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Weakly nonlinear analysis of long-wave Marangoni convection
in a liquid layer covered by insoluble surfactant
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We consider the long-wave Marangoni instability in a heated liquid layer covered by
insoluble surfactant. The system of nonlinear equations derived in our previous work is
regularized in the limit of strong surface tension. Recent research shows that, without
the surfactant, a large-scale oscillatory instability mode exists in the interval of wave
numbers k = O(Bi1/2) (the Biot number Bi � 1). Here we study the influence of the
surfactant on the Marangoni oscillations. The bifurcation analysis for traveling waves
and counterpropagating waves is performed. The types of bifurcation and selected pattern
depend on the elasticity number and on the Biot number. Specifically, at small elasticity
number, both types of waves are supercritical.
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I. INTRODUCTION

The formation and evolution of convective patterns generated by the Marangoni instability have
been in the focus of numerous studies over recent years [1,2]. The case of long-wave instability,
which is the subject of two extensive review papers [3,4], is of special interest. There are two basic
factors that make the linear instability long-wave. The pioneering work of Pearson [5] shows that
a liquid layer with poorly-heat-conducting boundaries is subject to a long-wave instability when
heated from below. Another kind of long-wave Marangoni instability develops in very thin films or
under microgravity conditions due to the free-surface deformation [6]. In both cases, the instability
is monotonic and leads to the growth of large-scale disturbances on the liquid surface. The paper
of Scanlon and Segel [7] was one of the first works where the nonlinear evolution of Marangoni
patterns in a model liquid-gas system with semi-infinite phases and undeformable surface was
investigated. The weakly nonlinear amplitude equation governing the long-wave deformational
mode was derived in Refs. [8,9], while the strongly nonlinear amplitude equation was obtained by
Davis [10]. For the deformational mode, a subcritical instability is typical, which leads to the rupture
of the film. Most of the papers on the Marangoni convection in a layer with a poorly conducting
upper boundary were carried out in the framework of the asymptotics k ∼ O(Bi1/4), which has been
found in Ref. [5]; here k is a wave number and Bi is the Biot number. For instance, that scaling was
used in the paper of Golovin et al. [11], where the interfacial deformation effect on the nonlinear
Marangoni pattern caused by the Pearson’s long-wave instability was considered.

However, the Marangoni instability is not always monotonic. In the situation when the free
surface of the liquid is covered by surface-active agent, under some conditions for the parameters the
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FIG. 1. A schematic of the physical problem considered in the paper. An insoluble surfactant is adsorbed
at the deformable interface, Z = H (X,Y, τ ). At the bottom of the liquid layer (z = 0) the temperature gradient
−a is applied.

most dangerous instability can be the oscillatory instability. The description of basic experiments on
the Marangoni instability in the presence of surfactants can be found in review papers [4,12] and in
Ref. [13]. The investigation of the long-wave Marangoni convection in the presence of a surfactant
has been carried out in Ref. [14]. The authors performed the linear analysis of the Marangoni
convection, found the instability thresholds of monotonic and oscillatory modes for nondeformable
as well as for deformable liquid surfaces. Later, the nonlinear evolution equations for the scaling
k = O(Bi1/4) were derived and bifurcation analysis near instability threshold was performed [15].

The recent work of Shklyaev et al. [16] shows the existence of the oscillatory instability mode
when the liquid layer is heated from below and the critical perturbations are in the nonstandard
range, k ∼ O(Bi1/2), even without the surfactant. The influence of surfactant on the Marangoni
oscillations is studied in the present work.

II. STATEMENT OF THE PROBLEM

We consider a liquid layer of the mean thickness d0 heated from below (the temperature
gradient a is applied) with a deformable free surface covered by a surfactant with a mean surface
concentration �0; see Fig. 1.

To obtain the equations for large-scale Marangoni convection in a liquid layer with insoluble
surfactant on a deformable free surface we use the standard set of transport equations of mass,
momentum, and energy with no-slip conditions for velocity and a specified heat flux condition on
the bottom of the layer. At the free surface the boundary conditions are the kinematic boundary
conditions, the Newton cooling law, the balance of both normal and tangential interfacial stresses
and the distribution condition for the surfactant concentration.

The thermal diffusivity of the liquid is χ , the kinematic viscosity is ν, the density is ρ, the
dynamic viscosity is η = νρ, the surfactant diffusivity is D0, the thermal conductivity of the
liquid is �T , the heat transfer coefficient at the free surface is q. It is assumed that the surface
tension σ depends linearly on both temperature T and surfactant concentration �, σ = σ0 − σ1(T −
T0) − σ2(� − �0) (σ0 is the reference value of surface tension, σ1 = −∂T σ , σ2 = −∂�σ ), which is
reasonable if the disturbances of the temperature and concentration are sufficiently small. As the
reference values of T and �, we choose their values at the surface in the absence of convection.

To rescale the variables of the problem we use the following units: length d0, time d2
0 /χ ,

velocity χ/d0, temperature ad0, pressure ρνχ/d2
0 . The problem is characterized by the following
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nondimensional parameters: M = σ1ad2
0 /ηχ is the Marangoni number (thermocapillary surface

forces via viscous forces), N = σ2d0�0/ηχ is the elasticity number (solutocapillary effects via
viscous forces), L = D0/χ is the Lewis number (mass diffusivity via thermal diffusivity), G =
gd3

0 /νχ is the Galileo number (gravity forces via viscous forces), S = σ0d0/χη is the inverse
capillary number (surface tension forces via viscous forces), Bi = qd0/�T is the Biot number (ratio
of heat-transfer resistances inside of and at the surface of the liquid).

Later on, the Biot number is assumed to be small (Bi � 1). The problem was considered in
detail in the framework of linear stability theory under the assumption k ∼ Bi1/4 [14]. Monotonic
and oscillatory modes of long-wave instability were found. For a nondeformable upper free surface,
the critical Marangoni number for the monotonic instability is

Mm = 48 + 12N/L,

and the oscillatory instability develops at

Mosc = 48 + 12(4L + N ),

with the frequency

�0 = (k2/2)
√

N − LN − 4L2.

In previous work [17], nonlinear amplitude equations governing the evolution of large-scale
disturbances of surface deformation, temperature, and surfactant concentration were derived under
the condition S = O(1). All other nondimensional parameters, except Biot number, were also O(1)
and Bi = βε4. The obtained system was ill-posed, because it did not contain stabilizing terms with
fourth-order spatial derivatives.

Marangoni oscillations can occur even without a surfactant. Shklyaev et al. [16] found the
existence of a long-wave oscillatory instability mode in the interval of wave numbers k ∼ Bi1/2.
This result can be understood in the following way:

The “traditional” scaling k ∼ Bi1/4 has been derived by Pearson [5] in the case of a nonde-
formable interface where, near the threshold, the instability is long-wave solely because of the
small Biot number. This scaling can be obtained from the characteristic shape of the neutral curve,

M(k) = M0 + aBik−2 + ck2, (1)

which leads to the expression kc ∼ (aBi/c)1/4 for the location of the neutral curve minimum. Here,
a and c are some constants of the order of unity. For the Scriven-Sternling mode [6], which
appears in the case of a deformable interface, the crucial factor which determines the characteristic
spatial scale of the unstable disturbances, is the surface tension S which suppresses short-wave
deformations. If S � 1, c ∼ S in expression (1), and the instability is long-wave even far from its
threshold, i.e., for M − M0 = O(1). Assuming

Bik−2 ∼ Sk2 ∼ 1

gives

k ∼ Bi1/2, S ∼ k−2.

The arguments presented above allow us to determine the appropriate scaling for the development
of the nonlinear system of long-wave amplitude equations. First, let us rescale the horizontal
coordinates x, y as

X = εx, Y = εy, 0 < ε � 1,

which corresponds to disturbances with the wave number k ∼ ε. Because the characteristic
frequency of waves ω ∼ k2, the time variable is rescaled as τ = ε2t .
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The appropriate scaling of the surface tension is S = ε−2�̃, �̃ = O(1), and that of the Biot
number is Bi = βε2, i.e., k ∼ Bi1/2 [16]. Later on, we refer to the oscillatory instability mode
discovered in Ref. [16] as the SAK mode.

Applying the long-wave approach with the scaling described above, we obtain the following
system of nondimensional amplitude equations for the local film thickness H (X,Y, τ ), the surfactant
concentration �(X,Y, τ ), and perturbation of the free-surface temperature F (X,Y, τ ):

∂τ H = ∇ ·
(

H3

3
∇R + MH2

2
∇ f + NH2

2
∇�

)
≡ ∇ · Q1, (2)

H∂τ F = ∇ ·
(

H4

8
∇R + MH3

6
∇ f + NH3

6
∇� + H∇F

)
+ Q1 · ∇ f − 1

2
(∇H )2 − β f , (3)

∂τ� = ∇ ·
[
�H

(
H

2
∇R + M∇ f + N∇�

)
+ L∇�

]
≡ ∇ · Q2. (4)

Here,

R = GH − �̃�H

is the pressure disturbance and

f = F − H

is the disturbance of the surface tension, ∇ = (∂X , ∂Y ), � = ∇ · ∇.
This problem is regularized by the strong surface tension, which suppresses shortwave distur-

bances. The set of equations (2)–(4) is a closed system which governs our problem. These equations
describe the nonlinear dynamics of long-wave perturbations and include the following effects: On
the right-hand side, Eq. (2) contains terms which describe the damping of the surface deformation
due to gravity and surface tension and the influence of thermocapillary and solutocapillary effects
on the layer thickness. The first two terms of Eq. (3) describe the advective heat transfer by the flow
and heat conductivity in the longitudinal direction; the third and the fourth terms describe the heat
loss from the free surface. Equation (4) describes the evolution of the surfactant concentration over
the free surface of the liquid due to diffusion, surface deformation by gravity and surface tension,
and by joint thermocapillary and solutocapillary effects.

III. LINEAR STABILITY THEORY

By definition, in the absence of convection H = 1, � = 1. According to Eq. (3), for any β �= 0 the
stationary value of F is equal to 1. Linearizing the system (2)–(4) around the base solution H = F =
� = 1 with respect to long-wave disturbances ∼ exp(�τ + iKX ) = exp(λt + ikx), where k = εK
is the wave number and λ = ε2� is the growth rate, we obtain the cubic equation for �(K ) =
�r (K ) + i�i(K ),

0 = �3 + a1�
2 + a2� + a3,

a1 = 1
3 K2(3 + G + 3L − M + 3N + K2S) + β,

a2 = 1
144 (K4{−24[2L(−3 + M ) + 3(M − 2N )] + G(48 + 48L − M + 12N )

+ K2(48 + 48L − M + 12N )S} + 48K2[G + 3(L + N ) + K2S]β ),

a3 = 1
144 (K6{−72LM + G[−L(−48 + M ) + 12N] + K2[−L(−48 + M ) + 12N]S}
+ 12K4(4L + N )(G + K2S)β ). (5)
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This equation can have both real and complex roots. For the monotonic instability mode we obtain
the neutral stability curve [�r (K, M ) = �i(K, M ) = 0]

Mm(K ) = (48 + 12N/L)(G + K2�̃)(β + K2)

K2(72 + G + K2�̃)
. (6)

In the case β = 0, it gives Mm → 48 + 12N/L as G → ∞ (in the limit of a nondeformable surface)
and Mm → 12G(4L+N )

L(72+G) for K → 0 for a deformable upper surface; see Ref. [14]. Also, the analysis
reveals the existence of the oscillatory neutral stability curve [�r (K, M ) = 0,�i(K, M ) �= 0]

Mos = D11 − √
D12

2K2(72 + G + 48L + K2�̃)
, (7)

where

D11 = 3(72 + 17G + 96L + 48N )β + K2{G2 + 3G(41 + 32L + 5N )

+ 72[3 + 5N + 2L(2 + L + N )] + 51β�̃} + K4(123 + 2G + 96L + 15N )�̃ + K6�̃2,

D12 = D2
11 − 48(72 + G + 48L + K2�̃)[G + 3(L + N ) + K2�̃]

×{4K2[G + 3(2 + L + N )]β + 12β2 + K6(4 + 4L + N )�̃

+ K4[12(1 + L + N ) + G(4 + 4L + N ) + 4β�̃]}. (8)

On the oscillatory instability boundary, the squared neutral frequency is

�2
0 = 1

288 (9K2(5G + 16N − 24)β − K4{G2 − 9G(N − 3) + 72[2L(N + L) + N + 3]

− 45�̃β} + K6(9N − 2G − 27)�̃ − K8�̃2 + K2
√
D2), (9)

where

D2 = −144K2(K2{−N (G + K2�̃)(72 + G + K2�̃) + LN[864 + 36G + G2

+ 2(18 + G)K2�̃ + K4�̃2] + 4L2[216 + 27G + G2 + (27 + 2G)K2�̃ + K4�̃2]}
− {36LN[−24 + G + K2�̃] + N[G + K2�̃][72 + G + K2�̃] + 36L2[−24

+ 5G + 5K2�̃]}β ) + (K4{27 + 2G − 9N}�̃ + K6�̃2 − 9{−24 + 5G + 16N}β
+ K2{G2 − 9G[N − 3] + 72[3 + N + 2L(L + N )] − 45�̃β})2.

The detailed analysis of the problem in the absence of surfactant was performed by Shklyaev
and coauthors in Ref. [16]. Here we show how the surfactant changes their results, especially for
oscillatory mode. To be consistent with results of Shklyaev, we fix the inverse capillary number to
unity, i.e., �̃ = 1, without loss of generality (the choice corresponds to the definition ε ≡ S−1/2).
It is known that typical values of the Lewis number of surfactants are small; later on, we take
L = 0.003. Its influence on the oscillatory instability is not significant and the crucial parameter
describing the influence of the surfactant on the stability is the elasticity parameter N .

The typical marginal stability curves in the case without the surfactant are presented in Fig. 2(a).
Here solid lines correspond to the monotonic instability mode and dashed lines correspond to
boundaries of oscillatory instability. It is seen that, without surfactant, the oscillatory mode appears
for sufficiently large values of parameter β in a limited range of wave numbers. Shklyaev with
coauthors [16] found that this mode is critical under the conditions

β�̃ > 17.4, G < 17.2. (10)

Note that the interval of K with the oscillatory behavior of disturbances is wider than the
oscillatory instability interval. In Fig. 2(b), the plots of �r (M ) and �i(M ) for β = 40 are shown for
K = 2. One can see that, in a certain interval of M, �i �= 0 but �r < 0, so there is no oscillatory
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FIG. 2. (a) Marginal stability curves. The solid lines correspond to monotonic mode, the dashed lines
correspond to oscillatory mode. Here G = 1 and β = 10, 40, and 80 for lines 1, 2, and 3, respectively.
(b) Growth rate versus Marangoni number at fixed wave number K = 2. The solid lines correspond to the
real part of the growth rate, �r , the dashed lines correspond to the imaginary part, �i. Here G = 1 and
β = 40. (c) Growth rate versus Marangoni number at fixed wave number K = 2.5. The notation and values
of parameters are the same as in panel (b).

instability. The dependencies �r (M ) and �i(M ) in the case of oscillatory instability (β = 40,
K = 2.5) are shown in Fig. 2(c). Now �r changes its sign in the interval of M where �i �= 0,
which correspond to an oscillatory instability. The meaning of the monotonic marginal curve is
changed with the growth of M, by crossing Mm(K ), one of unstable monotonic modes becomes
stable.

However, even a rather small quantity of insoluble surfactant on the free surface creates a new
type of oscillatory instability, which makes the oscillatory instability mode the most dangerous
one for the full range of wave numbers, i.e., for all wave numbers the marginal curves for
oscillatory mode are below the monotonic ones [see Fig. 3(a)]. In Fig. 3(b), the dependencies
�r (M ) and �i(M ) are shown for β = 40, K = 2. Two different intervals where disturbances are
oscillatory correspond to the decaying SAK mode and the surfactant-induced mode, which creates
the oscillatory instability. Note that the latter mode exists in an interval of M which is much narrower
than that of the existence of the former mode, and it is characterized by significantly smaller values
of frequency �i. For K = 2.5 [Fig. 3(c)], both intervals merge, and the threshold of the oscillatory
instability is rather close to that obtained in the absence of the surfactant [see Fig. 2(c)]. Note
however, that growth rates shown in Fig. 2(c) are two roots of a quadratic equation (no disturbances
of �), while Fig. 3(c) shows three roots of the cubic equation (5). That leads to the appearance
of an additional monotonic mode. The critical values of the monotonic Marangoni number are
Mm = 37.14 at K = 2 and Mm = 35.20 at K = 2.5; the critical oscillatory Marangoni number is
Mosc = 34.31 at K = 2 and Mosc = 29.45 at K = 2.5. The separation gap between monotonic and
oscillatory instability curves increases when the elasticity parameter N grows.
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FIG. 3. (a) Marginal stability curves at G = 1N = 0.001, L = 0.003, and β = 10, 40, and 80 for lines 1,
2, and 3, respectively. The notations are the same as in Fig. 2(a). (b) Growth rate versus Marangoni number at
fixed wave number K = 2 at G = 1, S = 1, L = 0.003, N = 0.001, and β = 40. The notations are the same as
in Fig. 2(b). (c) Growth rate versus Marangoni number at fixed wave number K = 2.5. The notation and values
of parameters are the same as in panel (b).

Let us minimize the marginal curves with respect to the rescaled wave number K for different
values of the parameter β. The variations of the critical oscillatory Marangoni number as well as the
critical wave number K are shown in Figs. 4(a) and 4(b), respectively. Here the elasticity parameter
is fixed at N = 0.001. The jump of the critical wave number is explained in Fig. 5. When parameter
β approaches 22.95, a new local minimum appears and, for β greater than 22.95, it becomes the
global one. In Fig. 5 the solid line represents the minimum of the marginal curve at β = 22.9
(the global minimum is at Kc = 2.58), and the dashed line is for the marginal curve at β = 23 (the

FIG. 4. (a) Variation of critical Marangoni number of the oscillatory mode. (b) Critical wave number Kc

with parameter β. (c) Example of squared frequency jump, the solid line is for β = 22, the dashed line is for
β = 23, and the dotted line is for β = 21. Other parameters are G = 1, �̃ = 1, L = 0.003, and N = 0.001.
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FIG. 5. Near the minimum of the critical Marangoni numbers at different β. The solid line is for β = 22.9,
the dashed curve is for β = 23. Other parameters are G = 1, �̃ = 1, L = 0.003, and N = 0.001.

global minimum is at Kc = 2.82). Together with the critical-wave-number jump we observe the
jump of squared frequency of oscillatory perturbations. Figure 4(c) shows the squared frequency as
a function of K for three different values for the parameter β: β = 21 (dotted line), β = 22 (solid
line), and β = 23.

In the next section, we carry out the weakly nonlinear analysis of the problem. We consider the
bifurcation of wave solution in the vicinity of the minimum of the oscillatory neutral curve.

IV. WEAKLY NONLINEAR ANALYSIS: TRAVELING WAVES

In the present paper we consider one-dimensional solutions, i.e., we assume that the solutions do
not depend on Y .

We study the nonlinear dynamics in the vicinity of the oscillatory neutral curve, i.e., assuming
small supercriticality of the Marangoni number,

M = M0 + δ2M2,

where δ is a small parameter.
Here M0 is the oscillatory instability threshold determined by Eq. (7). We introduce two temporal

scales, τ0 = τ and τ2 = δ2τ , so that

∂τ = ∂τ0 + δ2∂τ2 , (11)

and expand the fields of film thickness, temperature, and surfactant concentration in powers of δ:

H = 1 + δh1(X, τ0, τ2) + · · · , F = 1 + δθ1(X, τ0, τ2) + · · · , � = 1 + δγ1(X, τ0, τ2) + · · · .

(12)

Substituting this ansatz into Eqs. (2)–(4) and collecting terms of the same order of δ we obtain at
first order the following linear problem:

h1,τ0 = 1

3
(Gh1 − �̃h1,XX )XX + M0

2
(θ1 − h1)XX + N

2
γ1,XX , (13)

θ1,τ0 = 1

8
(Gh1 − �̃h1,XX )XX + M0

6
(θ1 − h1)XX + N

6
γ1,XX + θ1,XX − β(θ1 − h1), (14)

γ1,τ0 = 1
2 (Gh1 − �̃h1,XX )XX + M0(θ1 − h1)XX + (N + L)γ1,XX , (15)

where we use M0 from Eq. (7).
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The simplest solution of this system can be taken as a single traveling wave, i.e.

h1 = H1(τ2)eiKX+i�0τ0 + c.c., (16)

θ1 = α1H1(τ2)eiKX+i�0τ0 + c.c., (17)

γ1 = α2H1(τ2)eiKX+i�0τ0 + c.c. (18)

Here, “c.c.” means complex-conjugate terms, and α1 and α2 can be obtained from the linear
system (13)–(15) as

α1 = −GK2 + �̃K4 − 72β − 24i�0

72(K2 + β + i�0)
, (19)

α2 = GK2 + K4�̃ + 12i�0

6K2L + 6i�0
. (20)

At second order, we obtain

h2,τ0 − 1

3
(Gh2 − �̃h2,XX )XX − M0

2
(θ2 − h2)XX − N

2
γ2,XX

= G(h1h1,X )X − �̃(h1h1,XXX )X + M0[h1(θ1 − h1)X ]X + N (h1γ1,X )X , (21)

θ2,τ0 − 1

8
(Gh2 − �̃h2,XX )XX − M0

6
(θ2 − h2)XX − N

6
γ2,XX − θ2,XX + β(θ2 − h2)

= 3

8
h1(Gh1 − �̃h1,XX )XX + 1

3
θ1,X (Gh1 − �̃h1,XX )X + 1

6
h1,X (Gh1 − �̃h1,XX )X

+ N

3
h1γ1,XX + N

2
θ1,X γ1,X + M0

3
h1(θ1 − h1)XX + M0

2
θ1,X (θ1 − h1)X

+ θ1,X h1,X − 1

2
(h1,X )2 + βh1(θ1 − h1), (22)

γ2,τ0 − 1

2
(Gh2 − �̃h2,XX )XX − M0(θ2 − h2)XX − (N + L)γ2,XX

= (Gh1h1,X − �̃h1h1,XXX )X + 1

2
(Gγ1h1,X − �̃γ1h1,XXX )X

+ M0[(h1 + γ1)(θ1 − h1)X ]X + N[h1 + γ1)γ1,X ]X . (23)

Here the solution has the form

h2 = H2(τ2)e2iKX+2i�0τ0 + c.c., (24)

θ2 = F0 + F2(τ2)e2iKX+2i�0τ0 + c.c., (25)

γ2 = �2(τ2)e2iKX+2i�0τ0 + c.c. (26)

The solvability condition at the third order of the expansion in powers of δ determines the Landau
equation in the following form:

dH1

dτ2
= κ1H1 + κ2|H1|2H1. (27)

Here κ1 = κ1,r + iκ1,i is the linear complex growth rate and κ2 = κ2,r + iκ2,i is the complex Landau
constant. The real part of this constant determines the type of bifurcation.
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FIG. 6. (a) Real part of the coefficient κ1 versus wave number K at β = 10 (solid line) and β = 40 (blue
dashed line). (b) The detailed graphs at K < 2. The critical wave numbers for β = 10 and β = 40 are marked.
Other parameters are G = 1, �̃ = 1, L = 0.003, and N = 0.001.

To obtain the coefficient κ1 it is sufficient to write the linearized system at third order in the
following form:

h3,τ0 − 1

3
�(Gh3 − �̃�h3) − M0

2
�(θ3 − h3) − N

2
�γ3

= −∂τ2 h1 + M2

2
K2(h1 − θ1) + C1eiKX+iω0τ0 + c.c. + C2e3i(KX+ω0τ0 ) + c.c., (28)

θ3,τ0 − 1

8
�(Gh3 − �̃�h3) − M0

6
�(θ3 − h3) − N

6
�γ3 − �θ3 + β(θ3 − h3)

= −∂τ2θ1 + M2

6
K2(h1 − θ1) + C5eiKX+iω0τ0 + c.c. + C6e3i(KX+ω0τ0 ) + c.c., (29)

γ3,τ0 − 1

2
�(Gh3 − �̃�h3) − M0�(θ3 − h3) − (N + L)�γ3

= −∂τ2γ1 + M2K2(h1 − θ1) + C3eiKX+iω0τ0 + c.c. + C4e3i(KX+ω0τ0 ) + c.c. (30)

Eliminating the secular terms with ei(KX+�0τ0 ) and taking into consideration Eqs. (19) and (20), we
obtain

κ1

M2
= −K2(K2L + i�0)[(72 + G)K2 + K4�̃ + 48i�0]

432�2
0 − 96i[K2(3 + G + 3L − M0 + 3N ) + 3β + K4�̃]�0 − D3

, (31)

where

D3 = K2{[GK2 + K4�̃][48 + 48L − M0 + 12N] + 48Gβ + 144[L + N]β

−24K2[2L(M0 − 3) + 3M0 − 6N − 2β�̃]}. (32)

The expression for κ2 is given in the Supplemental Material; see Ref. [18].
Formally, Eq. (27) is valid for any K . However, the vicinity of the neutral curve minimum, K =

Kc, M = M0(Kc) = Mc, is of a special interest. The dependence of the critical values (Mc, Kc) on β

is shown in Fig. 4.
Calculation of the real part of coefficient κ1/M2 according to Eq. (31) shows that it is positive

for all critical wave numbers. That means that the linear instability is developed when M2 > 0,
i.e., at the Marangoni number above the linear instability threshold. For example, for β = 10 the
critical wave number and the corresponding Marangoni number are Kc = 1.90 and Mosc,c = 10.91,
respectively, and the coefficient Re(κ1)/M2 = 0.57. In Fig. 6 this case is represented by the solid
line. The dashed line in Fig. 6 corresponds to the case of β = 40, here the critical wave number
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and the corresponding Marangoni number are Kc = 3.31 and Mosc,c = 25.91, respectively, and the
real part of κ1/M2 = 1.83. For β = 80 Re[κ1]/M2 = 2.59 the critical wave number and the critical
Marangoni number are Kc = 3.94 and Mosc,c = 34.98, respectively.

The coefficient κ2 was calculated for the same three values of the rescaled Biot number: β = 10,
β = 40, and β = 80. At the corresponding values of critical wave numbers Kc = 1.90, Kc = 3.31,
and Kc = 3.94, respectively, all the values of κ2 have negative real part, which means that in all
these three cases we have supercritical bifurcations. At β = 10 we have Re(κ2) = −38.6, at β = 40
and β = 80 the value of Re(κ2) = −41.7 and −111, respectively.

Thus, the single traveling wave with K = Kc bifurcates in a supercritical way: the solution
|H1|2 = −κ1/κ2 > 0 exists for M2 > 0. Obviously, it is stable in the framework of Eq. (27).

V. COUNTERPROPAGATING WAVES

A more complex solution of system (2)–(4) is a pair of traveling waves propagating in opposite
directions, which has the following form:

h1 = H11(τ2)eiKX+i�τ0 + H12(τ2)e−iKX+i�τ0 + c.c., (33)

θ1 = α1H11(τ2)eiKX+i�τ0 + α1H12(τ2)e−iKX+i�τ0 + c.c., (34)

γ1 = α2H11(τ2)eiKX+i�τ0 + α2H12(τ2)e−iKX+i�τ0 + c.c. (35)

Here, α1 and α2 are defined by Eqs. (19) and (20).
At second order we find the solution in the form

h2 = H21(τ2)e2iKX+2i�τ0 + H22(τ2)e−2iKX+2i�τ0 + I1(τ2)e2iKX + c.c., (36)

θ2 = F20 + F21(τ2)e2iKX+2i�τ0 + F22(τ2)e−2iKX+2i�τ0 + J1(τ2)e2iKX + J2(τ2)e2iτ0�0 + c.c., (37)

γ2 = �21(τ2)e2iKX+2i�τ0 + �22(τ2)e−2iKX+2i�τ0 + K1(τ2)e2iKX + c.c. (38)

Here the coefficients can be obtained from the set of the second-order equations. The solvability
condition is determined at the third-order system and it is formulated as a set of two Landau
equations for amplitudes H11 and H12:

dH11

dτ2
= κ1H11 + κ2|H11|2H11 + κ3|H12|2H11, (39)

dH12

dτ2
= κ1H12 + κ2|H12|2H12 + κ3|H11|2H12. (40)

The system (39), (40) is related to the well-known model of “species competition” (see, e.g.,
Ref. [19]). Its full analysis is given in Ref. [20], Sec. 5.3, so we present only the results.

This system (39), (40) has three kinds of fixed points: (a) H11 = 0 and H12 = 0 is the quiescent
state, (b) H11 = 0, |H12|2 = −Re(κ1)/Re(κ2) and H12 = 0, |H11|2 = −Re(κ1)/Re(κ2) describe the
regime of traveling waves (TWs), and (c) H11 = H12 = −Re(κ1)/Re(κ2 + κ3) is the regime of
standing waves (SWs). TWs were studied in Sec. IV, but the analysis here can determine their
linear stability with respect to a wider class of disturbances. Because Re(κ1) > 0, the condition for
the supercritical bifurcation SW is

Re(κ2 + κ3) < 0.
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FIG. 7. (a) Real part of the coefficients κ2 (solid line) and κ3 (dashed line) versus the Biot parameter at
the critical wave numbers. (b) Detailed fragment of panel (a) at small β. Other parameters are G = 1, �̃ = 1,
L = 0.003, and N = 0.001.

The difference between the self-interaction coefficient κ2 and the cross-interaction coefficient κ3 at
the critical points determines the pattern selection. TWs are selected when we have Re(κ3) < Re(κ2)
and in the opposite case the SWs are stable.

The expression for the cross-interaction coefficient κ3 is also very cumbersome (see Sup-
plemental Material [18]) and it is presented here only graphically. For comparison we use the
same parameters as in the previous section (G = 1, �̃ = 1, L = 0.003, and N = 0.001). First
we calculate the coefficients at the same parameters β as in the previous section. We obtain the
following data: for β = 10 the critical wave number is Kc = 1.9 and Re(κ3) = 8.84; for β = 40 the
critical wave number is Kc = 3.31 and Re(κ3) = −428; and for β = 80 the critical wave number is
Kc = 3.94 and Re(κ3) = −955. Just to remind the reader, we have, respectively, Re(κ2) = −38.6
for β = 10, Re(κ2) = −41.7 for β = 40, and Re(κ2) = −111 for β = 80. Thus, in all these cases,
SWs bifurcate supercritically. The comparison with the calculated κ2 obtained earlier for the same
critical values shows that in the case with β = 10 the SW is stable, while for both cases with β = 40
and β = 80 the TWs are stable.

To find the value of parameter β where the stability of waves is changed we draw the dependence
of the real part of the coefficients κ2 and κ3 at the critical wave number on β (see Fig. 7). The solid
line represents Re(κ2) and the dashed line is for the Re(κ3). The figure shows that, for β < 22.2, we
have Re(κ3) > Re(κ2) and standing waves are selected. When β > 22.2 the stability of the waves
is changed and traveling waves are selected.

FIG. 8. (a) Real part of the coefficients κ2 (solid line) and κ3 (dashed line) versus the Biot parameter at
the critical wave numbers. (b) Detailed fragment of panel (a) at small β. Other parameters are G = 1, �̃ = 1,
L = 0.003, and N = 0.1.
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FIG. 9. (a) Real part of the coefficients κ2 (solid line) and κ3 (dashed line) versus the Biot parameter at
the critical wave numbers. (b) Detailed fragment of panel (a) at small β. Other parameters are G = 1, �̃ = 1,
L = 0.003, and N = 0.5.

The calculation shows that, when we diminish the value of parameter β, the selected regimes are
changed again. For small β at N = 0.001 the SWs are selected only when β > 0.014, for less small
values of β we again have TWs as stable ones [see Fig. 7(b)].

Note that the jump of Kc at βc = 22.95 shown in Fig. 4(b) does not lead to a change of the
selected wave pattern.

VI. INFLUENCE OF SURFACTANT CONCENTRATION

In this section we consider the influence of the surfactant concentration on the pattern selection
of the large-scale Marangoni convection. The elasticity parameter N characterizes this influence.
For the linear problem we know that even a small portion of the surfactant changes the marginal
curves of the Marangoni large-cell convection. With the growth of the elasticity parameter N , the
gap between the monotonic instability boundary and the oscillatory one only increases and the mo-
tionless state is stabilized (the marginal stability curves move upward in Fig. 2 when N increases).
Here we consider the solution of Eqs. (2)–(4) in the form of traveling or counterpropagating waves
for different values of the elasticity parameter.

We work again with the set of Landau equations in the form (39), (40) with greater values of the
elasticity number.

Let us take N = 0.1. Figure 8 shows how the real part of the self-interaction coefficient, κ2,
(solid line) and the real part of the cross-interaction coefficient, κ3, (dashed line) vary with the Biot
number β.

Again the patterns are selected differently in three different ranges of β. First, for small β <

0.095 the traveling wave (TW) is selected, in the range 0.095 < β < 23.63 the standing wave (SW)
is selected, and for β > 23.63 the TW is selected again. As in the case N = 0.001 considered in
the previous section, solutions at N = 0.1 bifurcate supercritically. However, the bifurcation type
changes at greater values of the elasticity number.

Figure 9 shows the real parts of Landau coefficients κ2 and κ3 with parameter β for N = 0.5.
At β < 0.46, both kinds of solutions bifurcate subcritically. In the interval 0.46 < β < 0.6 the
TW solution bifurcates supercritically (Reκ2 < 0), but the SW solution bifurcates subcritically
[Re(κ2 + κ3) > 0]. For β > 0.6 both kinds of solutions bifurcate supercritically, and the SW pattern
is selected.

VII. CONCLUSIONS

Here we have performed the weakly nonlinear analysis for the most dangerous instability mode,
the oscillatory one, in the long-wave Marangoni convection which occurs in a nonisothermal liquid

094002-13



MIKISHEV AND NEPOMNYASHCHY

layer covered by an insoluble surfactant. The analysis is carried out for wave number k ∼ Bi1/2,
where Bi is the Biot number which characterizes the weak heat flux from the free surface.

Two types of solutions were considered. The first type is the traveling wave (TW). The analysis
shows that the bifurcation of a TW is typically supercritical near the critical wave number for
sufficiently small values of the elasticity parameter. Second, we consider the regime corresponding
to a pair of TWs propagating in opposite directions. A set of two Landau equations governing the
evolution of the wave amplitudes is derived. The coefficients in the Landau equations are calculated
for different Biot numbers. They determine the pattern selection between a possible TW regime and
SW regime. With the growth of the elasticity parameter the pattern selection changes from TW to
SW and then again to TW. It is found for N = 0.001 and N = 0.1 that, for considered values of the
Biot numbers, SWs bifurcate supercritically. However, at greater values of the elasticity number; for
example, at N = 0.5, the wave solutions can bifurcate subcritically.

The present work has concentrated on the limit where the solubility of the surfactant has been
completely neglected. The analysis of Marangoni convection in the case of soluble surfactant is
more complex (see, e.g., Ref. [21]). Note that the oscillatory instability persists.
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