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A Bayesian optimization framework is developed to optimize low-amplitude wall-
normal blowing control of a turbulent boundary-layer flow. The Bayesian optimization
framework determines the optimum blowing amplitude and blowing coverage to achieve
up to a 5% net-power saving solution within 20 optimization iterations, requiring 20 direct
numerical simulations (DNS). The power input required to generate the low-amplitude
wall-normal blowing is measured experimentally for two different types of blowing device
and is used in the simulations to assess control performance. Wall-normal blowing with
amplitudes of less than 1% of the free-stream velocity generate a skin-friction drag
reduction of up to 76% over the control region, with a drag reduction which persists for up
to 650δ0 downstream of actuation (where δ0 is the boundary-layer thickness at the start of
the simulation domain). It is shown that it is the slow spatial recovery of the turbulent
boundary-layer flow downstream of control which generates the net-power savings in
this study. The downstream recovery of the skin-friction drag force is decomposed using
the Fukagata-Iwamoto-Kasagi (FIK) identity, which shows that the generation of the
net-power savings is due to changes in contributions to both the convection and streamwise
development terms of the turbulent boundary-layer flow.
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I. INTRODUCTION

Skin-friction drag reduction is a topic of great interest due to its importance in many engineering
applications. Yet despite many decades of extensive research, a practical and affordable method for
reducing the turbulent skin-friction drag force in air flows is yet to be found and implemented in
real-world applications. Various strategies aiming to achieve this goal have been investigated with
some of the most well known targeting either the near-wall turbulence structures through surface
topology (García-Mayoral and Jiménez [1]) and wall-based actuation (Choi et al. [2] Quadrio [3],
Whalley and Choi [4]), or the larger-scale turbulence structures further away from the wall with
jets (Kang et al. [5]) and large-eddy breakup devices (Chin et al. [6]). However, passive approaches
often suffer from parasitic drag effects or lose effectiveness in service (Alfredsson and Örlü [7],
Spalart and McLean [8]), and the energy expenditure of typical active drag reduction strategies can
be very high, often leading to net-power losses even if substantial skin-friction drag reduction is
obtained (Quadrio and Ricco [9]).

In the present work, the focus is on the spatial development of a zero-pressure gradient turbulent
boundary-layer flow and the resulting wall-friction after control has been applied locally using
low-amplitude wall-normal blowing as a drag-reducing strategy. Mass flow injection has been well
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studied and can be traced back to the 1940s with surface cooling studies by Dawes and Wheeler
[10] and Mickley et al. [11]. Rubesin [12] and Torii et al. [13] developed analytical formulas
for the calculation of the heat transfer and skin-friction drag coefficients under wall transpiration
conditions which were later confirmed experimentally by Simpson et al. [14] with measurements
to analyze and model the turbulent momentum and heat transport in the presence of injection and
suction. Sumitani and Kasagi [15] performed DNS of a turbulent channel flow with low-intensity
(0.1% of the free-stream velocity) uniform wall injection. They observed a skin-friction drag
reduction of greater than 10% and concluded that higher wall injection intensities could lead to
larger skin-friction drag reduction. A DNS of a zero-pressure gradient turbulent boundary-layer
flow was performed by Kim et al. [16] to examine the characteristics of wall pressure fluctuations
after the sudden application of wall-blowing and wall-suction. It was found that the small-scale wall
pressure fluctuations quickly recovered downstream of control, in contrast to the large-scale wall
pressure fluctuations which took a large streamwise distance to return to those found in the usual
canonical wall-turbulent flow. Based on the parametric study of Hwang [17], Kornilov and Boiko
[18] designed a wall-blowing control system which delivered compressed air through a perforated
flat plate comprised of uniformly distributed submillimeter-diameter holes. They reported a 70%
reduction in the wall-shear stress on application of wall-normal blowing with amplitudes of less
than 1% of the free-stream velocity. They estimated net-power saving on the order of 5% due to
the energy expenditure of the blowing system. Interestingly, they observed a slow spatial recovery
of the skin-friction coefficient downstream of the control region, which hinted at the possibility of
employing spatially-discontinuous blowing to achieve comparable skin-friction drag reduction with
less input power (Kornilov and Boiko [19]).

The simulations of Kametani and Fukagata [20] and Kametani et al. [21] showed that uniform
suction can suppress turbulence but increases the skin-friction drag, while uniform blowing can
enhance turbulence but reduce wall-shear stress. These numerical studies also showed that the
efficiency of the control increases with widening the streamwise length of the control section.
More recently, DNS of a turbulent boundary-layer flow with a low-intensity wall-normal blowing
control region have shown a local maximum skin-friction drag reduction of 60%, which persists
to tens of boundary-layer thicknesses downstream of control (Stroh et al. [22]). A series of
large-eddy simulations (LES) of turbulent boundary-layer flows with wall-normal blowing control
were performed by Kametani et al. [23] with a focus on the effect of intermittent blowing along
the direction of the flow. By considering only part of the input power required to generate the
wall-blowing, namely the pressure difference across the blowing wall, a very optimistic idealized
net-power saving of around 18% was predicted.

Employing a reliable optimization method to determine the optimal parameters of a wall-normal
blowing control technique could potentially lead to substantial net-power savings, assuming that
a low cost device could be designed to generate the wall-blowing. Bayesian optimization is
a derivative-free algorithm that works efficiently with expensive nonconvex objective functions
(Gelbart et al. [24]). Bayesian optimization plays a prominent role in efficiently optimising the
parameters of machine learning algorithms, such as neural networks, with superior performance
when compared to more standard approaches (Brochu et al. [25], Snoek et al. [26]). Bayesian
optimization is yet to be fully exploited for use in fluid flow problems with very few studies
combining DNS/LES and Bayesian optimization to date. Talnikar et al. [27] developed a parallel
Bayesian optimization algorithm for LES to minimize skin-friction drag in a turbulent channel
flow with traveling waves and to design the trailing edge of a turbine blade to reduce turbulent
heat transfer and pressure loss. They were able to run several simulations simultaneously, taking
advantages of the concurrency offered by supercomputers.

In the present paper, DNS of zero-pressure gradient turbulent boundary-layer flows were
performed to investigate the potential use of Bayesian optimization algorithms for wall-turbulence
control. The focus is on achieving a skin-friction drag reduction with net-power saving using low-
amplitude wall-normal blowing control strategies. For simplicity, three blowing parameters were
optimized to achieve the skin-friction reduction with net-power savings. Unlike the majority of other
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numerical studies where idealized energy usage is assumed, energy savings were evaluated using
experimental data. Two Bayesian optimization studies are presented, the first using the pressure data
from the experiments of Kornilov and Boiko [18], and the second using the power requirements from
an original low-cost blowing device based on an array of miniature electromagnetic speakers.

II. NUMERICAL METHODS

The incompressible Navier-Stokes equations were solved using a recent version of the high-order
flow solver Incompact3d (see www.incompact3d.com), adapted to parallel supercomputers using a
powerful two-dimensional (2D) domain decomposition strategy (Laizet and Li [28]). This solver is
based on sixth-order finite-difference schemes on a Cartesian mesh for the spatial discretization and
a semi-implicit time advancement for the viscous terms. To treat the incompressibility condition, a
fractional step method requires solution of a Poisson equation, fully solved in spectral space via the
use of relevant 3D fast Fourier transforms. Combined with the concept of the modified wave number
(Lele [29]), this direct (i.e., noniterative) technique allows the implementation of the divergence-free
condition up to machine accuracy. A partially staggered mesh is used where the pressure mesh is
shifted by a half-mesh from the velocity mesh in each direction. This type of mesh organization
leads to more physically realistic pressure fields with no spurious oscillations. More details about
Incompact3d can be found in Laizet and Lamballais [30]. Note that it has been used recently
for DNS of turbulent boundary-layer flows (Diaz-Daniel et al. [31,32]), including comparisons of
wall-shear stress statistics and energy budgets with the reference data of Schlatter and Örlü [33] and
Jiménez et al. [34].

Throughout the paper x, y, and z denote the streamwise, wall-normal, and spanwise directions,
and the symbols U and V indicate the instantaneous streamwise and wall-normal velocities,
respectively. Fluctuating velocities are represented by lower case symbols (e.g., u) and primed
symbols (e.g., u′) denote root-mean-square values of these fluctuating quantities. An overbar (e.g.,
U ) indicates a quantity which is averaged in space and/or in time.

The present simulations were performed for a domain size Lx × Ly × Lz = 750δ0 × 80δ0 × 15δ0

discretized with nx × ny × nz = 3073 × 513 × 128 mesh nodes in the streamwise, wall-normal, and
the spanwise directions, respectively. Here, δ0 is the boundary-layer thickness at the inlet (x = 0). A
laminar Blasius boundary layer was prescribed at the inlet boundary condition in the streamwise
direction, with a Reynolds number of Reθ = U∞θ/ν = 170 based on the momentum thickness
θ , free-stream velocity U∞ and kinematic viscosity ν. A 1D convection equation was solved for
the outlet boundary condition, where the Reynolds number reaches Reθ ≈ 2100. In the spanwise
direction, the boundary conditions were periodic while a homogeneous Neumann condition was
imposed on the three velocity components at the top of the domain. The mesh was uniformly
spaced in the streamwise and the spanwise directions, and increased in size further from the wall.
The resolution in wall viscous units for Reθ = 365 was �x+ = 16.6, 0.53 � �y+ � 135.5, and
�z+ = 8. The simulation time step was �T = 0.004δ0/U∞. Figure 1 illustrates the computational
domain and the control region. The random volume forcing designed by Schlatter and Örlü [33]
was used to trip the boundary layer and trigger transition-to-turbulence. The forcing volume has
a Gaussian distribution with length scales of 1.4δ0, 0.35δ0, and 1.8δ0 in the x, y, and z directions,
respectively, and a decay time of 1.4δ0/U∞. Those parameters were chosen to ensure a smooth
and rapid transition to turbulence. The tripping region is located at x = 3.5δ0 and occupies the full
spanwise extent of the domain. The steady low-amplitude wall-normal blowing, vw, was applied
throughout the control region using an inhomogeneous wall-boundary condition.

The numerical set-up and numerical methods were validated by comparing data with the
canonical turbulent boundary-layer flow of Schlatter and Örlü [33] and the low-amplitude wall-
normal blowing controlled turbulent boundary-layer flow of Stroh et al. [22]. The control region
was located at a distance of xBs = 68δ0 from the inlet and had a streamwise extent of LB = 77δ0,
corresponding to 470 � Reθ � 700 in the canonical flow. For the validation cases, the blowing
coefficient CB = vw/U∞ = 0.005 and the wall-normal blowing is applied uniformly across the span
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FIG. 1. Schematic of the computational domain. The control region is highlighted in pink.

of the domain and was steady in time. Figure 2(a) shows the streamwise evolution of the friction
coefficient c f with and without low-amplitude wall-normal blowing control. Data are averaged in
the spanwise direction and in time over T ∼ 8000δ0/U∞. The friction coefficient is evaluated using

c f (Reθ ) = τw(Reθ )

0.5ρU 2∞
, (1)

where τw is the averaged wall-shear stress and ρ is the density of the fluid. Good agreement with
past studies is observed for the streamwise evolution of the skin-friction coefficient with and without
the low-amplitude wall-normal blowing control. The current wall-normal blowing simulation (red
solid line) captures the same qualitative and quantitative trend as the reference data (Stroh et al.
[22], red dashed line), showing a maximum skin-friction drag reduction of 56% at Reθ ≈ 650.
Downstream of control there is a sharp recovery of the skin-friction coefficient towards its canonical
counterpart; however, a significant level of skin-friction drag reduction persists far downstream. A
noticeable difference between the present data and the reference data is the slightly smaller values
for the skin-friction coefficient. These small differences may be attributed to the use of different flow

(a) (b)

FIG. 2. (a) Streamwise evolution of the friction coefficient as a function of the Reynolds number for the
canonical and controlled turbulent boundary-layer flows. (b) Mean and fluctuating streamwise velocity profiles
of canonical turbulent boundary-layer flows at Reθ = 1000 (black lines) and Reθ = 1410 (blue lines). Solid
lines correspond to the present results and the dashed lines to the reference data of Schlatter and Örlü [33].
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solvers, domain sizes and number of mesh nodes across the data sets. Despite the use of different
flow solvers, Fig. 2(b) shows there is excellent agreement in the canonical turbulent boundary-layer
profiles at Reθ = 1000 (black lines) and Reθ = 1410 (red lines) when compared with data from
Schlatter and Örlü [33].

III. BAYESIAN OPTIMIZATION ALGORITHM

In the present study, a Bayesian optimization algorithm was used to optimize low-amplitude wall-
normal blowing control of a turbulent boundary-layer flow to achieve a skin-friction drag reduction
with net-power saving. Generically, Bayesian optimization algorithms seek to minimize a chosen
objective function over a given set of parameter values. Bayesian optimization algorithms have
two stages. First, given knowledge of the objective at a known set of parameters, a probability
density function (PDF) for the objective function is computed. This encapsulates a best guess of
the objective and quantifies the uncertainty of the approximation. Second, an acquisition function
is minimized to determine the next set of parameter values to be sampled. This typically involves a
trade-off between minimizing the objective and reducing uncertainty of its approximation.

Specifically, consider an experiment with m input parameters, denoted x ∈ Rm, and a scalar-
valued objective function f (x) ∈ R that is to be minimized. Suppose that n experiments have been
conducted at input values (xi )n

i=1 and that the objective function values f (xi ) are known. Collecting
these values as

X :=
⎡
⎣↑ ↑

x1 · · · xn

↓ ↓

⎤
⎦ ∈ Rm×n, f :=

⎡
⎢⎣ f (x1)

...
f (xn)

⎤
⎥⎦ ∈ Rn, (2)

a training set is defined as D := {X, f }.
The aim is to approximate the value of the objective function at a new test set of input values

(x∗
i )q

i=1 ⊂ Rm. To achieve this, a Bayesian optimization methodology assumes a particular form of
Gaussian uncertainty in the relation between the input parameters x and the objective function value
f (x). Under this assumption, the value of the objective at each test point x∗

i is itself a random
variable, which is denoted f ∗

i . Letting f ∗ = ( f ∗
i )q

i=1 and X ∗ := [x∗
1, · · · , x∗

q] ∈ Rm×q, it can be
shown (Rasmussen [35]) that, given knowledge of the training set D and chosen test inputs X ∗,

( f ∗|X ∗,D) ∼ N [μ(X ∗,D), σ (X ∗,D)]. (3)

That is, the unknown values of the objective function f ∗ at testing points x∗
i have a multivariate nor-

mal distribution with mean μ = μ(X ∗,D) and covariance matrix σ = σ (X ∗,D). This distribution
is commonly referred to as the posterior. Its mean and covariance are given by

μ = K (X ∗, X )K (X, X )−1 f , (4)

σ = K (X ∗, X ∗) − K (X ∗, X )K (X, X )−1K (X, X ∗), (5)

where K (A, B) ∈ R	×p is a kernel matrix calculated from inputs A ∈ Rm×	, B ∈ Rm×p. In this study,
the elements of K (A, B) are chosen to be the Matérn 5/2 kernels

K (A, B)i j = k(ai, b j ) = θ0

⎛
⎝1 +

√
5‖ai − b j‖2

2

l2
+ 5

3

‖ai − b j‖2
2

l2

⎞
⎠ exp

⎛
⎝−

√
5‖ai − b j‖2

2

l2

⎞
⎠ (6)

for i = 1, . . . , 	, j = 1, . . . , p (ai, bi are columns of A and B). Here, θ0 is the covariance amplitude,
and l is a length scale which determines the smoothness of the posterior. Note that different length
scales can be assigned to each parameter independently.

The second stage of the Bayesian optimization algorithm is to select the next sample point
xn+1, given the training set D and the computed posterior distribution f ∗. This is performed by
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(a) (b)

(d) (e)

(c)

FIG. 3. An example of using Bayesian optimization to locate a local minimum on a 1D toy problem. The
black curve is the true objective function, black solid circles are the observed points, the dark blue curve is the
posterior mean μ, and the blue shaded area is the posterior uncertainty (μ ± σ ).

considering an acquisition function a(x), which trades off exploitation (to select the sample of the
lowest mean) and exploration (to sample from a region of high uncertainty), by computing

xn+1 = argmin{a(x) : x ∈ X ∗}. (7)

Many acquisition functions have been proposed in the literature (Brochu et al. [25], Snoek
et al. [26]), although there is little consensus regarding the optimal choice of such a function.
The acquisition function used in this study is the expected improvement (EI) function. It takes into
account the probability of improvement, and the magnitude of the expected improvement, with
respect to the best known value of the objective function fbest := minx∈X f (x), given knowledge of
D. In particular,

a(x) = σ (x|D)[γ (x)�(γ (x)) + φ(γ (x))], x ∈ X ∗, (8)

where

γ (x) = μ(x|D) − fbest

σ (x|D)
, x ∈ X ∗, (9)

and φ(.) and �(.) are the PDF and the cumulative distribution function (CDF), of a standard N (0, 1)
distribution, respectively.

For a simple illustrative example of locating a local minimum with a Bayesian optimization
algorithm, consider a 1D problem that has a noise-free objective function, f (x) = − sin(πx)/(πx),
for −2 � x � 1. In this example, the fitting parameters are fixed with θ0 = 1 and l = 0.8. Starting
with an arbitrary input parameter x1 = −1.5 and corresponding training set D = {−1.5, f (−1.5)},
Fig. 3 shows the development of the posterior distribution over five iterations of the Bayesian
optimization algorithm. Near the training points (black solid circles), the posterior mean μ (dark
blue curve) and the true objective function (black curve) match and the posterior covariance σ (blue
shaded area) vanishes; conversely, the uncertainty of the predictive model increases with distance
from the observation points: see Fig. 3(a). Using the EI acquisition function, the first new input
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FIG. 4. Schematic of the boundary condition of the wall-normal velocity in the control region for the
Bayesian optimization studies.

parameter x2 shown in Fig. 3(b) corresponds to the lowest value of the posterior mean. Subsequently,
since x2 is close to the lowest value of the new posterior mean (almost unchanged from the previous
figure), the acquisition function selects a testing point x3 in a region of high uncertainty in Fig. 3(c).
This behavior is repeated in Fig. 3(d), after which the minimum of the posterior mean approximately
coincides with the true optimum in Fig. 3(e).

IV. RESULTS

Small-amplitude wall-normal blowing was applied to the turbulent boundary-layer flow, for a
range of blowing amplitudes and coverages, in search of a wall-normal blowing control strategy
which would yield a skin-friction drag reduction with a net-power saving. The location and spatial
extent of the control domain was the same as the validation case shown in Fig. 1. The Bayesian
optimization algorithm was used to search over three control parameters simultaneously. The
parameters chosen were the wall-normal blowing coefficient, CB, the number of streamwise blowing
areas, NB and the blowing coverage coefficient, α := λ1NB/LB. These are indicated schematically
in Fig. 4. Steady wall-normal blowing was applied uniformly in the spanwise direction, across
the full extent of the control area, with λ1 and λ0 denoting the streamwise exent of blowing and
nonblowing sections, respectively. Wall-normal blowing was imposed smoothly at the start and
end of each blowing section for a streamwise distance of x ≈ 3.5δ0 using a hyperbolic tangent
function. To account for these transition regions, where CB gradually increases and decreases, the
constraint λ1 > 3.5 was added to the optimization routine. To ensure that the Bayesian optimization
framework converged within a relatively small number of simulations, the wall-normal blowing
amplitude was limited to 0 � CB � 0.01, and the number of blowing areas along the streamwise
direction was limited to 1 � NB � 10. These two parameters were coupled with a range in blowing
coverage coefficient of 0.045 � α � 1 meaning that both a uniform wall-normal blowing region
and intermittent wall-normal blowing regions (i.e., wall-normal standing waves) are contained in
the set of possible blowing strategies. These parameter ranges were chosen to coincide with recent
successful applications of low-amplitude wall-normal blowing control (Kametani et al. [23], Stroh
et al. [22]). Selecting the Bayesian optimization hyper-parameters, i.e., l and θ0 in Eq. (6), is
challenging with no prior knowledge. Experimenting with a 3D toy problem, similar to the 1D
example discussed earlier, showed that using a dynamic θ0 leads to more reliable convergence
when compared to a study with a constant θ0. Therefore, in the Bayesian optimizations which
follow, θ0 was dynamically changed to be equal to the standard deviation of the newly evaluated
objective functions. Similarly, the length scale l for CB, NB, and α were set to 0.005, 5, and 0.5,
respectively, which corresponds to half of the search space in each parameter. A poor choice for the
hyperparameters can result in slow convergence of the optimization routine.

The optimization process was parallelised by running up to four simulations simultaneously,
requiring up to 8,192 computational cores. Each simulation ran for up to 48 hours to provide
sufficiently converged data to evaluate the objective function (i.e., the net-power saving) for each
set of parameters trialled by the Bayesian optimization framework. When running up to four
simulations at the same time during the Bayesian optimization study, the true objective function
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for each simulation was not available to select the parameters for the next iteration. Therefore,
the Bayesian optimization algorithm used the mean value of the posterior as a proxy for the mean
value of the true objective function. Initially, each simulation ran for a duration of T = 1600δ0/U∞.
During the first half of each simulation, the flow adapts to the wall-normal blowing boundary
condition. In the latter half of each simulation, data were collected to provide an estimate of
the time-averaged skin-friction coefficient and thereby net-power saving to within an uncertainty
of ±1%. If the preliminary estimation of the net-power saving was less than 2.5%, then data
were collected over an additional 1600δ0/U∞, which reduced the uncertainty in the time-averaged
skin-friction coefficient and net-power saving to within ±0.5%. For cases of interest, when the
Bayesian optimization framework converged to an optimum solution, for example, data were
collected over T = 9000δ0/U∞, which reduced the uncertainty in the time-averaged skin-friction
coefficient and net-power saving to within ±0.1%.

The net-power saving (S) generated by each wall-normal blowing control strategy was assessed
by taking into account the input power required to generate the wall-normal blowing plus any
power saving due to a reduction in skin-friction drag. Due to the long-lasting downstream effects
of the low-amplitude wall-normal blowing control, a global skin-friction drag coefficient (Cf ) was
evaluated over a streamwise distance of L = 615δ0, such that

Cf = 1

L

∫ 650δ0

35δ0

c f (x)dx, (10)

S = Cw − Cf 0

Cf 0
. (11)

Here, Cf 0 is the global skin-friction coefficient of the canonical turbulent boundary-layer flow,
and Cw = Cf b + Cwb. Cf b is the global skin-friction coefficient with wall-normal blowing control
and Cwb is a coefficient to take into account the power required to generate each wall-normal blowing
control strategy.

In the sections which follow, results are presented for two different Bayesian optimization
studies. In each study, wall-normal blowing control is applied in exactly the same way, as described
above. However, in the first study, the input power required to generate the wall-normal blowing,
and therefore assess control performance within the Bayesian optimization framework, is predicted
using the experimental data from Kornilov and Boiko [18]. In the second study, the input power
required to generate the wall-normal blowing is measured experimentally by generating low-
amplitude blowing with a miniature electromagnetic speaker in quiescent air. Different values of
input power cause a different response of the posterior function within the Bayesian optimisation
framework, leading to different optimum control solutions for each blowing device.

A. First Bayesian optimization Study

Kornilov and Boiko [18] showed that low-amplitude wall-normal blowing with CB = 0.00287
can reduce the skin-friction drag of a turbulent boundary-layer flow by up to 70% at a Reynolds
number of Reθ ∼ 103. In these experiments, data were collected with hot-wire anemometry
directly above the region of blowing, and the low-amplitude wall-normal velocity was generated
by blowing compressed air through a perforated plate. The perforated plate had an area of
420 × 250 mm2 and was 1.1-mm thick. The plate was populated with 0.17-mm holes providing a
porosity of 17.1 % and a hole-to-plate-thickness ratio of 6.47. Alongside the hot-wire anemometry
measurements, the pressure coefficient Cp := �p/0.5ρU 2

∞ across the perforated plate was measured
at a free-stream velocity of U∞ = 21 m/s and was shown to be directly proportional to the
wall-normal blowing amplitude, Cp = 124CB. These experimental data were used to estimate the
power consumption required to generate the wall-normal blowing in this first Bayesian optimisation
study. It was assumed that a constant and uniform wall-normal velocity boundary condition is a
suitable representation for the wall-normal blowing through a perforated plate. In addition, it was
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TABLE I. Wall-normal blowing parameters for the first Bayesian optimization study with corresponding
maximum local skin-friction drag reduction (%), global skin-friction drag reduction (%), and net-power saving
(%). The blue row indicates the optimum control strategy to achieve a net-power saving. The red row indicates
the wall-normal blowing parameters to achieve the highest local maximum skin-friction drag reduction. The
black row indicates the canonical turbulent boundary-layer flow. For convenience, drag reduction and net-
power saving are positive.

Case CB NB α Max Drag Red. Global Drag Red. Power Saving S

0 0 – – – – –
1 0.005 1 1 52 13.2 3.2
2 0.005 1 0.47 48.5 6.0 1.3
3 0.005 1 0.24 49 2.9 0.6
4 0.0037 5 0.9 39.3 9.3 4.3
5 0.00997 10 0.78 75.5 19.8 −9.5
6 0.00032 1 1 39.5 0.9 0.9
7 0.00424 3 0.95 45 11.0 3.8
8 0.00404 6 0.88 41.4 9.6 3.1
9 0.00233 8 0.82 39.5 5.4 3.3
10 0.00136 1 0.06 39.5 0.4 0.3
11 0.000003 10 0.78 39.5 −0.5 −0.5
12 0.0059 10 0.78 54 12.3 1.5
13 0.00289 1 1 36.5 8.3 5.0
14 0.00386 1 1 41.5 10.4 4.5
15 0.00296 1 1 39.5 8.4 4.8
16 0.0029 1 1 39.5 8.1 4.8
17 0.00289 1 1 39.5 7.9 4.6
18 0.00278 1 1 39.5 7.6 4.5

assumed that the blowing power coefficient was Cwb = (CpCB + C3
B)αt , where αt is the ratio of the

blowing areas to the total control area used to calculate the global skin-friction coefficient, Cf . Most
numerical studies assume that Cp is equal to zero, for example Kametani et al. [21]. Neglecting Cp

makes the blowing power proportional to the cube of the blowing velocity, hence virtually zero.
Under this assumption, the net-power saving corresponds to the global drag reduction. However,
Cp could be significant and has potential to generate net-power losses. It should be noted that the
cost of compressing the air is not included in the energy budget here, as this was unknown in the
experiments of Kornilov and Boiko [18]. Therefore, even with the contributions of Cp included, any
estimation on net-power saving may be overestimated.

In this first Bayesian optimization study, 18 DNS with wall-normal blowing control were
conducted for comparison with the canonical turbulent boundary-layer flow. The blowing pa-
rameters for the first three simulations (with each simulation also referred to as a Case herein)
were selected arbitrarily to pretest the behavior of the wall-normal blowing and to initialize the
Bayesian optimization. The choice of parameters for the three initialization cases can influence
the search path and rate of convergence of the Bayesian optimization study; however, the final
optimized result is independent of the initialization cases, assuming a single local minimum over
the parameter space search. The parameters of the remaining 15 simulations were determined by the
Bayesian optimization algorithm. Table I shows the parameters chosen by the Bayesian optimization
framework for each simulation, alongside the corresponding maximum and global skin-friction
drag reduction, and the net-power saving. Case 0, highlighted black in Table I, corresponds to the
canonical turbulent boundary-layer flow. The Bayesian optimization framework predicts that the
optimum control strategy achieves a maximum drag reduction of 37% and a net-power saving of
5% with low-amplitude uniform blowing. These control parameters are highlighted blue in Table I
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(a) (b)

FIG. 5. (a) Streamwise evolution of the skin-friction coefficient as a function of Reθ for all cases. The thick
solid lines corresponds to the three cases of interest in this study: Case 0 (black), Case 5 (red), and Case 13
(blue). (b) Streamwise evolution of Reδ for Case 0, Case 5, and Case 13. The region of wall-normal blowing
control is highlighted in pink.

and are obtained after 13 simulations within the Bayesian optimization framework. As anticipated,
increased wall-normal blowing intensity yields increased maximum and global drag reduction but
at the expense of a net-power loss: see Case 5, which is highlighted red in Table I. Here, the local
maximum drag reduction peaks at 76% but with a net-power loss of 9.5%.

Figure 5 shows the development of the turbulent boundary-layer flow during and downstream
of control for Case 5 (red line) and Case 13 (blue line). The canonical turbulent boundary-layer
flow (Case 0) is indicated by the black line. Figure 5(a) shows the local skin-friction coefficient
as function of Reθ . Substantial drag reduction over the control region is observed for these two
cases of interest, with the ringing on the skin-friction coefficient for Case 5 due to the intermittent
blowing, or standing wave control strategy located by the Bayesian optimization framework. One
of the most striking observations is the long-lasting downstream effects of the wall-normal blowing
on the skin-friction coefficient. It is the slow spatial recovery of the turbulent boundary-layer flow
back to its canonical value which results in the net-power savings for Case 13. A skin-friction drag
reduction persists beyond Reθ = 1940, which is equivalent to streamwise distance downstream of
control of ∼650δ0. Accompanying the long-lasting reduction in skin-friction drag is a thickening
of the turbulent boundary-layer flow. This is shown in Fig. 5(b) where the growth in boundary-
layer thickness is represented by Reδ = δU∞/ν. With lower blowing amplitude, the distortion of
the boundary-layer thickness at the onset of control is less prominent. This result was observed by
Stroh et al. [22] and was thought to be due to a streamwise shift in the virtual origin of the turbulent
boundary-layer flow.

Instantaneous visualizations of the instantaneous streamwise velocity in the streamwise-
spanwise plane at y+ ≈ 10 (over the control area) are plotted in Fig. 6 for Case 0, Case 5, and
Case 13. Over the control region, the wall-normal blowing increases the number of areas where
the streamwise velocity is close to zero (dark blue), especially for Case 5 where the blowing
intensity is around three times larger than Case 13. These near-wall visualizations also highlight
the long-lasting downstream signature of the wall-normal blowing control. Persistent areas with
low-speed streamwise velocity can be seen far downstream of control, with fewer areas of high-
speed streamwise velocity observed when compared with the canonical turbulent boundary-layer
flow (Case 0). However, the injection of energy into the turbulent boundary-layer generates a surge
in the turbulence activity as observed by the increased number of vortical flow structures in the
developing enstrophy fields shown in Fig. 7. These results are consistent with the simulations of
Kametani and Fukagata [20] and Kametani et al. [21].
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FIG. 6. Instantaneous visualizations of the streamwise velocity in the streamwise-spanwise plane at y+ ≈
10 for Case 0, Case 5, and Case 13. Dark blue corresponds to a zero velocity and red correspond to U∞.

Fukagata et al. [36] derived the so-called Fukagata-Iwamoto-Kasagi (FIK) identity, which is an
expression for the skin-friction coefficient for incompressible flows. For turbulent boundary layers
which are homogeneous in the spanwise direction, the FIK identity can be expressed as

cFIK
f (x) = 4(1 − δ∗)
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0
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,

(12)

where all length and velocity scales are nondimensionalized by the local boundary-layer thickness
or free-stream velocity, respectively. Here δ∗ denotes the normalized displacement thickness. The
FIK identity decomposes the skin-friction coefficient into four contributions: a boundary-layer
thickness contribution cδ

f , a Reynolds shear stress contribution cT
f , a mean wall-normal convection

contribution cC
f and a spatial development contribution cD

f (based on four terms, cD
f = cD1

f + cD2
f +

cD3
f + cD4

f ). Note that the mean wall-normal convection term and the spatial development term are
absent in fully developed channel and pipe flows. For a more detailed discussion on each term of
the FIK identity, the reader is referred to Kametani and Fukagata [20].

The FIK decomposition shows that the large levels of skin-friction drag reduction generated
over the control region are associated with large negative contributions of the convection term.

FIG. 7. 3D instantaneous visualizations of the enstrophy field for Case 0, Case 5, and Case 13, colored by
the wall-normal velocity component.
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(a) (b)

(c)

FIG. 8. Streamwise evolution of the FIK identity contributions for Case 0 (a), Case 5 (b), and Case 13 (c).

This is somewhat expected given that cC
f ∼ −ŪV̄ < 0, with steady wall-normal blowing within a

boundary-layer flow. However, an intriguing observation is found when comparing cC
f downstream

of control for Cases 5 and 13 for which CB ≈ 1 and 0.3%, respectively. For Case 5, Fig. 8(b),
cC

f becomes positive downstream of control which may be a consequence of the relatively large
wall-normal velocity rolling-up within the boundary layer as the flow advects downstream. A similar
small peak of positive cC

f is observed in Fig. 8(c), with much lower wall-normal blowing amplitude,
however cC

f < 0 with increasing distance downstream of control, as seen in the canonical turbulent
boundary-layer flow, Fig. 8(a).

A very similar trend can also be observed for cD
f : this term is always positive over the control

region with a very sharp increase at the start of control followed by a steady decay, which then
becomes negative for Case 5 and positive for Case 13 (after a small region where it is negative just
at the end of the control region). Therefore, it is possible to conclude that over the blowing region the
reduction of the convection contribution is largely responsible for the skin-friction drag reduction,
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(a) (b)

(c)

FIG. 9. Streamwise evolution of the four terms of the spatial development contribution of the FIK identity
for Case 0 (a), Case 5 (b), and Case 13 (c).

while the spatial development contribution is largely responsible for the skin-friction drag reduction
downstream of control.

Figure 9 shows the individual contributions for each term of the spatial development contribution
of the FIK identity for Case 0, Case 5, and Case 13. In agreement with previous simulations in a
similar set-up (Kametani and Fukagata [20]), adverse and favourable pressure gradients (black lines)
can be observed at the start and at the end of each blowing area. This shows that it is important to take
into account the contribution of the pressure gradients in the FIK identity. For all cases, the spatial
development contribution cD

f is clearly dominated by the spatial development of the streamwise
velocity gradient. cD2

f and cD3
f are virtually zero for the canonical case and very small for the other

cases. Interestingly, cD
f increases downstream of the wall-blowing with positive values for case 13

and negative values for case 5, as already observed in Fig. 8.
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FIG. 10. (a) Picture of the Visaton K 50 miniature speaker used to generate wall-normal blowing.
(b) schematic circuit diagram for the miniature speaker setup.

B. Second Bayesian optimization Study

In this second Bayesian optimization study, a more realistic estimate of the net-power savings
associated with a wall-normal blowing skin-friction control strategy is investigated. The total input
power required to generate wall-normal blowing with a miniature electromagnetic speaker is used to
assess control performance in the turbulence resolving simulations within the Bayesian optimization
framework. It is assumed that a steady uniform velocity boundary condition is sufficient to model
the wall-blowing generated by an array of miniature electromagnetic speakers.

The wall-normal blowing was generated by a Visaton K 50 miniature electromagnetic speaker.
The speaker had a 50-mm-diameter diaphragm which was covered with a 3-mm-thick perforated
acrylic plate. The plate contained 2020 holes which were 460 μm in diameter, providing a
porosity of 17.1% and plate-thickness-to-hole-diameter ratio of 6.52: see Fig. 10(a). The plate
dimensions were chosen to closely match previous successful wall-normal blowing studies which
had optimized the blowing geometry through a series of parametric tests (Hwang [37], Kornilov
and Boiko [18]). The miniature speaker was driven with a square wave ranging from 0.5 to
5 V at excitation frequencies ranging from 400 to 500 Hz with a 50% duty cycle. To enable
instantaneous measurements of the input power to the miniature speaker, an AD820 operational
amplifier, connected in a noninverting configuration, was used to amplify the voltage drop over
a Caddock MP930 0.1� current sense resistor: see Fig. 10(b). The blowing velocity generated
by the miniature speaker was measured with a Dantec 55P15 hot-wire probe powered by a TSI
IFA 100 constant temperature anemometry system. The hot-wire voltage was amplified with a
gain of 10 prior to sampling. Before and after each experimental run, the hot-wire probe was
calibrated against a Dantec ConfortSense 54N95 probe, accurate to ±0.02 m/s, in a low-speed
wind tunnel. Each calibration consisted of 15 points over a 0–1.6 m/s speed range, which were
sampled for 30 s at 1 kHz and fit with a third-order polynomial. During each calibration the air
temperature was measured to an accuracy of ±0.04 ◦C with an Omega PT100 powered by an Omega
PT-104A DAQ module. All blowing measurements were conducted in quiescent air in the center of
a wind tunnel test section. The test section had a cross-sectional area of 0.43 × 0.35 m2 and was
sealed over a 1.3 m length to create a chamber which was not influenced by any external drafts.
During blowing measurements, the instantaneous hot-wire voltage, speaker input voltage waveform,
speaker input current and air temperature were sampled simultaneously with a National Instruments
PXIe-6356 16-bit DAQ system. The hot-wire data were linearly interpolated across calibration
curves to account for any small drifts in temperature during the course of the experiments. Data
were sampled at a frequency 10 times greater than the speaker excitation frequency for 120 s at each
spatial location. The hot-wire probe was positioned and traversed across the face of the miniature
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FIG. 11. (a) Instantaneous wall-normal velocity and input power to the speaker driven at 4 V, 440 Hz at 50%
duty cycle. (b) Time-averaged wall-normal velocity versus power per unit area from 1.5–5 V over 400–500 Hz
at 50% duty cycle. All data taken at the center of the miniature speaker at y/d ∼ 5.

speaker by a custom-designed three-axis traverse system which consisted of three hybrid stepper
motors controlled by an National Instruments PXI-7334 motion controller via a LabView interface.
Renishaw optical linear encoders measured the position of the hot-wire probe to an accuracy of
0.5 μm.

An example of instantaneous wall-normal blowing velocity taken in the centre of the speaker at
around 5 hole diameters downstream from the jets exits (e.g., y/d ∼ 5, where y is the wall-normal
distance from the perforated plate and d is the hole diameter) is shown in Fig. 11(a). Plotted
alongside the velocity is instantaneous input power to the speaker. Here, the speaker is driven with
a square wave voltage input of 4 V at 400 Hz with a 50% duty cycle. The speaker diaphragm
moves up and down on each rising and falling edge of the voltage waveform, respectively, causing
a sinusoidal velocity response downstream from the porous plate, similar in working principle to a
synthetic jet (Glezer and Amitay [38]). During all measurements, the hot-wire probe is sufficiently
far downstream of the jets exits to avoid the effects of any reverse flow entrained into the cavity
during the down stroke of the diaphragm (Di Cicca and Iuso [39], Glezer and Amitay [38]).
The time-averaged wall-normal blowing velocity at y/d ∼ 5 is shown in Fig. 11(b). The input
power-velocity curves follow a nonlinear response with greater efficiency in operation found for a
driving frequency of around 440 Hz. Either side of this driving frequency, more power is expended
driving the diaphragm to generate the same averaged wall-normal blowing velocity. This optimized
frequency is likely due to a coupled resonance that depends on the cavity flow, cavity geometry and
structural characteristics of the diaphragm (Glezer and Amitay [38]).

In this second Bayesian optimization study, the free-stream velocity is assumed to be U∞ =
21 m/s to match the experimental data from Kornilov and Boiko [18] which were used in the first
Bayesian optimization study. In the turbulence resolving simulations which follow, the net-power
saving is calculated as described previously using the 440 Hz power curve shown in Fig. 11(b) with
the blowing power coefficient defined as

CwB = PB
1
2ρU 3∞At

. (13)

Here PB is the time-averaged total input power to each miniature speaker as shown in Fig. 11(b), ρ

is the density of the fluid and At is the total are over which the global drag reduction is estimated.
In this second Bayesian optimization study, 11 DNS with wall-normal blowing control were

conducted. The first three simulations used the same blowing parameters as the first Bayesian
optimization study to pretest the behavior of the wall-normal blowing control and to initialize
the Bayesian optimization framework. Table II shows the parameters chosen by the Bayesian
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TABLE II. Wall-normal blowing parameters for BO2, with corresponding maximum local drag reduction
(%), global drag reduction (%) and net-power saving (%).The blue row indicates one optimum control strategy
with uniform blowing. The red row highlights one optimum control strategy with an intermittent blowing.
The black row indicates the canonical turbulent boundary-layer flow. The net-power savings S and S1 use the
mean and lower uncertainty limit values for power per unit area, respectively, as shown in Fig. 11(b). For
convenience, drag reduction and net-power saving are positive.

Case CB NB α Max Drag Red. Global Drag Red. Power Saving S Power Saving S1

0 0 0 – – – – –
1 0.005 1 1 52 13.2 −0.9 1.2
2 0.005 1 0.47 48.5 6.0 −0.6 0.3
3 0.005 1 0.24 49 2.9 −0.3 0.0
4 0.0041 2 0.24 37 2.5 −0.2 0.2
5 0.0051 1 0.25 47.5 3.1 −0.3 0.2
6 0.007 1 0.23 60.5 4.1 0.1 0.5
7 0.0042 1 0.22 39 2.2 −0.3 0.0
8 0.0093 5 0.23 51.5 5.6 0.0 0.7
9 0.0088 4 0.24 55 5.3 0.0 0.7
10 0.0079 3 0.23 57 4.6 −0.1 0.5
11 0.0080 2 0.23 63.5 4.7 −0.1 0.6

optimization framework as it searches through parameter space to achieve a global skin-friction
drag reduction with a net-power saving. After six iterations the Bayesian optimization framework
predicts that a short intense uniform blowing strategy will achieve a local maximum skin-friction
drag reduction of 60.5% and a global skin-friction drag reduction of 4.1% with a net-power saving
(S) of 0.1%. These parameters are highlighted blue in Table II. To test the sensitivity of the net-power
savings to input power from the blowing device, the lower uncertainty limit values from the power
per unit area curve shown in Fig. 11(b) were used to recalculate the net-power savings for the 11
iterations found by the Bayesian optimization framework. These net-power savings are listed under
S1 in Table II and show that a 1.2% net-power saving is achieved for Case 1. This is perhaps
unexpected, illustrating that any change in input power to the blowing device requires the Bayesian
optimization framework search again through parameter space to find a new optimized control
strategy. This result is encouraging in that a small improvement in efficiency of the blowing device
could yield significant net-power savings. Moreover, a new Bayesian optimization search may yield
a larger net-power saving for a different control strategy. The second Bayesian optimization study
also predicts in Case 8, highlighted red in Table II, that strong, short intermittent blowing (or
wall-normal standing wave) yields a significant local maximum drag reduction of 51.5% with a
potential net-power saving of up to 0.7%.

Figure 12(a) shows the local skin-friction coefficient versus Reθ for Case 6 (blue line), Case 8
(red line), and the canonical turbulent boundary-layer flow (Case 0). Similar to the first Bayesian
optimization study, substantial drag reduction is observed over the control region, which persists for
several hundred boundary-layer thicknesses downstream of control with a slow spatial recover back
to the canonical wall-turbulent flow. Figure 12(b) shows the growth in boundary-layer thickness with
wall-normal blowing control strategies for Case 6 and Case 8. Small undulations are observed over
the control region due to the injection of wall-normal momentum by the blowing control followed
by an almost constant increase in boundary-layer thickness far downstream, qualitative similar to
the observations for the first Bayesian optimization study, Fig. 5.

Note finally that the decomposition of the FIK identity for Cases 6 and 8, along with the near-wall
behavior of the streamwise velocity and evolution of the downstream vortical flow structures look
qualitatively similar to the data obtained for Case 13 from the first Bayesian optimization study,
therefore are omitted for brevity for the second Bayesian optimization study.
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(a) (b)

FIG. 12. (a) Streamwise evolution of the friction coefficient as a function of Reθ for all the cases. The thick
solid lines corresponds to the three cases of interest in this study: Case 0 (black), Case 6 (blue), and Case 8
(red). (b) Streamwise evolution of Reδ (based on the boundary-layer thickness) for the uncontrolled case, Case
6 and Case 8. The blowing section is highlighted in pink.

For the first Bayesian optimization study, the algorithm converged to a control strategy corre-
sponding to low-intensity uniform blowing over the full streamwise extent of the control region.
By only considering the pressure difference across the blowing wall, a very optimistic idealized
net-power saving of 5% was observed for the best set of parameters. Figure 13 shows the shape
of the mean and covariance of the objective function (net-power saving) as a function of CB, α,
and NB for the first Bayesian optimization study (top) and combined with the extra data from the
second Bayesian optimization study (bottom), to refine the shape of the mean and the covariance
of the net-power saving. It should be noted that with more observations the shape of the mean
net-power saving does not vary significantly, and the predicted location of the minimum does not
change which suggests that the first Bayesian optimization is converged. The only difference can be
seen close to CB = 0.01 where more data are available from the second Bayesian optimization. The
algorithm anticipates that more than 4% of net-power saving (see the dark red isocontour) is possible
with uniform blowing (close to NB = 1) with relatively small blowing velocity (vw ≈ 0.003). It can
be seen that the shape of the objective function is relatively simple, mainly 2D, which suggest
that intermittent blowing (NB parameter) does not have a significant role compared to the other
parameters, at least in the present study. The 2D shape for the objective function is confirmed
by repeating Case 12 from the first Bayesian optimization study, but with a single blowing strip
(NB = 1, α = 0.77, and CB = 0.6%, respectively); see the green dot in Fig. 13. The shape can be
attributed to the small streamwise extent of the control area, to the small number of parameters
for the optimization, and to the procedure to compute the net-power saving from the experimental
data. Additionally, the simple shape of the objective function possibly explain why the algorithm is
converging very quickly, with order 10 simulations.

Similarly, Fig. 14 shows the shape of the mean and covariance of objective function (net-power
saving) as a function of CB, α, and NB for the second Bayesian optimization study (top) and is
combined with the extra data from the first Bayesian optimization study (bottom), to refine the
shape of the mean and the covariance of the net-power saving. It can be seen that the shape of the
objective function is very different between the first and second Bayesian optimization studies, even
if the parameters for the simulations are the same. The differences are related to the estimation of
the power needed by the blowing control solution. Depending on the blowing device, it might be
more efficient for low-intensity blowing over a long streamwise area or it might be more efficient for
more intense blowing over a short streamwise area. For the second Bayesian optimization study, the
shape of the objective function is more complex, with the possibility of different optimal solutions
based on different sets of parameters. This seems to suggest that for a given number of parameters,
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FIG. 13. Shape of the mean (left) and covariance (right) of the objective function (net-power saving) as a
function of the three parameters CB, α, and NB for the first Bayesian optimization (top) and combined with the
extra data from the second Bayesian optimization (bottom). Net-power saving is shown as positive.

and depending on the input power required for the blowing, there might be different drag reduction
strategies to achieve net-power saving. As such, the present results predict a net-power saving which
is reported are encouraging and future studies will aim to the level of net-power saving by increasing
the number of input parameters used within the Bayesian optimization algorithm.

V. DISCUSSION

The two Bayesian optimization studies have shown that a net-power saving on the order of a few
percent could be possible using a low-amplitude wall-normal blowing control strategy at Reynolds
numbers of Reθ ∼ 103. Previous experimental studies have shown the potential of using a uniform
low-amplitude wall-normal blowing approach, achieving turbulent skin-friction drag reductions of
more than 50% in subsonic flows and 80% in supersonic flows when using blowing coefficients of
v/U∞ ∼ 0.001 (Hwang [17,37]). However, the focus on all previous investigations was on achieving
a skin-friction drag reduction and the associated convective drag reduction mechanism, rather than
optimising a subset of the blowing parameters to achieve a net-power saving as demonstrated here.
Given that a 3% reduction in the turbulent skin-friction drag acting on a long-range commercial
aircraft would save £1.2M in jet fuel per aircraft per year and prevent the annual release of 3,000
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(a) (b)
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FIG. 14. Shape of the mean (left) and covariance (right) of objective function (net-power saving) as a
function of the three parameters CB, α, and NB for the second Bayesian optimization (top) and combined with
the extra data from the first Bayesian optimization (bottom). Net-power saving is shown as positive.

tons of carbon dioxide (Bushnell and Hefner [40]), the predicted net-power savings on the order
of a few percent offer significant potential for future applications, especially given the potential
of the control approach for higher Reynolds number flows (Hwang [17,37]). The low-amplitude
wall-normal blowing control strategies found within the Bayesian optimization framework are
effective in achieving a net-power saving as the skin-friction drag reduction persists for very long
distances downstream of control as already observed in Stroh et al. [22]. These types of control
strategies, which have long-lasting downstream effects, are attractive for many practical flows of
interest including the flows over high-speed trains, along the hulls of ships or down the fuselage of an
aircraft. However, accompanying the long-lasting skin-friction drag reduction is a thickening of the
turbulent boundary layer. Therefore, care would be needed if applying these control techniques in
situations where the pressure drag plays an important role in overall performance, for example, in the
flow over an aircraft’s wings (Atzori et al. [41]). Noting the growing interest in battery technology
and the production of green energy, alternatively powering an active low-powered control solution,
rather than relying on the usual fossil fuelled systems, could yield significant savings in transport
emissions ahead of any full-scale alternative-energy revolution. More broadly, energy reduction in
any system can only be seen as positive. It is also worth noting, as pointed out by Kornilov and Boiko
[18], that by reusing exhausted air feeds on flight, although the same approach is applicable across
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the transportation sector, could provide the blowing power required for a low-amplitude wall-normal
blowing control strategy with little energy penalty, mimicking the use of compressed air in a labora-
tory setting. This would open the possibility of achieving up to a 5% net-power saving with simplis-
tic actuator technology, as found experimentally (Kornilov and Boiko [18]), and here numerically.

With the primary objective of the Bayesian optimization framework being to achieve a net-power
saving, establishing the potential power consumption of the two different blowing devices was an
integral part of this investigation. The different power consumption needed for each blowing device
created different search paths through parameter space within the Bayesian optimization framework,
which ultimately resulted in two different optimized wall-turbulence control strategies. This is an
interesting result illustrating that idealized control power would likely lead to nonoptimal control
strategies, if achieving a net-power saving was the primary objective. In this investigation, each
blowing device was simulated as having a uniform steady wall-normal velocity over some part of
the spatial domain. In reality, it is likely that either blowing device will be spatially discrete in the
streamwise and spanwise directions to some extent, and each miniature electromagnetic speaker
will apply a small amount of suction at the wall to refill the speaker cavity during excitation.
However, the aim of the present investigation was not to implement a high-fidelity model of any
one particular blowing device. Instead, the uniform blowing boundary condition has provided a
reasonable approximation of each blowing device, and has allowed this investigation to highlight
the strengths of a Bayesian optimization approach for wall-turbulence control.

The Bayesian optimization framework optimized just three blowing parameters to locate sig-
nificant skin-friction drag reduction with net-power saving. Importantly, the Bayesian optimization
technique was able to converge to an optimized solution with very few simulations, order 10 in
this investigation, highlighting that a Bayesian optimization approach may also provide a powerful
tool for experimentalists, where a time-averaged skin-friction drag value for a given set of control
parameters could be obtained within minutes. Having an ability to optimize parameters with a
reduced number of observations, whether these be with experiments or simulations, is important.
Other forms of optimization, for example, machine learning control with evolutionary algorithms
(Gautier et al. [42]), have shown to take up to one week of wind tunnel testing, requiring on the
order of 500 observations to locate an optimized control law for a single actuator system; however,
impressively, this evolutionary approach did find a new way to control a backward facing step
flow at modest Reynolds number via a new drag reduction mechanism, which also emphasises
the potential of a statistically driven approach to flow control. While few simulations were needed
in the present investigation to locate an optimized solution, a mere three control parameters were
inputted into the Bayesian optimization framework. It is likely that increasing the number of input
parameters will increase the number of observations required to determine an optimized solution.
However, optimising an increased number of input parameters may enable new innovative pathways
to control wall-turbulence with the potential for higher net-power savings. From a numerical view
point, instead of using costly DNS, it would be more feasible to expedite numerical observations
by using Implicit Large-Eddy Simulations (ILES). Recently, a new method was implemented in
Incompact3d to perform ILES, which targeted numerical dissipation introduced at the small
scales through the discretisation of the second derivatives of the viscous terms (Dairay et al. [43],
Lamballais et al. [44]). It was shown in these studies that it is possible to design a high-order
finite-difference scheme to mimic a subgrid-scale model for LES based on the concept of Spectral
Vanishing Viscosity (SVV; see, for instance, Karamanos and Karniadakis [45], Tadmor [46]), at
no extra computational cost. ILES of turbulent channel flows have already been performed with
Incompact3d (Lamballais et al. [44]), providing the framework for future simulations of turbulent
boundary-layer flows.

VI. CONCLUSIONS

This paper presents DNS of low-amplitude wall-normal blowing control of zero-pressure
gradient turbulent boundary-layer flows at Reynolds numbers of Reθ ∼ 1000. The aim of this
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investigation was to optimize the blowing amplitude and blowing coverage to enable a skin-friction
drag reduction with a net-power saving. Optimization of the control parameters was performed
within a Bayesian optimization framework which required as little as 6 observations to determine
the optimum set of control parameters. Control performance was assessed by using the power
consumption from two different sets of experimental data from two different types of blowing
device. The first type of blowing device was used by Kornilov and Boiko [18] and conveyed
compressed air into a plenum chamber then through a perforated plate into the oncoming turbulent
boundary-layer flow. The second type of blowing device was original and generated low-amplitude
wall-normal blowing with a miniature electromagnetic speaker. The wall-normal blowing control
was simulated by a steady and uniform velocity boundary condition within the high-order flow
solver Incompact3d, with the effects of control monitored over 650δ0, where δ0 was the height of
the laminar boundary-layer flow at the inlet of the simulation at Reθ = 170.

The simulations have demonstrated that the low-amplitude wall-normal blowing control can
generate a skin-friction drag reduction which persists for up to 650δ0 downstream of control, and
that it is the slow spatial recovery of the skin-friction coefficient back to its canonical counterpart
which generates the net-power savings in this study. In particular, by decomposing the skin-friction
coefficient using the Fukagata-Iwamoto-Kasagi (FIK) identity, it has been shown that it is the
changes in contribution to the convection and streamwise development terms of the turbulent
boundary-layer flows which generates the net-power savings.

Using the power consumption for the compressed-air-type blowing device caused the Bayesian
optimization framework to identify a uniform blowing control strategy as optimum. Here, a blowing
amplitude 0.289% of the free-stream velocity generated a local skin-friction drag reduction of 36.5%
and a global skin-friction drag reduction of 8.3%, with a net-power saving of 5%. Although, it
should be noted that the cost of compressing the air was not accounted for in this energy budget.
Similarly, by using the lowest estimate of the power consumption for the miniature electromagnetic
speaker obtained in the present experiments (S1 in Table II), a uniform blowing strategy with a
blowing amplitude of 0.5% of the free-stream velocity generated a local skin-friction drag reduction
of 52% and a global skin-friction drag reduction of 13.2%, with a net-power saving of 1.2%. In
addition, net-power savings of 0.7% were found using a wall-normal standing wave control strategy,
which was unexpected, and highlights the potential of using a Bayesian optimization approach to
find new wall-turbulence control strategies. Interestingly, the search paths through parameter space
differed depending on the power consumption used for each Bayesian optimization study, even
when starting from the same initial parameter conditions, illustrating that any change related to the
objective function requires a new Bayesian optimisation study.

Local maximum skin-friction drag reductions of 75.5% and 63.5% were observed using the
power consumption from the compressed-air-type or miniature electromagnetic speaker blowing
device, respectively. Although it should be noted that obtaining a local maximum skin-friction drag
reduction was not the focus of either study and is purely a consequence of the search path through
parameter space made by the Bayesian optimisation framework. Therefore it is possible that higher
levels of local skin-friction drag reduction may be found if this was the objective of the Bayesian
optimization.

More broadly, the results presented illustrate that a Bayesian optimization approach provides
a powerful tool for optimizing wall-turbulence control strategies, requiring few observations to
converge on the optimum set of control parameters. It is likely that the number of required
observations will increase as the number of control parameters increase.
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