at
t = 100 s. Nevertheless, it has a half-width of 7.23 m and a propagation speed of 0.1003 m/s. In
contrast, the wave in Z26A-4 has a half-width of only 2.45 m and a propagation speed of 0.0900 m/s.
Although this wave is the widest in all of the 16 cases we examined, it is still much narrower than
the exact solitary wave in this background environment. This implies that the main reason that the
wave in the simulation remains dispersive is that, for the given length scales and timescales of the
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FIG. 16. Amplitude versus (a) half-width and (b) propagation speed for five different ISWs obtained by
solving for the DJL equation in the background environment of the case Z26A-4 at t = 100 s and x = 9 m.
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present model setup (note that the length of the domain is L = 16 m), it is not able to successfully
adjust to the background environment.

VI. CONCLUSION AND DISCUSSION

In the present work, we studied large-amplitude internal waves propagating in shear background
currents induced by basin-scale internal seiches, using high-resolution direct numerical simulations
performed on the laboratory scale. By varying the parameters of the initial density stratification, we
observed the formation of both ISWs and DWTs in the simulations. For simulations in which ISWs
are formed, the characteristics of the waves are similar to those examined in [6]. More specifically,
the ISWs tend to have a smaller amplitude and a larger half-width if the background vorticity has the
same sign as the ISW-induced vorticity and vice versa. Comparison to waveforms of exact solitary
waves obtained by solving for the DJL equation suggests that the ISWs in the simulations are indeed
solitary-like, implying that ISWs propagating in a shear background current can be generated in a
similar manner in laboratory experiments. Further to the above observations, we found that if the
leading wave’s amplitude is less than approximately 3% of the wave’s half-width, then the dispersive
effect outweighs the nonlinear effect and a DWT is formed. The transition from the solitary-wave
regime to the dispersive-wave regime occurs gradually, as the pycnocline approaches the middepth
and as the background vorticity increases from negative to positive, provided the wave-induced
vorticity is positive. Solving for the DJL equation in the dispersive-wave regime suggests that
exact solitary waves with similar amplitude are much longer and have a more extreme aspect ratio
such that their waveforms cannot be supported by the finite length of the computational domain.
Both simulations and DJL theory are qualitatively consistent with results for the weakly nonlinear
Gardner equation. The Gardner equation allows for the derivation of two theoretical restrictions on
the appearance of ISWs for a given set of parameters. The first is whether ISWs are possible for a
given set of initial conditions (i.e., the scattering problem), while the second is whether ISWs leave
behind smaller waves and the tail of linear waves on the scale of a given tank. We showed that on
experimental scales the second is the more robust restriction.

For nonlinear internal waves, the nonlinear effect decreases as the amplitude decreases while
the dispersive effect decreases as the wavelength increases [3]. Because the presence of a shear
background current (that has the same vorticity as the wave-induced vorticity) restricts the
maximum amplitude an ISW can attain [6], the wave must increase its half-width in order for
the dispersive effect to be balanced by the weaker nonlinear effect. This is the reason why ISWs
in the dispersive-wave regime tend to have an extreme aspect ratio. Nevertheless, the fact that
ISWs of an extreme aspect ratio may not exist in a laboratory-scale domain of finite length does
not preclude the possibility of their existence in the field. This is because if the length scales and
timescales are sufficiently large, then the leading waves in the DTWs may be able to successfully
separate themselves from the trailing waves and become solitary-like. However, in the field more
exotic situations are possible due to the interactions of waveforms from multiple sources, and hence
it remains a question whether a uniform steady shear that supports the formation of ISWs in the
dispersive-wave regime will present. Thus, the scaling up of the present work to field scales is a
clear challenge for future study.

Although not discussed in Sec. V, we conjecture that for a given background environment, the
waveforms also depend on the waves’ amplitude. For waves with a smaller amplitude, the wave-
induced current is weaker, meaning that the influence of the background current is larger. Hence,
these waves tend to be dispersive instead of solitary-like if the background vorticity has the same
sign as the wave-induced vorticity. On the plane of pycnocline height versus background vorticity
shown in Fig. 15, the curve separating the solitary-wave regime and the dispersive-wave regime
would be steeper. On the other hand, the situation is more complicated for waves with a larger
amplitude. This is because the maximum amplitude that an ISW can attain and the maximum current
that an ISW can induce are both limited by certain asymptotic limits [34], provided there is no
significant stratification near the top and bottom boundaries (as is the case in our simulations).
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Moreover, such limiting behavior can be altered by the strength of the background shear that an
ISW experiences [6]. Exploring the dependence of waveforms on the waves’ amplitude in a shear
background current is another potential research topic for future work.

We note that in the present work we did not observe the breaking of any ISWs, since breaking
occurs when there is significant stratification near the top or bottom boundary [35,36], though the
DJL theory predicts that the occurrence of wave breaking can also be significantly influenced by
the presence of a shear background current [6]. The breaking of ISWs is typically accompanied
by the formation of a trapped core, which may induce significant instability in the water column and
the bottom boundary layer and hence contribute to the material mixing and sediment resuspension
[9]. Developing a viable method for studying wave breaking in the presence of a shear background
current in a laboratory environment is also a clear avenue for future research. This requires
further exploration of the parameter space, including the thickness of the pycnocline, and potential
modification of the model setup. The goal would be to identify the regime of breaking waves in
Fig. 15.
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