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The transport of colloids in porous media is governed by deposition on solid surfaces
and pore-scale flow variability. Classical approaches, like the colloid filtration theory
(CFT), do not capture the behaviors observed experimentally, such as nonexponential
steady-state deposition profiles and heavy tailed arrival time distributions. In the framework
of CFT a key assumption is that the colloid attachment rate k is constant and empirically
estimated by a posteriori macroscopic data fitting. We propose a stochastic model that
explicitly accounts for variability of the pore-scale transport and attachment properties.
Colloidal motion is modeled as a sequence of displacements whose velocity and extension
are statistically distributed. Colloidal depositions are modeled as random events whose
statistics are determined by flow velocity, pore size, and attachment rate. The resulting
deposition profiles are, in general, nonexponential and can be predicted based on the
disorder distributions.
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I. INTRODUCTION

The macroscopic phenomenon of filtration is the process by which particles are removed from
suspension in fluids: In other words, it is the separation between the suspended and the solid
phase of transported colloids [1]. This ubiquitous process takes place in natural (e.g., groundwater
and soil [2], hyporheic zone [3]) and industrial systems (e.g., filtration plants [4], pharmaceutical
industry and hospital care [5]) and affects many societal issues, including health, energy, and clear
water resources. The removal process of filtration is the composition of a number of small-scale
mechanisms that include straining, sedimentation, flocculation, and surface attachment. In practice,
the filtration process requires that a colloid is transported close enough to the host medium’s solid
surface that it can attach to it [1].

The interaction among suspended colloids and between colloids and larger solid surfaces is
classically described by the DLVO theory [1], which accounts for charged surfaces that interact
through a liquid medium. This theory considers the balance between repulsive, Coulomb, and
attractive Van der Waals forces. The former are associated to the so-called double layer that forms
around an ionic species to maintain electric neutrality and that coats all available surfaces. The
latter are due to quantum effects. They quickly vanish with distance and are responsible for the
eventual colloid attachment to the grain surfaces [6]. In this framework, when a suspended particle
approaches another, or the solid surface of a different object, the ionic clouds overlap and a repulsion
force is exerted on the particle preventing them to come closer. However, because of molecular
diffusion or hydrodynamics effects, a suspended particle could approach a surface close enough,
against the electrostatic repulsion, to feel the attractive force and, eventually, attach to it [1]. These
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FIG. 1. Filtration models. (a) The classical Happel sphere in a cell model based on the porous medium
reduction to a single collector. (b) Schematic view of our model that takes into account the spatial variability of
the collector properties: The porous medium is though as a collection of many collectors (solid grains) around
which particles are advected by an heterogeneous velocity field (black disk, adapted from [23]). (c)–(e) Three
particles flowing close by solid grain surface: Once a transported particle approaches the solid surface it will
move along a segment of length λ, ∼ the size of the grain, keeping a constant velocity v, being at a constant
distance from the solid surface and, then, experiencing a constant attachment rate k.

attractive forces take place at very short scales l , below the micron (typically below 50 nm [6]).
Thus, they require that the flowing colloids approach the solid boundaries of the grains at distances
below l to obtain individual attachment events that lead to the macroscopic filtration phenomenon
by the host filter.

Many natural porous media, such as rocks, soil, or biological tissues (e.g., wood), as well as
industrial porous materials like cements and ceramics, are characterized by their ability to transmit
fluids through their pores among solid impermeable grains that constitute the overall medium
backbone [7]. These media have been shown to posses a very rich structure in terms of the
pore length, pore throat, and connectivity (e.g., Ref. [8]). This complexity plays a critical role in
natural and engineered processes such as groundwater contamination and remediation [9,10], water
infiltration in soils [11], and geologic carbon sequestration [12]. Porous materials represent excellent
filters since they are characterized by very large surfaces compared to their volumes [7] and, thus,
they are often used as filtration systems [13]. However, pore-scale fluctuations in the medium, flow,
and deposition properties are represented in the classical Darcy scale colloid filtration theory (CFT)
by average quantities like porosity φ, the Darcy velocity q and filtration rate k [7].

Most filtration models rely [14], to the best of our knowledge, on the assumption proposed by
Happel that the complexity of flow though a permeable medium can be reduced by considering
the porous material as an assemblage of smooth, uniform spheres and representing the whole host
medium by set of identical cells each containing a sphere surrounded by a fluid envelope [15]. This
concept is schematically represented in Fig. 1(a). In this framework, each sphere is considered as a
collector over which colloids, transported by the flow, may collide when passing close to its solid
boundary. In Fig. 1(a) this is represented by the gray area around the black collector. Collisions occur
with an attachment or filtration rate k that is associated to the flow and medium properties as [16,17]
k = 3η(1 − φ)q/2dc, where dc is the diameter of the collector (the average grain diameter) and η is
the collector efficiency (fraction of the flowing colloids that will collide on the collector itself). This
rate, k, represents the fraction of collision events that result in an attachment event per unit time and
is typically measured in units of [1/s]. Adopting this view of the flow through a porous material,
as described by the flow around a set of identical collectors, the efficiency η is typically related to
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the ratio between the cross-sectional area S1 of the overall fluid passing around the collector [top
gray disk in Fig. 1(a)] and the surface area S2 delimited by the limiting trajectories that will collide
due to hydrodynamic and diffusive effects [red disk in Fig. 1(a)]. Different physical models can
be considered to define the two surface S1 and S2 and, thus, η (e.g., considering different colloids
diffusivity or inertial effects) [18–20].

At the macroscopic scale, filtration is classically studied in terms of breakthrough curves (flux
of colloids at fixed location) [21] and deposition profiles (spatial distribution of attached particles
at a given time) [22]. In the introduced CFT framework, mass conservation can be stated in terms
of the classical one-dimensional advection-dispersion equation with the addition of an attachment
term modeled through a first-order kinetics, thus, the suspended colloids volumetric concentration
c evolves as

∂c

∂t
+ kc = D

∂2c

∂x2
− v

∂c

∂x
, (1)

where D is the hydrodynamic dispersion coefficient and x represent the direction oriented along the
mean flow. Neglecting the effect of dispersion, under stationary conditions, Eq. (1) becomes

v
∂c

∂x
= −kc, (2)

whose solution decays exponentially as c(x) ∝ exp(−kx/v). Each filtration event transfers a colloid
from the suspended population c(x) to the filtered population, a(x), whose stationary profile is also
exponential,

a(x) ∝ exp (−kx/v). (3)

The deposition profile dimension is the inverse of a length [1/m]: It can be measured as the
number of colloids found in a column slice, of given thickness, at distance x from the inlet. It has
been shown that taking into consideration the effect of dispersion, the stationary solutions of Eq. (1)
also converge to an exponential decay with a slightly different characteristic decay rate [19]. For the
sake of simplicity, in the following we will neglect the effects of dispersion.

Filtration experiments showed significant discrepancies between experimental results (mostly
from column experiments) and the exponential decay predicted by CFT for the stationary deposition
profile Eq. (3). In particular, stretched exponential deposition and power-law profiles, a ∝ x−α ,
have been observed [24,25]. Some authors proposed to modify the CFT considering that along
its own trajectory a transported colloid would experience a given constant attachment rate k,
but different colloids would experience different k due to chemical heterogeneities [24]. In this
framework, experimental data are typically fitted by ad hoc attachment rate distributions without
a clear connection to pore-scale properties. Moreover, to properly catch long tails and scale-free
behaviors, data should be collected over several orders of magnitude. These type of data, to the best
of our knowledge, are not available at the moment. In fact, experiments that investigate the spatial
deposition profile a typically are performed in filtration column-beds which, after being flooded
with a colloidal suspension for a given period, are dissected into thin slices that are individually
analyzed to recover the average number of retained colloids within the considered slice [26].
This methodology, however, is not adequate to measure a deposition profile over several orders
of magnitude in the travel distance x.

Moreover, while models have been derived [19] to fit some experimental data set through a
distribution of attachment rates, they do not account for physical heterogeneity associated to the
pore structure and the consequent flow and transport process. Pore structure and flow variability,
however, play a central role in the dynamics of pore-scale processes such as particle dispersion and
reaction [27–31]. Pore-scale flows are organized in regions of fast and highly variable velocities
and zones of stagnation [32–36]. While the high velocities are known to control the overall
transmission of fluid, the distribution of low velocities in zones of fluid stagnation have been shown
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to control and characterize the late-time particle transport [31,32,34,37,38], mixing, and chemical
reactivity [39–42].

Here, we propose a model that accounts for the fundamental mechanisms driving filtration in
porous media, by explicitly taking into account the variability of colloid transport and attachment
rates. We focus on purely advective transport for which the flow field heterogeneity arises from
the complex path of streamlines, along which colloids move. As represented schematically in
Figs. 1(b)–1(e), we represent a porous medium as a collection of heterogeneously distributed grains
(represented by black disks in Fig. 1) around which the trajectories of individual colloids are
organized. Thus, we develop a stochastic model that combines the heterogeneous host medium
structure, fluid velocity and attachment rate distributions. In particular, as represented in Figs. 1(c)–
1(e), we assume that in each pore of length λ a transported colloid keeps a constant velocity v, a
constant distance from the grain wall and, thus, a constant attachment rate k. Once it moves to the
next pore of different size, also v and k will change. This reflects the fact that flow and medium
structure may vary across a range of length scales.

II. STOCHASTIC MODEL

A. Model formulation

The basic mechanisms that drive the overall filtration phenomenon are (i) the advective displace-
ment of suspended colloids through the pore space, (ii) their individual attachment to the grain walls.
Purely advective particle motion in the flow field u(x) is governed by the advection equation

dx
dt

= u[x(t )], (4)

where x represents the position of a transported particle, that can be measured using microscopy and
tracking techniques in units of [m]. The traveled distance s(t ) from the inlet position of a particle
along a streamline is given by the integration of

ds(t )

dt
= v[s(t )], (5)

where v(s) is the streamwise velocity magnitude. The latter is the Lagrangian velocity of a
transported particle along its own streamline that can be measured with microscopy and tracking
techniques, in units of [m/s]. To project the stream-wise traveled distance along a trajectory s(t ) onto
linear distance x(t ) from the inlet, we use the concept of advective tortuosity χ [36], a macroscopic
quantity which compares average streamline length to linear distance. Tortuosity can be determined
by the ratio of the mean absolute velocity and the mean velocity in the x direction [43]. Thus, we
set x(t ) = s(t )/χ , which gives

dx(t )

dt
= v[s(t )]

χ
. (6)

In the following, we set χ = 1 for simplicity, but in an experimental framework it could be measured
in terms of the individual transported colloids trajectories (through microscopy and time lapse
imaging) and medium size. Colloids may attach as they move through the medium: We model
this process as a first-order kinetics, in analogy to CFT. Here, however, we account for spatial
variability of the attachment rate k = k(x) as colloids move through the heterogeneous pore space.
This variability is caused by the changing distance between a colloid and the grains surface, as
discussed in more detail below. Moreover, we consider that the pore velocity is also a local function
of space v = v(x) [32,35]. Thus, the distribution c(x, t ) of suspended particles corresponding to
Eq. (6) is given by

∂c(x, t )

∂t
+ ∂

∂x
v(x)c(x, t ) = −k(x)c(x, t ), (7)
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where the right-hand side accounts for colloid attachment at the grain surfaces. The steady-state
profile c(x) is given by

c(x) = v(0)

v(x)
exp

[
−

∫ x

0
dx′ k(x′)

v(x′)

]
, (8)

where the position x = 0 is the colloids injection point (inlet) where they are continuously injected
with constant concentration, as detailed in Appendix A. The steady-state profile a(x) of the attached
colloids is defined by

a(x) =
∫ ∞

0
dt ′k(x)c(x, t ′), (9)

and it requires the transient solution of Eq. (7) for c(x, t ). In Appendix A, we derive the steady-state
deposition profile,

a(x) = k(x)

v(x)
exp

[
−

∫ x

0
dx′ k(x′)

v(x′)

]
. (10)

Note that this expression differs from Eq. (3), since it explicitly accounts for the spatial dependence
of v and k. The fluid velocity in a porous material varies over length scales characteristic of the
medium geometry [29,36]. Thus, we approximate each trajectory as composed by a number of
segments with different lengths λn during which the velocity vn is nearly constant. The length
λn is related to the correlation length of stream-wise velocity and of the order of a pore length,
typically measured in [m] [44,45]. Within a pore, a colloid travels at a nearly constant distance
from the grain wall, like in a circular pipe [see Figs. 1(c)–1(e)]. Therefore, we assume that also the
attachment rate k, of the transported colloid, remains constant within each pore, but it is variable
between pores. This piecewise view of the pore-scale fluid velocity is consistent with previous
observations and assumptions that Lagrangian velocities decorrelate on distances of the order of the
pore lengths λ [31,32,38,46–48]. We assume that velocity v, attachment rate k, and pore size λ are
independent random variables and distributed according to the probability density functions (PDFs)
pv (v), pk (k), and ψ (λ), respectively. The macroscopic filtration phenomenon is, thus, the result
of these microscopic displacement and attachment mechanisms. Equation (10) denotes the density
of attached particles along a single streamline. For a single realization of the stochastic processes
{λn, kn, vn} it reads as

a(x) = knx

vnx

exp

[
−

nx−1∑
i=1

ki

vi
λi − knx

vnx

(
x − xnx

)]
, (11)

where after n steps the position is given by

xn+1 = xn + λn (12)

and the number nx of steps needed to get as close as possible to x is nx = max(n|xn � x).

B. Ensemble average

The global profile of attached particles is obtained through the average of a(x) over many
realizations of {λ, k, v},

a(x) ≡ 〈a(x)〉 =
〈

knx

vnx

exp

[
−

nx−1∑
i=1

ki

vi
λi

]
exp

[
− knx

vnx

(
x − xnx

)]〉
, (13)

where the angular brackets denote the ensemble average. In the following, we will split the
contribution to the deposition profile provided by the first nx − 1 steps, from the one provided by
the last segment of length x − xnx . Note that Eq. (13) depends on the ratio kn/vn rather than kn and
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vn individually. Thus, we define the new stochastic variable ρn = kn/vn, whose inverse denotes a
length, which is the characteristic filtration distance traveled by a colloid with velocity vn before
getting retained with an attachment rate kn along its own path. The PDF of this new quantity, pρ (ρ),
can be expressed as

pρ (ρ) =
∫ ∞

0
dv pk (ρ v)pv (v). (14)

Intuitively, Eq. (13) expresses the probability that particles do not attach (in the previous n − 1
steps) up the distance xn−1 times the probability that they get attached during the last step of length
x − xnx . The first term of Eq. (13) is the Laplace transform of pρ (ρ)

p̃ρ (x) =
∫ ∞

0
dρ exp(−ρx)pρ (ρ) = E [e−ρ x], (15)

which denotes the probability that a colloid is not attached at the distance x, and consists in the
expectation value of e−ρ x. The second term is related to

−d p̃ρ (x)

dx
=

∫ ∞

0
dρ ρ exp(−ρx)pρ (ρ), (16)

through multiplication by the probability 
(x),


(x) =
∫ ∞

x
dλ ψ (λ), (17)

that the current segment of length λ is longer than x. Thus, collecting all these terms, the ensemble
average in Eq. (13) for the deposition profile can be computed explicitly as (see Appendix B for the
full derivation),

a(x) = −
∫ x

0
dx′ R(x′)

d p̃ρ (x − x′)
dx


(x − x′), (18)

where

R(x) = δ(x) +
∫ x

0
dx′ R(x′) p̃ρ (x − x′)ψ (x − x′). (19)

The quantity R(x) denotes the joint probability that the particle is at position x and it is not attached.
Equation (19) represents the mass conservation: indeed, the right-hand side denotes the probability
that a colloid traveled up to the position x′ times the probability that next segment length is x − x′.
To decouple the system of Eqs. (18) and (19) and to obtain a closed solution for the deposition
profile a(x), in the following, we will consider the Laplace transform of Eqs. (18) and (19). In the
Appendix we provide the derivation to get the following expression for the Laplace transform of the
whole deposition profile:

ã(u) =
〈
ρ(1−ψ̃ (u+ρ))

u+ρ

〉
ρ

1 − 〈ψ̃ (u + ρ)〉ρ
, (20)

where u denotes the transformed variable of x, which has the same units of ρ = k/v, [m]−1. In the
following we will explicit the deposition profile a(x) for different small-scale parameters {λ, v, k}
distribution.

III. MICROSCOPIC PROCESSES AND THEIR DISTRIBUTIONS

The introduced model is based on a piecewise view of the pore-scale structure, transport, and
attachment mechanisms. We assume that a colloid moves through a pore of length λi by the local
flow with a constant velocity vi and may attach at rate ki, which changes between transitions of
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FIG. 2. Deposition profile for a weakly heterogeneous medium. Symbols represent the numerical integra-
tion of Eq. (3) for the following value of the parameters: β = 2, μλ = 2, and σλ = 0.5 for all sets: set 1 (�),
v0 = 10, μk = 0.5, and σk = 0.5; set 2 (♦), v0 = 200, μk = 0.5, and σk = 0.5; set 3 (	), v0 = 100, μk = 0.01,
and σk = 0.5; and set 4 (◦) v0 = 500, μk = 0.05, and σk = 0.5. The dashed lines represent exp(−x 〈ρ〉), where
〈ρ〉 was computed numerically from the used distributions.

length λi+1. This length scale can be interpreted as the physical size of an individual pore, but it
may comprise also several pores over which the velocity of transported particles persists such as in
high velocities channels [32]. In this framework, the physical meaning of λ refers to the medium
structures that are larger than individual pores, but consist of several pores that are well connected,
from a hydraulic point of view. We consider two main cases, (i) a strongly heterogeneous and (ii) a
weakly heterogeneous medium. The weakly heterogeneous medium is characterized by a narrow
disorder distribution as defined below. The strongly heterogeneous medium is characterized by
properties distributed across a wide range of pore size and attachment rates.

A. Weak heterogeneity

Porous materials, whose structural properties do not display large spatial variability, have been
widely used to investigate the link between small-scale fluid mechanics and the overall transport
phenomena, for instance, packed beads [47,49]. In these conditions, the pore size distribution is
typically narrow, spanning not much more than one order of magnitude about the mean. According
to Refs. [49,50], we will consider a log-normal distribution of the pore size λ,

ψ (λ) ∼ 1

λ
exp

(
− (log λ − μλ)2

2 σ 2
λ

)
, (21)

where the parameters μλ and σλ define the mean as eμλ+σ 2
λ /2. The values adopted in the simulations

for v0 are described in the caption of Fig. 2: We used μλ = 2 and σλ = 0.5 which corresponds
to a mean pore size of 8.4 lc, the smallest pore size, which is a reasonable value for a weakly
heterogeneous medium (a material whose pore size distribution is not homogeneous, peaked about a
single value, with variability spanning over about one order of magnitude). For such approximately
uniform structures, the flow has been measured within microfluidics replica of a porous material
using video-microscopy and particle imaging velocimetry [47], and it has been shown to have a
narrow, exponential Eulerian velocity distribution. The proposed modeling approach is based on
particle velocities measured spatially along trajectories; see Eq. (11). Thus, the particle velocity is
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given by the flux-weighted Eulerian velocity distribution [51],

pv (v) ∼ v exp

(
− v

v0

)
, (22)

where v0 represents the mean fluid velocity. The values adopted in the simulations for v0 are
described in the caption of Fig. 2: They span the range [10–500] lc per second (lc is the smallest
pore size). This is a reasonable range of values considering that a typical porous medium velocity is
v0 ∼ 10 μm/s (about 1 m per day) and typical pore sizes range from 1 μm up to few mm. In these
conditions, we assume that the local attachment rate k is inversely proportional to the grain size,
k ∼ 1/λ, as discussed in more detail below for the heterogeneous case, thus

pk (k) ∼ 1

k
exp

(
− (− log k − μk )2

2 σ 2
k

)
. (23)

B. Strong heterogeneity

In complex and heterogeneous structures, even though pore size distributions are not easy to
measure, recent research [45] has shown that the distribution of pore sizes and throats, mea-
sured in clay and sandstone samples with different high-resolution and cutting-edge technologies
(BIB-SEM, X-ray μ-CT and FIB-SEM image-stacks), turn out to be power-law distributed over
a broad range of length scales. Similarly, using small-angle neutron scattering and fluid-invasion
methods it has been shown [44] that also shale samples display a power-law distribution of the pore
sizes. Thus, we choose here a Pareto distribution for the length λ,

ψ (λ) = γ

lc

(
λ

lc

)−1−γ

, (24)

where lc represents the smallest, detectable, pore size (λ > lc). From now on we rescale space in
terms of lc, but for simplicity we will not change the notation of the spatial variable x and λ: In
this reference, lc = 1. The local fluid velocity modulus through power-law-distributed pore spaces
has been shown in 2d [23] and 3d [31] to follow also a power-law distribution with an exponential
cutoff. Thus, we choose a � distribution for the fluid velocity v,

pv (v) = 1

v0�(β )

(
v

v0

)β−1

exp

(
− v

v0

)
, (25)

where v0 denotes the cutoff velocity. Note that typical values for β for heterogeneous flows,
characterized by broad distributions, are in the range [0,2] [51]; in Table I we list all the values
adopted for our simulations. To define the statistical distribution of the attachment rate k, we assume
that the probability for an individual colloid to get attached and retained by a grain wall depends
only on the distance at which it is instantaneously located from a solid surface. Note that a pore is not
only characterized by its length, but also by the throat size r representing its smallest constriction.
We assume that the distance at which a colloid travels from the grain wall is represented by the pore
throat: the smaller the pore is, the closer it may be to a solid grain surface and, thus, the larger its
attachment rate k. It has been found for several materials [44,45] that the distribution of pore throat
size r can also be approximated by a Pareto distribution,

ψr (r) = δ

rc

(
r

rc

)−1−δ

, r < rc, (26)

which is characterized by the exponent δ and the smallest detectable pore throat size rc. Thus,
assuming k ∼ 1/r, the lower bounded Pareto-type PDF will result in a power-law distribution with
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TABLE I. Parameters for the heterogeneous medium simulations. We run 11 simulations varying the cutoff
values v0 and k0 and the characteristic exponents β, γ , and ν of the distribution for velocity, attachment rate,
and pore size, respectively. For each simulation, we report the predicted scaling for short (β − 1) and large
distances (−ν − γ − 1). Note that since the space has been rescaled with respect to the minimum pore size lc,
the characteristic velocity v0 is given in units of [s−1].

# 1 # 2 # 3 # 4 # 5 # 6 # 7 # 8 # 9 # 10 # 11

β - [-] 0.6 0.6 0.6 0.6 0.2 0.4 0.6 0.8 0.6 0.6 0.6
γ - [-] 0.7 0.6 0.4 0.2 0.5 0.5 0.5 0.5 0.5 0.5 0.4
ν - [-] 0.7 0.4 0.3 0.15 0.3 0.3 0.3 0.3 0.3 0.3 0.4
k0 - [s−1] 10−2 10−1 1 10 10−4 10−3 10−2 10−1 10−1 10−2 1
v0 - [s−1] 1 10 102 103 1 10 102 103 102 103 102

k0/v0 - [-] 10−2 10−2 10−2 10−2 10−4 10−4 10−4 10−4 10−3 10−5 10−2

β − 1 −0.4 −0.4 −0.4 −0.4 −0.8 −0.6 −0.4 −0.2 −0.4 −0.4 −0.4
−γ − ν − 1 −2.4 −2.0 −1.7 −1.35 −1.8 −1.8 −1.8 −1.8 −1.8 −1.8 −1.8

a cutoff for high values of k, which we model here by the � distribution

pk (k) = 1

k0�(ν)

(
k

k0

)ν−1

exp

(
− k

k0

)
, (27)

where the cutoff k0 is associated to the smallest throat diameter rc. Note that, in general, pore length,
pore diameter, and fluid velocity may be correlated. Here, we assume for simplicity that they are
statistically independent. With the above choices for the distribution of velocities v and attachment
rates k, we obtain for the PDF pρ (ρ) of ρ = k/v a β prime distribution,

pρ (ρ) = 1

ρ0B(β, ν)

(
ρ

ρ0

)ν−1(
1 + ρ

ρ0

)−β−ν

, (28)

where B(β, ν) is the β function and ρ0 = k0/v0. As we will discuss later, these particular broad-type
distributions reflect the medium heterogeneity and are responsible for the emergency of anomalous
behavior in the deposition profile a. Please note that the physical quantity ρ = k/v has dimension
the inverse of a length, and the characteristic 1/ρ0 = v0/k0 represents the distance traveled by a
particle moving with velocity v0 before being attached while subjected to the attachment rate k0.
In the following, we will discuss the predictions of our stochastic model, both analytical and by
numerical integration of Eq. (13), for 11 sets of parameters β, γ , ν, k0, and v0 as detailed in Table I.

IV. SCALING BEHAVIORS

A. Weak heterogeneity

As discussed in the previous section, weak medium heterogeneity is characterized by narrow
pore size, fluid velocity, and attachment rate distributions characterized by finite mean and variance.
This is very important to compute the Laplace transforms involved in Eq. (20); in fact, the Laplace
transform of the function f (x) is the expectation value L[ f ](u) = E [e−ux]. At large distances from
the inlet (x � 1/〈ρ〉), this expectation value can be computed considering that the transformed
variable gets small values u + ρ � 1, thus, we expand the Laplace transform of the pore size
distribution ψ̃ (u + ρ) close to zero, to get ψ̃ (u + ρ) ∼ 1 − (u + ρ). This implies that Eq. (20) can
be rewritten as

ã(u) = 〈ρ〉ρ
〈u + ρ〉ρ

, (29)
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FIG. 3. Left: Deposition profile for heterogeneous medium. Symbols represent the numerical integration
of Eq. (3) for different values of the parameters that are described in Table I: set 5 (�), set 6 (◦), set 7 (♦),
and set 8 (	). The dashed lines represent a power-law fit for the numerical integration of Eq. (3), for short
distances from inlet. Right: Plot of the fitted values of the exponent A, Eq. (D1) for the short distance scaling
of the deposition profile. The errors are provided by Eq. (D2).

which can be antitransformed to get the deposition profile

a(x) = 〈ρ〉ρ e−x 〈ρ〉ρ , (30)

which decay exponentially fast, as predicted by the classical framework proposed by CFT. This
result is confirmed by the numerical integration of Eq. (13), as shown in Fig. 2.

B. Strong heterogeneity

The defined microscopic process ρ for a heterogeneous medium is characterized by the
characteristic length scale 1/ρ0, which defines the distinction between the portion of the system
that we consider close and far from the inlet location.

1. Deposition profiles at short distances from the inlet

A particle that is retained by the host medium at a distance closer than 1/ρ0 = v0/k0 from the
inlet location, got attached before it could transition from its initial velocity v. The characteristic
survival time for such particles is of the order of 1/k0, thus, the location of attachment is v/k0 and
it depends only on the initial velocity. In other words, particles experience only their own initial
velocity for a time 1/k0 after which they attach in a way that is independent on the specific shape of
the k and λ distributions. This means that, close to the inlet, the spatial profile of attached particles
can be approximated as

a(x) ≈ k0 pv (k0x), (31)

which it is fully determined by the velocity distribution pv . The distributions of pore size λ and
attachment rate k will not play any role since they have not being sampled. The deposition profile
scaling for short distances from the inlet location has been computed by the numerical integration
of Eq. (13) sampling the stochastic variables from the distribution defined in Eqs. (25)–(28).

In Fig. 3 (left) is shown the integrated deposition profile for a heterogeneous medium: symbols
represent the numerical solution averaged over 2 × 105 independent realizations of k(s), v(s), λ(s)
drawn from distributions Eqs. (25)–(28) and solid lines our model prediction. Using a power-law
distribution for the pore-scale fluid velocity pv (v), Eq. (25), our our model [Eq. (31)] results in the
power-law scaling

a(x) ∼ xβ−1. (32)
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FIG. 4. Left: Deposition profile, symbols represent the numerical integration of Eq. (3) for different values
of the parameters, as described in Table I: set 1 (�), set 2 (◦), set 3 (♦), and set 4 (	). The dashed lines represent
a power-law fit of the numerical integration of Eq. (3), for large distances from inlet. Right: Plot of the fitted
values of the exponent A, Eq. (D1) for the large scaling of the deposition profile. The errors are provided by
Eq. (D2).

The fitted exponents (see also Appendix D for the fitting procedure) are well matched by our
prediction, Eq. (32), as shown in Fig. 3. Different data sets are associated to different choices of
the distribution parameters, as described in Table I.

2. Deposition profiles at large distances from the inlet

The deposition events that happen after traveling at least 1/ρ0 = v0/k0 are mainly due to particles
that experience low attachment rates and high velocities, so that for each transition v/k > 1. This
imposes bounds for the sampled values of k and v. Roughly speaking, the range of low values of k
spans the entire power-law regime while only few high values of v > v0 are sampled to ensure the
condition v/k > 1. Physically, this means that particles sample a broad range of different transition
lengths λ and attachment rates k, at high velocities. Thus we expect that the deposition profile at
large distances from the inlet will not depend on the velocity distribution.

As discussed in the Appendix, the Laplace transforms of these equations deposition profile ã(u)
and of the function R̃:

ã(u) = 〈ρ(u + ρ)γ−1〉ρ
〈(u + ρ)γ 〉ρ (33)

and

R̃(u) = 1

〈(u + ρ)γ 〉ρ
. (34)

In Appendix C we show that, considering the defined pρ and ψ and their expressions in the
Laplace space, we find that the profile a(x) of attached particles scales for x � 1/ρ0,

a(x) ∝ x−γ−ν−1, (35)

where the exponent γ + ν + 1 characterizes the particles deposition and reflects the information
contained in the pore size and attachment rate distributions. Note that this scaling behavior is valid
for any parameter distributions ψ (λ) and pk (k) that show the power-law behaviors ψ (λ) ∝ λ−1−γ

for λ smaller than a characteristic length scale �c and pk (k) ∝ kν−1 for k smaller than a characteristic
rate k0, independent from the distribution of velocities. In Fig. 4, the symbols represent numerical
integration of Eq. (13) for different values of the exponents γ , ν, and β, for given k0 and v0 and
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FIG. 5. Deposition profile. Symbols represent the numerical integration of Eq. (3) for different values of
the parameters, as described in Table I: set 11 (�), set 7 (◦), set 9 (♦), and set 10 (	). The dashed lines represent
the short and large distance scaling predicted by Eqs. (32) and (35), respectively.

the solid lines represent a power-law fit on the asymptotic scaling. The fitted exponents are well
matched by our prediction, Eq. (35), as shown in Fig. 4 right.

3. Regime transitions

Figure 5 shows the deposition profile associated to the parameters sets 3, 7, 9, and 10 (as
described in Table I) for which the exponents β, γ , and ν are kept constant while the characteristic
attachment rate k0 and v0, that determine the cutoff for ρ, vary as 10−5, 10−4, 10−3, and 10−2.
The transition between these two regimes is well predicted by the characteristic filtration scale
1/ρ0 = 102, 103, 104, and 105 (note that space has been normalized with respect to the smallest
pore size lc).

V. CONCLUSIONS

We addressed the problem of anomalous deposition profile resulting from the colloids filtration
by heterogeneous porous material proposing a novel stochastic model. We predict the Lagrangian
steady-state deposition profile a as function of traveled distance from the inlet, taking explicitly
into account the physical heterogeneity of the host medium structure and velocity distribution in
advective dominated regime (neglecting dispersive effects).

In particular, we assumed that each colloid trajectory is composed by a number of segments (the
path traveled within each individual pore) of length λi characterized by a velocity vi and attachment
rate ki constant. Every time a colloid leaves the pore i to enter the i + 1 pore of length λi+1, it changes
its velocity to vi+1 and attachment rate to ki+1. By averaging the final position of traveling colloids
over all possible λ, v, and k, we predict the stationary deposition profile for weakly heterogeneous
and strongly heterogeneous media, as function of the characteristic parameters of the distributions
ψ , pv , and pk , whose definition is consistent with many microscopic observations on real media.
The numerical integration of the stationary deposition profile Eq. (10), which takes into account
the random variability of the three processes λ, v, and k. Our model recovers the classical results
of the CFT for weakly heterogeneous media (exponential deposition profile) and for the strongly
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heterogeneous ones it predicts a power-law profile that it is well fitted by our analytical solution for
short, Eq. (32), and large distances, Eq. (35), from the inlet.

The proposed model of filtration, though simple, is the first one that, to the best of our knowledge,
brings together the fundamental processes of velocity and correlation length (pore size) to couple
them with a first-order kinetics. This model can be easily extended to incorporate more realistic,
and complex, attachment kinetics including transient attachment-detachment process. In particular,
including diffusion and reversible attachment (e.g., with the introduction of a detachment rate or
the classical Langmuirian adsorption dynamics) within the main ADE equation, the equivalent
Lagrangian formulation can be formulated and numerically integrated within the same solution
strategy proposed in our manuscript. Moreover, higher-order kinetic rates, leading to nonlinear
terms in the ADE formulation, can be analytically treated in terms of perturbative techniques only
for restricted range of parameter value for which the whole system can be reduced to a set of linear
equations whose solution can be found following the proposed strategy [52].

Finally, we emphasize that we focused our study to the emergency of anomalous steady-state
deposition profile, providing an analytical solution for the scaling behavior in the two observed
regimes for a strongly heterogeneous medium. Moreover, the proposed model can be extended
by considering conditional probability density function once the inner relations between local
velocity field, colloid-surface adhesion force, and relative distance are known. This can be addressed
by performing single colloid-grain and colloid-grains cluster attachment observations with mi-
croscopy techniques. In this case, the size of the particle will also be relevant. Furthermore, other
possible extensions include complex time-dependent dynamics emerging from the breakdown of
the clean bed assumption (e.g., changing permeability and clogging effect). In this case, aging
continuous time random walk (CTRW) model can be implemented.
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APPENDIX A: STEADY-STATE PROFILE

We calculate the steady-state profiles of the distributions of the suspended and attached colloids.
Thus, we write Eq. (7) as

∂c(x, t )

∂t
+ v(x)

∂c(x, t )

∂x
= −

[
k(x) + dv(x)

dx

]
c(x, t ). (A1)

We consider the initial condition c(x, t = 0) = δ(x). The equation for the steady-state distribution
c(x) is given by

∂c(x)

∂x
= −

[
k(x)

v(x)
+ d ln v(x)

dx

]
c(x). (A2)

It can be solved by separation of variables, which gives

c(x) = v(0)

v(x)
exp

[
−

∫ x

0

dx′

v(x′)
k(x′)

]
. (A3)

The concentration a(x, t ) of the attached particles is obtained by mass conservation from

∂a(x, t )

∂t
= k(x)c(x, t ), (A4)
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whose temporal integration gives Eq. (9), by setting the initial condition a(x, t = 0) = 0: this means
that initially there are no attached particles. We focus here on the steady-state profile of attached
particles, which is given by Eq. (9). Thus, we need to solve the transient Eq. (A1) for c(x, t ). To do
so, we use the method of characteristics. The characteristic equation for Eq. (A1) is

dx(t, x0)

dt
= v[x(t ; x0)], (A5)

where x(t = 0, x0) = x0 is the initial value. We define now g(x0, t ) = c[x(t ; x0), t], which obeys the
following equation:

∂g(x0, t )

∂t
= −κ[x(t, x0)]g(x0, t ), (A6)

where we defined

κ (x) = k(x) + dv(x)

dx
. (A7)

The initial condition is g(x0, t = 0) = δ(x0). Separation of variables gives for g(x0, t ),

g(x0, t ) = δ(x0) exp

[
−

∫ t

0
dt ′κ[x(t ′, x0)]

]
. (A8)

We perform now the variable change t → x(t ; x0) in the integral in the exponent, which gives

g(x0, t ) = δ(x0) exp

[
−

∫ x(t ;x0 )

x0

dx′

v(x′)
κ (x′)

]
. (A9)

Note that we can set the lower integration limit in the exponent to 0 because of the Dirac δ. We note
that x0 = x0(t, x) is a function of x and t , thus, we transform back and we obtain for c(x, t ),

c(x, t ) = δ(x0) exp

(
−

∫ x

0
dx′

[
k(x′)
v(x′)

+ d ln v(x′)
dx′

])
. (A10)

This expression can be further simplified to

c(x, t ) = δ(x0)
v(0)

v(x)
exp

[
−

∫ x

0
dx′ k(x′)

v(x′)

]
, (A11)

where we used definition Eq. (A7). We obtain now the steady-state distribution of the attached
colloids by inserting Eq. (A11) into Eq. (9), which gives

a(x) = k(x)
∫ ∞

0
dt ′δ[x0(t ′, x)] exp

[
−

∫ x

0

dx′

v(x′)
k(x′)

]
. (A12)

To simplify this expression, we note that

δ[x0(t, x)] = δ(t − t0)∣∣ dx0(t,x)
dt

∣∣ = δ(t − t0)

v[x0(t ; x)]
= δ(t − t0)

v(0)
, (A13)

since t0 is the solution of x0(t ; x) = x. Thus, we obtain

a(x) = k(x)

v(x)
exp

[
−

∫ x

0

dx′

v(x′)
k(x′)

]
. (A14)

APPENDIX B: STOCHASTIC MODEL

To compute the expectation value in Eq. (13), we need to remove the dependence on the index
nx, representing the number of steps required to get as close as possible to the location x without
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exceeding it, that is different for each trajectory. Therefore, we make use of the Kronecker δ, δn,nx ,

a(x) =
∞∑

n=1

〈
kn

vn
exp

[
−

n−1∑
i=1

ki

vi
λi − kn

vn
(x − xn)

]
δn,nx

〉
, (B1)

so that δn,nx partitions the probability space into disjoint sets and the expectation value in Eq. (13)
became the sum of expectation values. The last path of size x − xn traveled by a colloid before
getting attached, must be smaller or equal to the length of the last segment λn. Then, we express
the Kronecker δ in terms of the Indicator Function I (·) that is equal to 1 if the argument is true, 0
otherwise:

a(x) =
∞∑

n=1

〈
kn

vn
exp

[
−

n−1∑
i=1

ki

vi
λi − kn

vn
(x − xn)

]
I (0 < x − xn < λn)

〉
. (B2)

Finally, we introduce the Dirac δ function δ(xn − x′) and we integrate overall possible values for x′
to eliminate the dependence on xn which is different for each considered colloid. Thus,

a(x) =
∞∑

n=1

∫ x

0
dx′δ(xn − x′)

〈
kn

vn
exp

[
−

n−1∑
i=1

ki

vi
λi − kn

vn
(x − x′)

]
I (0 < x − x′ < λn)

〉
. (B3)

Since the random variables k and v always appear coupled as k/v, we simplify the notation by the
introduction of a new stochastic variable ρ = k/v, as discussed in the main manuscript. Please note
that, since the stochastic processes at each step are independent, the term that depends only on the
index n can be re-written without the n-dependence, as λn = λ and ρn = ρ:

a(x) =
∞∑

n=1

∫ x

0
dx′δ(xn − x′)

〈
exp

[
−

n−1∑
i=1

ρiλi

]〉
〈ρe−ρ(x−x′ )I (0 < x − x′ < λ)〉. (B4)

Following Ref. [53], we now exchange the integration over x′ with summation over n since the two
variables are independent and we break the expectation value in two terms, one averaging over all
indices up to n − 1 and the one averaging over the last index n:

a(x) =
∫ x

0
dx′

∞∑
n=1

Rn(x′)〈ρe−ρ(x−x′ ) I(0 � x − x′ � λ)〉, (B5)

where we have defined

Rn(x) =
〈
δ(x − x′) exp

[
−

n−1∑
i=1

ρiλi

]〉
, (B6)

which represents the probability for a colloid of not being attached after n − 1 steps and getting to
the distance xn from the injection point. To derive an expression for R that does not depend on the
index n, we consider that xn+1 = xn + λn:

Rn+1(x) =
〈
δ(x − xn − λn) exp

[
−

n∑
i=1

ρiλi

]
exp [−ρλ]

〉
. (B7)

Moving the variable xn into x′, by the introduction of δ(xn − x′), we get

Rn+1(x) =
∫

dx′
〈
δ(xn − x′) exp

[
−

n−1∑
i=1

ρiλi

]〉
〈δ(x − x′ − λ) exp[−ρλ]〉. (B8)

Please note that the two expectation values that appear in the previous expression have to be
computed over all possible values for the two independent stochastic variables ρ and λ, in other
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words, 〈·〉 = 〈·〉ρ,λ. Therefore, we can explicitly calculate the average over the random jumps λ, as

〈δ(x − x′ − λ) exp[−ρλ]〉ρ,λ =
〈∫

dλψ (λ)δ(x − x′ − λ) exp[−ρλ]

〉
ρ

(B9)

= 〈ψ (x − x′)e−ρ(x−x′ )〉ρ, (B10)

where 〈·〉ρ denotes the expectation value over the stochastic variable ρ alone, from which we obtain

Rn+1 =
∫ ∞

−∞
dx′Rn(x′)〈e−ρ(x−x′ )ψ (x − x′)〉ρ. (B11)

We can now define

R(x) =
∞∑

n=1

Rn(x) = R1 +
∞∑

n=1

Rn+1(x), (B12)

and we note that R1 = δ(x), so that from the previous expression we can derive Eq. (19).

APPENDIX C: SCALING OF THE SPATIAL PROFILE OF ATTACHED COLLOIDS

To compute the dependence of the deposition profile a(x) from the distribution of the stochastic
processes ρ and λ, we compute the Laplace transform Eq. (19) ã(u) = L{a}(u), where u denotes
the transformed variable x → u. Noting that a(x) in Eq. (18) is expressed as a convolution product,
its spatial Laplace transform (with respect to the variable x) is the product between the Laplace
transforms of the two functions:

ã(u) = L{R}(u) = L
{〈

ρe−ρx

(
1 −

∫ x

0
dλψ (λ)

)〉
ρ

}
. (C1)

We now consider the Laplace transform properties (i) L{δ}(u) = 1 and (ii) L{eρx f (x)} = F (ρ +
u), where F = L{ f } is the Laplace transform of the function f (x). Therefore, the Laplace transform
of R is

L{R}(u) = 1

1 − L{ψ}(ρ + u)
, (C2)

where ψ̃ (u + ρ) = L{ψ}(ρ + u) is the Laplace transform of the pore size distribution. Please note
that the transformed variable u has units as [x−1] which is the inverse of a length, like ρ = k/v.
Considering the Laplace transform of the second term in Eq. (C1), we get

L
{〈

ρe−ρx

(
1 −

∫ s

0
dλψ (λ)

)〉
ρ

}
=

〈
ρ(1 − ψ̃ (u + ρ))

u + ρ

〉
ρ

, (C3)

where, due to the independence of λ and ρ, we exchanged the order of computation for the
expectation value and Laplace transformation, then, we exploit the Laplace transform property

L
{∫ x

0
dx′ f (x′)

}
= F (u)

u
. (C4)

Finally, substituting Eqs. (C2) and (C3) into Eq. (C1) we get the following expression for the
Laplace transform of the whole deposition profile:

ã(u) =
〈
ρ(1−ψ̃ (u+ρ))

u+ρ

〉
ρ

1 − 〈ψ̃ (u + ρ)〉ρ
. (C5)
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1. Heterogeneous medium

The inverse transform of the previous expression a(x) = L−1{ã(u)} is the deposition profile
we are looking for. Please note that that the overall deposition profile directly depends on
the distributions of the stochastic processes governing the micro-scale attachment and transport
mechanisms. Thus, to obtain an explicit expression for the deposited particle Eq. (C5) in this regime,
we have to calculate the Laplace transform of the pore size distribution ψ (λ). It is possible to
show [54] that the Laplace transform of the power law defined in Eq. (24) can be expressed as the
series ψ̃ (u) ≈ 1 − (lcu)γ + o[(lcu)γ ]. Substituting this expression into Eq. (C5), we find

ã(u) = 〈ρ(u + ρ)γ−1〉ρ
〈(u + ρ)γ 〉ρ . (C6)

To evaluate the Laplace inverse transform of the previous expression, it has been shown [53]
(in the framework of a reactive-diffusive system) that the behavior of Eq. (C6) is dominated by
the numerator alone. Therefore, to compute the expectation value over the stochastic variable ρ we
make use of Eq. (28), and we obtain

〈ρ(u + ρ)γ−1〉ρ =
∫

dρ ρν (ρ0 + ρ)−β−ν (u + ρ)γ−1. (C7)

Since we are interested in the particles deposition at distances larger than the characteristic length
1/ρ0, we consider Eq. (C7) in the limit ρ � ρ0, obtaining

〈ρ(u + ρ)γ−1〉ρ ∼ uγ+ν . (C8)

To compute the inverse Laplace transform of the previous expression, we exploit the two
properties of the Laplace transform,

L−1{u−a�(a)} = xa−1, for a > 0 (C9)

and

L−1{ f̃ (k)(u)} = (−1)kxk f (s), (C10)

where f̃ (k) is the kth derivative and we, finally, get Eq. (35).

APPENDIX D: DATA FITTING PROCEDURE

To fit a power law f (x) = A + xB, we look for the values of A and B that minimize the distance
between the model, f (x), and the data set. To do that, we consider g(x) = log[ f (x)] = log(A) +
Blog(x) and we minimize this function performing a linear regression procedure with respect to the
variable y = log(x). Minimizing the squared discrepancy between a data set and a linear model, we
get [55]

A =
∑

i X 2
i

∑
k Yk − ∑

i Xi
∑

i XiYi

N
∑

i X 2
i − (∑

i Xi
)2 , B = N

∑
i XiYi − ∑

i Xi
∑

k Yk

N
∑

i X 2
i − (∑

i Xi
)2 , (D1)

where Xi = log(xi ) and Yi = log(gi ). The error on the estimation of the fitted parameter B,
representing the characteristic power-law scaling, is computed as follows [55]:

δB = σy

√√√√ ∑
x2

i

N
∑

i x2
i − (∑

i xi
)2 , σy =

√√√√ 1

N − 2

N∑
i=1

(yi − A − Bxi )2. (D2)

[1] J. N. Israelachvili, Intermolecular and Surface Forces (Elsevier, Academic Press, 2011).
[2] S. D. Keesstra, V. Geissen, K. Mosse, S. Piiranen, E. Scudiero, M. Leistra, and L. van Schaik, Soil as a

filter for groundwater quality, Curr. Opin. Environ. Sustain. 4, 507 (2012).

094101-17

https://doi.org/10.1016/j.cosust.2012.10.007
https://doi.org/10.1016/j.cosust.2012.10.007
https://doi.org/10.1016/j.cosust.2012.10.007
https://doi.org/10.1016/j.cosust.2012.10.007


MIELE, DE ANNA, AND DENTZ

[3] D. L. Karwan and J. E. Saiers, Hyporheic exchange and streambed filtration of suspended particles, Water
Resour. Res. 48(1) (2012).

[4] Y. J. Michel, Dynamic shear-enhanced membrane filtration: A review of rotating disks, rotating mem-
branes and vibrating systems, J. Membr. Sci. 324, 7 (2008).

[5] S. A. Pillai, D. Chobisa, D. Urimi, and N. Ravindra, Filters and filtration: A review of mechanisms that
impact cost, product quality and patient safety, J. Pharm. Sci. Res. 8, 271 (2016).

[6] W. P. Johnson, A. Rasmuson, E. Pazmiño, and M. Hilpert, Why variant colloid transport behaviors emerge
among identical individuals in porous media when colloid-surface repulsion exists, Environ. Sci. Technol.
52, 7230 (2018).

[7] J. Bear, Dynamics of Fluids in Porous Media (Elsevier, New York, 1972).
[8] M. J. Blunt et al., Pore-scale imaging and modelling, Adv. Water Resour. 51, 197 (2013).
[9] R. A. Freeze and J. A. Cherry, Groundwater (Prentice Hall, New York, 1979).

[10] A. Boisson, P. de Anna, O. Bour, T. Le Borgne, T. Labasque, and L. Aquilina, Reaction chain modeling
of denitrification reactions during a push-pull test, J. Contam. Hydrol. 148, 1 (2013).

[11] L. Cueto-Felgueroso and R. Juanes, Nonlocal Interface Dynamics and Pattern Formation in Gravity-
Driven Unsaturated Flow Through Porous Media, Phys. Rev. Lett. 101, 244504 (2008).

[12] M. L. Szulczewski, C. W. MacMinn, H. J. Herzog, and R. Juanes, Lifetime of carbon capture and storage
as a climate-change mitigation technology, Proc. Natl. Acad. Sci. USA 109, 5185 (2012).

[13] D. Wu, H. Liu, M. Xie, H. Liu, and W. Sun, Experimental investigation on low velocity filtration
combustion in porous packed bed using gaseous and liquid fuels, Exp. Ther. Fluid Sci. 36, 169 (2012).

[14] M. E. Nelson and T. R. Ginn, Colloid filtration theory and the Happel sphere-in-cell model revisited with
direct numerical simulation of colloids, Langmuir 21, 2173 (2005).

[15] J. Happel, Viscous flow in multiparticle systems: Slow motion of fluids relative to beds of spherical
particles, Am. Inst. Chem. Eng. 4, 197 (1958).

[16] K. M. Yao, M. T. Habibian, and C. O. O’Melia, Water and waste filtration: Concepts and applications,
Environ. Sci. Technol. 5, 1105 (1971).

[17] R. Rajagopalan and C. Tien, Trajectory analysis of deep-bed filtration with the sphere-in-cell porous
media model, AIChE J. 22, 523 (1976).

[18] N. Tufenkji, Modeling microbial transport in porous media: Traditional approaches and recent develop-
ments, Adv. Water Resour. 30, 1455 (2007).

[19] N. Tufenkji, J. A. Redman, and M. Elimelech, Interpreting deposition patterns of microbial particles in
laboratory-scale column experiments, Environ. Sci. Technol. 37, 616 (2003).

[20] A. Cortis, T. Harter, L. Hou, E. R. Atwill, A. I. Packman, and P. G. Green, Transport of Cryptosporidium
parvum in porous media: Long-term elution experiments and continuous time random walk filtration
modeling, Water Resour. Res. 42, W12S13 (2006).

[21] A. Adin and R. Rajagopalan, Breakthrough curves in granular media filtration, J. Environ. Eng. 115, 785
(1989).

[22] Leung Wallace Woon-Fong, Hung Chi-Ho, and Yuen Ping-Tang, Experimental investigation on continu-
ous filtration of sub-micron aerosol by filter composed of dual-layers including a nanofiber layer, Aerosol
Sci. Technol. 43, 1174 (2009).

[23] P. de Anna, B. Quaife, G. Biros, and R. Juanes, Prediction of velocity distribution from pore structure in
simple porous media, Phys. Rev. Fluids 2, 124103 (2017).

[24] N. Toride and S. A. Bradford, A stochastic model for colloid transport and deposition, J. Environ. Qual.
36, 1346 (2007).

[25] S. A. Bradford, J. Simunek, M. Bettahar, M. T. van Genuchten, and S. R. Yates, Modeling colloid
attachment, straining and exclusion in saturated porous media, Environ. Sci. Technol. 37, 2242 (2003).

[26] M. Elimelech, Xi Jia, J. Gregory, and R. A. Williams, Particle Deposition and Aggregation: Measurement,
Modeling, and Simulation (Butterworth Heinemann, London, 1995).

[27] P. De Anna, J. Jimenez-Martinez, H. Tabuteau, R. Turuban, T. Le Borgne, M. Derrien, and Y. Méheust,
Mixing and reaction kinetics in poroous media: An experimental pore scale quantification, Environ. Sci.
Technol. 48, 508 (2014).

094101-18

https://doi.org/10.1029/2011WR011173
https://doi.org/10.1029/2011WR011173
https://doi.org/10.1029/2011WR011173
https://doi.org/10.1029/2011WR011173
https://doi.org/10.1016/j.memsci.2008.06.050
https://doi.org/10.1016/j.memsci.2008.06.050
https://doi.org/10.1016/j.memsci.2008.06.050
https://doi.org/10.1016/j.memsci.2008.06.050
https://doi.org/10.1021/acs.est.8b00811
https://doi.org/10.1021/acs.est.8b00811
https://doi.org/10.1021/acs.est.8b00811
https://doi.org/10.1021/acs.est.8b00811
https://doi.org/10.1016/j.advwatres.2012.03.003
https://doi.org/10.1016/j.advwatres.2012.03.003
https://doi.org/10.1016/j.advwatres.2012.03.003
https://doi.org/10.1016/j.advwatres.2012.03.003
https://doi.org/10.1016/j.jconhyd.2013.02.006
https://doi.org/10.1016/j.jconhyd.2013.02.006
https://doi.org/10.1016/j.jconhyd.2013.02.006
https://doi.org/10.1016/j.jconhyd.2013.02.006
https://doi.org/10.1103/PhysRevLett.101.244504
https://doi.org/10.1103/PhysRevLett.101.244504
https://doi.org/10.1103/PhysRevLett.101.244504
https://doi.org/10.1103/PhysRevLett.101.244504
https://doi.org/10.1073/pnas.1115347109
https://doi.org/10.1073/pnas.1115347109
https://doi.org/10.1073/pnas.1115347109
https://doi.org/10.1073/pnas.1115347109
https://doi.org/10.1016/j.expthermflusci.2011.09.011
https://doi.org/10.1016/j.expthermflusci.2011.09.011
https://doi.org/10.1016/j.expthermflusci.2011.09.011
https://doi.org/10.1016/j.expthermflusci.2011.09.011
https://doi.org/10.1021/la048404i
https://doi.org/10.1021/la048404i
https://doi.org/10.1021/la048404i
https://doi.org/10.1021/la048404i
https://doi.org/10.1002/aic.690040214
https://doi.org/10.1002/aic.690040214
https://doi.org/10.1002/aic.690040214
https://doi.org/10.1002/aic.690040214
https://doi.org/10.1021/es60058a005
https://doi.org/10.1021/es60058a005
https://doi.org/10.1021/es60058a005
https://doi.org/10.1021/es60058a005
https://doi.org/10.1002/aic.690220316
https://doi.org/10.1002/aic.690220316
https://doi.org/10.1002/aic.690220316
https://doi.org/10.1002/aic.690220316
https://doi.org/10.1016/j.advwatres.2006.05.014
https://doi.org/10.1016/j.advwatres.2006.05.014
https://doi.org/10.1016/j.advwatres.2006.05.014
https://doi.org/10.1016/j.advwatres.2006.05.014
https://doi.org/10.1021/es025871i
https://doi.org/10.1021/es025871i
https://doi.org/10.1021/es025871i
https://doi.org/10.1021/es025871i
https://doi.org/10.1029/2006WR004897
https://doi.org/10.1029/2006WR004897
https://doi.org/10.1029/2006WR004897
https://doi.org/10.1029/2006WR004897
https://doi.org/10.1061/(ASCE)0733-9372(1989)115:4(785)
https://doi.org/10.1061/(ASCE)0733-9372(1989)115:4(785)
https://doi.org/10.1061/(ASCE)0733-9372(1989)115:4(785)
https://doi.org/10.1061/(ASCE)0733-9372(1989)115:4(785)
https://doi.org/10.1080/02786820903261086
https://doi.org/10.1080/02786820903261086
https://doi.org/10.1080/02786820903261086
https://doi.org/10.1080/02786820903261086
https://doi.org/10.1103/PhysRevFluids.2.124103
https://doi.org/10.1103/PhysRevFluids.2.124103
https://doi.org/10.1103/PhysRevFluids.2.124103
https://doi.org/10.1103/PhysRevFluids.2.124103
https://doi.org/10.2134/jeq2007.0004
https://doi.org/10.2134/jeq2007.0004
https://doi.org/10.2134/jeq2007.0004
https://doi.org/10.2134/jeq2007.0004
https://doi.org/10.1021/es025899u
https://doi.org/10.1021/es025899u
https://doi.org/10.1021/es025899u
https://doi.org/10.1021/es025899u
https://doi.org/10.1021/es403105b
https://doi.org/10.1021/es403105b
https://doi.org/10.1021/es403105b
https://doi.org/10.1021/es403105b


STOCHASTIC MODEL FOR FILTRATION BY POROUS …

[28] A. M. Tartakovsky, D. M. Tartakovsky, and P. Meakin, Stochastic Langevin Model for Flow and Transport
in Porous Media, Phys. Rev. Lett. 101, 044502 (2008).

[29] V. L. Morales, M. Dentz, M. Willmann, and M. Holzner, Stochastic dynamics of intermittent pore-scale
particle motion in three-dimensional porous media: Experiments and theory, Geophys. Res. Lett. 44, 9361
(2017).

[30] I. Battiato, D. M. Tartakovsky, A. M. Tartakovsky, and T. Scheibe, On breakdown of macroscopic
models of mixing-controlled heterogeneous reactions in poroous media, Adv. Water Resour. 32, 1664
(2009).

[31] M. Dentz, M. Icardi, and J. J. Hidalgo, Mechanism of dispersion in a porous medium, J. Fluid Mech. 841,
851 (2018).

[32] P. de Anna, T. Le Borgne, M. Dentz, A. M. Tartakovsky, D. Bolster, and P. Davy, Flow Intermittency,
Dispersion, and Correlated Continuous Time Random Walks in Porous Media, Phys. Rev. Lett. 110,
184502 (2013).

[33] M. J. Blunt, Flow in porous media—Pore network models and multiphase flow, Curr. Opin. Colloid
Interface Sci. 6, 197 (2001).

[34] B. Bijeljic, P. Mostaghimi, and M. J. Blunt, Signature of Non-Fickian Solute Transport in Complex
Heterogeneous Porous Media, Phys. Rev. Lett. 107, 204502 (2011).

[35] M. Holzner, V. L. Morales, M. Willmann, and M. Dentz, Intermittent Lagrangian velocities and
accelerations in three-dimensional porous medium flow, Phys. Rev. E 92, 013015 (2015).

[36] A. Puyguiraud, P. Gouze, and M. Dentz, Stochastic dynamics of Lagrangian pore-scale velocities in three-
dimensional porous media, Water Resour. Res. 55, 1196 (2019).

[37] D. R. Lester, Guy Metcalfe, and M. G. Trefry, Is Chaotic Advection Inherent to Porous Media Flow?
Phys. Rev. Lett. 111, 174101 (2013).

[38] P. K. Kang, P. de Anna, J. P. Nunes, B. Bijeljic, M. J. Blunt, and R. Juanes, Pore-scale intermittent
velocity structure underpinning anomalous transport through 3-D porous media, Geophys. Res. Lett. 41,
6184 (2014).

[39] V. Kapoor, C. T. Jafvert, and D. A. Lyn, Experimental study of a bimolecular reaction in Poiseuille flow,
Water Resour. Res. 34, 1997 (1998).

[40] C. M. Gramling, C. F. Harvey, and L. C. Meigs, Reactive transport in porous media: A comparison of
model prediction with laboratory visualization, Environ. Sci. Technol. 36, 2508 (2002).

[41] T. Le Borgne, M. Dentz, P. Davy, D. Bolster, J. Carrera, J. R. de Dreuzy, and O. Bour, Persistence of
incomplete mixing: A key to anomalous transport, Phys. Rev. E 84, 015301(R) (2011).

[42] P. de Anna, M. Dentz, A. M. Tartakovsky, and T. Le Borgne, The filamentary structure of mixing fronts
and its control on reaction kinetics in porous media flows, Geophys. Res. Lett. 41, 4586 (2014).

[43] A. Koponen, M. Kataja, and J. V. Timonen, Tortuous flow in porous media, Phys. Rev. E 54, 406 (1996).
[44] J. Zhao, Z. Jin, Q. Hu, Z. Jin, T. J. Barber, Y. Zhang, and M. Bleuel, Integrating SANS and fluid-invasion

methods to characterize pore structure of typical American shale oil reservoirs, Sci. Rep. 7, 15413
(2017).

[45] S. Desbois, G. Hemes, J. L. Urai, B. Schroppel, and J. O. Schwarz, Multi-scale characterization of porosity
in Boom Clay (HADES-level, Mol, Belgium) using a combination of X-ray μ-CT, 2D BIB-SEM and
FIB-SEM tomography, Micropor. Mesopor. Mater. 208, 1 (2015).

[46] P. G. Saffman, A theory of dispersion in a porous medium, J. Fluid Mech. 6, 321 (1959).
[47] S. S. Datta, H. Chiang, T. S. Ramakrishnan, and D. A. Weitz, Spatial Fluctuations of Fluid Velocities in

Flow through a Three-Dimensional Porous Medium, Phys. Rev. Lett. 111, 064501 (2013).
[48] M. Dentz, P. K. Kang, A. Comolli, T. Le Borgne, and D. R. Lester, Continuous time random walks for the

evolution of Lagrangian velocities, Phys. Rev. Fluids 1, 074004 (2016).
[49] I. Gueven, S. Frijters, J. Harting, S. Luding, and H. Steeb, Hydraulic properties of porous sintered glass

bead systems, Granul. Matter 19, 28 (2017).
[50] K. Mizutani, H. Minagawa, K. Ohga, N. Takahara, Y. Sakamoto, T. Komai, T. Yamaguchi, and H. Narita,

Relation between pore size distribution and permeability of sediment consist of glass beads and sand,
J. Jpn. Assoc. Pet. Technol. 75, 164 (2010).

094101-19

https://doi.org/10.1103/PhysRevLett.101.044502
https://doi.org/10.1103/PhysRevLett.101.044502
https://doi.org/10.1103/PhysRevLett.101.044502
https://doi.org/10.1103/PhysRevLett.101.044502
https://doi.org/10.1002/2017GL074326
https://doi.org/10.1002/2017GL074326
https://doi.org/10.1002/2017GL074326
https://doi.org/10.1002/2017GL074326
https://doi.org/10.1016/j.advwatres.2009.08.008
https://doi.org/10.1016/j.advwatres.2009.08.008
https://doi.org/10.1016/j.advwatres.2009.08.008
https://doi.org/10.1016/j.advwatres.2009.08.008
https://doi.org/10.1017/jfm.2018.120
https://doi.org/10.1017/jfm.2018.120
https://doi.org/10.1017/jfm.2018.120
https://doi.org/10.1017/jfm.2018.120
https://doi.org/10.1103/PhysRevLett.110.184502
https://doi.org/10.1103/PhysRevLett.110.184502
https://doi.org/10.1103/PhysRevLett.110.184502
https://doi.org/10.1103/PhysRevLett.110.184502
https://doi.org/10.1016/S1359-0294(01)00084-X
https://doi.org/10.1016/S1359-0294(01)00084-X
https://doi.org/10.1016/S1359-0294(01)00084-X
https://doi.org/10.1016/S1359-0294(01)00084-X
https://doi.org/10.1103/PhysRevLett.107.204502
https://doi.org/10.1103/PhysRevLett.107.204502
https://doi.org/10.1103/PhysRevLett.107.204502
https://doi.org/10.1103/PhysRevLett.107.204502
https://doi.org/10.1103/PhysRevE.92.013015
https://doi.org/10.1103/PhysRevE.92.013015
https://doi.org/10.1103/PhysRevE.92.013015
https://doi.org/10.1103/PhysRevE.92.013015
https://doi.org/10.1029/2018WR023702
https://doi.org/10.1029/2018WR023702
https://doi.org/10.1029/2018WR023702
https://doi.org/10.1029/2018WR023702
https://doi.org/10.1103/PhysRevLett.111.174101
https://doi.org/10.1103/PhysRevLett.111.174101
https://doi.org/10.1103/PhysRevLett.111.174101
https://doi.org/10.1103/PhysRevLett.111.174101
https://doi.org/10.1002/2014GL061475
https://doi.org/10.1002/2014GL061475
https://doi.org/10.1002/2014GL061475
https://doi.org/10.1002/2014GL061475
https://doi.org/10.1029/98WR01649
https://doi.org/10.1029/98WR01649
https://doi.org/10.1029/98WR01649
https://doi.org/10.1029/98WR01649
https://doi.org/10.1021/es0157144
https://doi.org/10.1021/es0157144
https://doi.org/10.1021/es0157144
https://doi.org/10.1021/es0157144
https://doi.org/10.1103/PhysRevE.84.015301
https://doi.org/10.1103/PhysRevE.84.015301
https://doi.org/10.1103/PhysRevE.84.015301
https://doi.org/10.1103/PhysRevE.84.015301
https://doi.org/10.1002/2014GL060068
https://doi.org/10.1002/2014GL060068
https://doi.org/10.1002/2014GL060068
https://doi.org/10.1002/2014GL060068
https://doi.org/10.1103/PhysRevE.54.406
https://doi.org/10.1103/PhysRevE.54.406
https://doi.org/10.1103/PhysRevE.54.406
https://doi.org/10.1103/PhysRevE.54.406
https://doi.org/10.1038/s41598-017-15362-0
https://doi.org/10.1038/s41598-017-15362-0
https://doi.org/10.1038/s41598-017-15362-0
https://doi.org/10.1038/s41598-017-15362-0
https://doi.org/10.1016/j.micromeso.2015.01.022
https://doi.org/10.1016/j.micromeso.2015.01.022
https://doi.org/10.1016/j.micromeso.2015.01.022
https://doi.org/10.1016/j.micromeso.2015.01.022
https://doi.org/10.1017/S0022112059000672
https://doi.org/10.1017/S0022112059000672
https://doi.org/10.1017/S0022112059000672
https://doi.org/10.1017/S0022112059000672
https://doi.org/10.1103/PhysRevLett.111.064501
https://doi.org/10.1103/PhysRevLett.111.064501
https://doi.org/10.1103/PhysRevLett.111.064501
https://doi.org/10.1103/PhysRevLett.111.064501
https://doi.org/10.1103/PhysRevFluids.1.074004
https://doi.org/10.1103/PhysRevFluids.1.074004
https://doi.org/10.1103/PhysRevFluids.1.074004
https://doi.org/10.1103/PhysRevFluids.1.074004
https://doi.org/10.1007/s10035-017-0705-x
https://doi.org/10.1007/s10035-017-0705-x
https://doi.org/10.1007/s10035-017-0705-x
https://doi.org/10.1007/s10035-017-0705-x
https://doi.org/10.3720/japt.75.164
https://doi.org/10.3720/japt.75.164
https://doi.org/10.3720/japt.75.164
https://doi.org/10.3720/japt.75.164


MIELE, DE ANNA, AND DENTZ

[51] C. Alessandro and M. Dentz, Anomalous dispersion in correllated porous media: A coupled continuous
time random walk approach, Eur. Phys. J. B 90, 166 (2017).

[52] Y. Kuramoto, Chemical Oscillations, Waves, and Turbulence (Springer Science & Business Media, Berlin,
2012).

[53] G. J. Lapeyre and M. Dentz, Reaction-diffusion with stochastic decay rates, Phys. Chem. Chem. Phys.
19, 18863 (2017).

[54] J. Klafter and I. M. Solokov, First Steps in Random Walks (Oxford University Press, Oxford, 2011).
[55] J. R. Taylor, An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements,

2nd ed. (University of Science Books, Sausalito, CA, 1997).

094101-20

https://doi.org/10.1140/epjb/e2017-80370-6
https://doi.org/10.1140/epjb/e2017-80370-6
https://doi.org/10.1140/epjb/e2017-80370-6
https://doi.org/10.1140/epjb/e2017-80370-6
https://doi.org/10.1039/C7CP02971C
https://doi.org/10.1039/C7CP02971C
https://doi.org/10.1039/C7CP02971C
https://doi.org/10.1039/C7CP02971C

