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Oscillatory pattern selection by spatial heat release modulation
in multistable Marangoni convection
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The action of spatial modulation of the Marangoni number, corresponding to the heat
source or sink at the interface on wave patterns, has been studied. The analysis is carried
out in the lubrication approximation. Numerical simulations are performed by means of a
finite-difference method. It is found that in the case of multistability, the spatial heat release
modulation can be used for the creation of a pattern with a definite spatial structure. It is
shown that the violation of the reflection symmetry of the pattern by its spatial modulation
can lead to a quasiperiodic temporal evolution.
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I. INTRODUCTION

Nonlinear patterns created by instabilities have been a subject of extensive study for a few
decades [1]. The nonlinear dynamics of systems subjected to oscillatory instabilities is especially
rich [2]. For nonlinear patterns, a multistability is characteristic; specifically, in spatially extended
systems different pattern planforms are possible. An important problem is controlling the develop-
ment of instability, i.e., the suppression of undesired kinds of patterns or generation of a desired
kind of pattern [3,4]. A possible way of controlling the pattern selection is a spatial modulation of
the control parameter.

The very idea of multiple pattern generation by introducing a spatially inhomogeneous pertur-
bation was first implemented in experiments of Chen and Whitehead [5], where stationary roll-like
convection patterns were created by nonuniform heating. Since that time, the action of a spatially
periodic forcing on the onset of stationary patterns has been explored extensively [6–14]. However,
the action of stationary spatial modulation on the oscillatory pattern is less straightforward. It has
been studied mostly near the oscillatory instability threshold in the framework of the complex
Ginzburg-Landau equation [15–20]. Direct numerical simulations of nonlinear Marangoni waves
under the action of a spatial temperature modulation have been carried out recently [21].

In the present paper, we investigate the possibility of the generation of different oscillatory
patterns by means of spatially inhomogeneous perturbations. We consider the deformational
oscillatory Marangoni convection in a two-layer film in the presence of a transverse temperature
gradient and a heat release or consumption at the liquid-liquid interface, previously studied in [22].
Unlike most of the former investigations of the two-layer Marangoni convection, where it is
typically assumed that heating or cooling is carried out solely through the substrate or the free
surface while the normal components of the heat flux are equal on both sides of the interface between
the fluids, we include a spatially inhomogeneous heat source or sink on the interface. The interfacial
heating can be generated, e.g., by an infrared light source. The infrared absorption bands of different
liquids can be essentially different [23], and therefore the light frequency can be chosen in a way that
one of the liquids is transparent, while the characteristic length of the light absorption in another
liquid is short. Note that fluid flows generated by infrared heating were studied experimentally
in [24].
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FIG. 1. Geometric configuration of the region and coordinate axes.

The formulation of the problem is given in Sec. II. The system of long-wave-amplitude equations
governing the evolution of surface deformations is presented in Sec. III. Section IV contains the
description of the numerical method. In Sec. V we discuss the possibility of the creation of a
prescribed pattern by interfacial heat release-consumption modulation. The results of nonlinear
simulations of patterns in the presence of spatially inhomogeneous perturbations are described in
Sec. VI. We summarize in Sec. VII.

II. FORMULATION OF THE PROBLEM

Consider a system of two superposed layers of immiscible liquids with different physical
properties (see Fig. 1). The bottom layer rests on a solid substrate and the top layer is in contact with
the adjacent gas phase. All the variables referring to the bottom layer are marked by subscript 1 and
all the variables referring to the top layer are marked by subscript 2. The equilibrium thicknesses of
the layers are H0

m, m = 1, 2. The deformable interfaces are described by the equations z = H1(x, y, t )
(liquid-liquid interface) and z = H2(x, y, t ) (liquid-gas interface).

The mth fluid has density ρm, dynamic viscosity ηm, thermal diffusivity χm, and heat conductivity
κm. The temperature of the solid substrate is Ts and the temperature of the gas near the interface is
Tg. At the interface, there is a heat source or sink which creates a jump Q∗(x, y) of the normal
heat flux. The surface tension coefficients on the lower and upper interfaces, σ1 and σ2, are linear
functions of the temperature T : σ1 = σ 0

1 − α1T and σ2 = σ 0
2 − α2T . The effect of gravity and the

intermolecular forces are neglected.
The Marangoni convection is governed by the following system of nonlinear equations [25]:

ρm

[
∂vm

∂t
+ (vm · ∇)vm

]
= −∇Pm + ηm	vm, (1)

∂Tm

∂t
+ vm · ∇Tm = χm	Tm, (2)

∇ · vm = 0, m = 1, 2. (3)

Here Pm is the difference between the actual pressure and the gas uniform pressure; vm is the velocity
in the mth liquid.

The dynamic boundary conditions on the deformable interface z = H1 are

P2 − P1 + 2σ1K1 =
[
−η1

(
∂v1i

∂xk
+ ∂v1k

∂xi

)
+ η2

(
∂v2i

∂xk
+ ∂v2k

∂xi

)]
n1in1k, i, k = 1, 2, 3, (4)
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where K1 is the mean curvature of the interface (condition for the normal stress balance), and[
−η1

(
∂v1i

∂xk
+ ∂v1k

∂xi

)
+ η2

(
∂v2i

∂xk
+ ∂v2k

∂xi

)]
τ

(l )
1i n1k − α1τ

(l )
1i

∂T1

∂xi
= 0, l = 1, 2; i, k = 1, 2, 3

(5)
(conditions for the tangential stress balance). Here n1 is the normal vector and τ

(l )
1 , l = 1, 2, are

orthogonal tangential vectors. In the quantities with two subscripts, the first subscript corresponds
to the liquid (m = 1, 2) and the second subscript determines the number of the Cartesian coordinate
(i, k = 1, 2, 3; x1 = x, x2 = y, and x3 = z). The usual summation convention is applied. Also, the
kinematic boundary condition is imposed:

∂H1

∂t
+ v1x

∂H1

∂x
+ v1y

∂H1

∂y
= v1z. (6)

Across the interface, the fields of velocity and temperature are continuous:

v1 = v2, T1 = T2. (7)

Due to the interfacial heat release or consumption, there is a jump of the normal heat flux density,(
κ1

∂T1

∂xi
− κ2

∂T2

∂xi

)
n1i = Q∗(x, y). (8)

The boundary conditions on the deformable surface z = H2 are

−P2 + 2σ2K2 = −η2

(
∂v2i

∂xk
+ ∂v2k

∂xi

)
n2in2k, (9)

−η2

(
∂v2i

∂xk
+ ∂v2k

∂xi

)
τ

(l )
2i n2k − α2τ

(l )
2i

∂T3

∂xi
= 0, l = 1, 2; i, k = 1, 2, 3 (10)

∂H2

∂t
+ v2x

∂H2

∂x
+ v2y

∂H2

∂y
= v2z, (11)

n2 is the normal vector, τ
(l )
2 (l = 1, 2) are the tangential vectors of the upper surface, and K2 is the

mean curvature. For a heat flux on the liquid-gas interface we use an empirical condition

κ2
∂T2

∂xi
n2i = −q(T2 − Tg), (12)

where q is the heat exchange coefficient which is assumed to be constant. The boundary conditions
on the rigid boundary z = 0 are

v1 = 0, T1 = Ts. (13)

III. LONG-WAVE-AMPLITUDE EQUATIONS

The system of equations and boundary conditions (1)–(13) is rather complicated. However, the
problem can be drastically simplified by using long-wavelength expansions in the case where
the characteristic spatial scale of the interfacial heat release-consumption modulation is much
larger than the thickness of the layer, i.e., the temperature modulation depends on the scaled
coordinates X̃ = εx and Ỹ = εy, ε � 1, rather than on x and y. Later on, we assume that the
solution of equations and boundary conditions (1)–(13) itself depends only on the slow variables
X̃ = (X̃ , Ỹ ). Also, it is assumed that the solution depends on the scaled time variable τ̃ = ε2t .
These assumptions are justified in the case of a strong surface tension. The strong surface tension
suppresses shortwave deformations of the surfaces; therefore the instability takes place only in the
region of long waves. Later on, we assume that σm = σ 0

mε−2 and σ 0
m = O(1), m = 1, 2. Also, we

assume that the dependence of interfacial tensions on the temperature is relatively weak and can
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be neglected in the boundary conditions for normal stresses (but not in those for tangential stresses
where it is the source of a thermocapillary motion). The details of the long-wave approach applied
to thermocapillary flows can be found in review papers [26,27].

The application of the long-wave approach leads to a closed system of equations that govern the
evolution of a heated two-layer film:

H1τ + ∇̃ · Q1 = 0, H2τ + ∇̃ · Q2 = 0. (14)

A detailed derivation of (14) in the case of the spatially homogeneous interfacial heat release or
consumption is given in [22]. The derivation in the case of spatial modulation is quite similar, and
hence we omit it here and present only the final results.

While the natural vertical length scale is the mean thickness of the lower layer H0
1 , the horizontal

length scale L∗ is arbitrary (see [28]). We choose

τ ∗ = η1(L∗)4

σ 0
1

(
H0

1

)3 (15)

as a time scale,

p∗ = σ 0
1 H0

1

(L∗)2
(16)

as a pressure scale, and |Ts − Tg| as the temperature scale. We define nondimensional variables

X = X̃/L∗, τ = τ̃ /τ ∗;

h j = Hj/H0
1 , p j = Pj/p∗, j = 1, 2

and introduce the following set of nondimensional parameters: η = η1/η2, κ = κ1/κ2, σ = σ 0
2 /σ 0

1 ,
α = α2/α1, and h = H0

2 /H0
1 . Also, we define the Biot number

Bi = qH0
1

κ2
. (17)

Because there are two independent sources of temperature inhomogeneity, the temperature differ-
ence across the film and interfacial heating or cooling, the thermocapillary convection in the system
is characterized by two different Marangoni numbers

M = α1(Ts − Tg)

σ 0
1

(
L∗
H0

1

)2

(18)

and

MQ = α1Q∗(L∗)2

σ 0
1 H0

1 κ2
. (19)

Note that the Marangoni number MQ, corresponding to the heat source or sink at the interface, is a
function of the coordinate X,

MQ = MQ(X).

Equations (14) written in the nondimensional form look like

h1τ + ∇ · q1 = 0, h2τ + ∇ · q2 = 0, (20)

where

q j = qT
j + qσ

j , j = 1, 2

qT
1 = M

2
h2

1∇[d (Bih1 − ακ )] − 1

2
h2

1∇{MQdh1[1 + α + Bi(h2 − h1)]}, (21)
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qT
2 = M

2

(−h2
2∇(dηακ ) + (2h2 − h1)h1∇{d[Bih1 − ακ (1 − η)]})

− 1

2
[(1 + α)h1(2h2 − h1) + ηα(h2 − h1)2]∇(MQdh1)

− Bi

2
h1(2h2 − h1)∇[MQdh1(h2 − h1)], (22)

d (X, τ ) = [κ + Bi(1 − κ )h1(X, τ ) + Biκh2(X, τ )]−1. (23)

The nondimensional expressions for qσ
1 and qσ

2 are

qσ
1 = f11∇p1 + f12∇p2, qσ

2 = f21∇p1 + f22∇p2, (24)

where the nondimensional mobilities are

f11 = −1

3
h3

1, f12 = −1

2
h2

1(h2 − h1), f21 = 1

6
h3

1 − 1

2
h2

1h2,

f22 = −(h2 − h1)

[
1

2
h1(2h2 − h1) + η

3
(h2 − h1)2

]

and the capillary pressures are

p1 = −∇2h1 − σ∇2h2, (25)

p2 = −σ∇2h2. (26)

IV. NUMERICAL METHOD

We have performed nonlinear simulations of Eqs. (20) with a spatially periodic modulation of
the Marangoni number MQ corresponding to the heat source or sink at the interface,

MQ(X + L,Y ) = MQ(X,Y + L) = MQ(X,Y ). (27)

Let us emphasize that L is a nondimensional parameter; the dimensional modulation period is
L̃ = LL∗. Equations (20) have been discretized by central differences for spatial derivatives and
solved using an explicit scheme. Initial conditions for h j , j = 1, 2, have been chosen in such a way
that the mean value of h1(X,Y, 0) was equal to 1 and the mean value of h2(X,Y, 0) was equal to h,
where h > 1. Small random deviations of hj (X,Y, 0) from their mean values were imposed using a
code creating pseudorandom numbers.

Unlike the case of short-wave instability, where the characteristic horizontal scale is determined
by the linear stability theory as λc = 2π/kc (kc is the critical wave number), in the case of a long-
wave instability (kc = 0) the problem has no characteristic horizontal scale except the size of the
region. At large L, the characteristic scale of the pattern created by instability is of the order of L.

The computations have been performed in the region L × L = 240 × 240 with periodic boundary
conditions. For moderate values of M and MQ, the fields h1 and h2 are rather smooth, and thus the
grid 80 × 80 gives a good resolution of large-scale wave patterns.

The primary analysis of the obtained nonlinear regimes has been performed using snapshots of
the fields of hj (X,Y, τ ), j = 1, 2. This analysis has been supplemented by the investigation of the
Fourier components

cmn(τ ) = 2

L2

∫ L

0

∫ L

0
h1(X,Y, τ ) cos

[
2π

L
(mX + nY )

]
dX dY, (28)

smn(τ ) = 2

L2

∫ L

0

∫ L

0
h1(X,Y, τ ) sin

[
2π

L
(mX + nY )

]
dX dY, (29)
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FIG. 2. Snapshots of contour lines of h1(X,Y, τ ) − 1 for alternating rolls with basic wave vectors (2k0, 2k0 )
and (2k0, −2k0 ) (AR1) for M = −2, MQ = −0.5, and (a) τ = 1 200 000, (b) τ = 1 200 250, (c) τ = 1 200 750,
and (d) τ = 1 201 000.

where m and n are integer numbers. We have used also variables

rmn(τ ) =
√

c2
mn(τ ) + s2

mn(τ ), (30)

characterizing the amplitudes of corresponding complex Fourier harmonics, and quantities

hmax, j (τ ) = max
X,Y

h j (X,Y, τ ), j = 1, 2, (31)

which describe the deformations of the surfaces.

V. PATTERN SELECTION BY INTERFACIAL HEAT RELEASE-CONSUMPTION MODULATION

Let us discuss the stability of the mechanical equilibrium and the nonlinear flow regimes in the
case of homogeneous heating previously studied in [22,28]. It has been shown that in addition to a

094001-6



OSCILLATORY PATTERN SELECTION BY SPATIAL HEAT …

0 50 100 150 200
0

50

100

150

200

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 50 100 150 200
0

50

100

150

200

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

0 50 100 150 200
0

50

100

150

200

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

0 50 100 150 200
0

50

100

150

200

0.6

0.4

0.2

0

0.2

0.4

0.6

0.8

(b)(a)

(c) (d)

FIG. 3. Snapshots of contour lines of h1(X,Y, τ ) − 1 for alternating rolls with basic wave vectors (k0, 3k0 )
and (3k0, −k0 ) (AR2) for M = −2, MQ = −0.5, and (a) τ = 399 003, (b) τ = 399 100, (c) τ = 399 300, and
(d) τ = 399 400.

monotonic instability leading to the rupture of the film, the two-layer film is subject to an oscillatory
instability that generates self-sustained Marangoni waves. In the absence of the interfacial heat
release or consumption, the oscillatory instability [with the growth rate λ(k), Reλ(k) > 0, and
Imλ(k) �= 0] is developed by heating from below (M > 0) if Bi < Bic and by heating from above
(M < 0) if Bi > Bic, where

Bic = 1 + α(1 + ηκa2 + 2κa)

a
;

here a = h − 1 (see [28]). As shown in [22], the oscillatory instability is retained in the presence of
the interfacial heat release or consumption within a definite interval of the parameter

Q = MQ

M Biκ
.
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FIG. 4. Snapshots of contour lines of h1(X,Y, τ ) − 1 for alternating rolls with basic wave vectors
(−k0, 2k0 ) and (2k0, k0 ) (AR3) for M = −2, MQ = −0.5, and (a) τ = 1 200 000, (b) τ = 1 200 500,
(c) τ = 1 200 750, and (d) τ = 1 201 000.

Experimental observation of the oscillatory instability described above is lacking; the system of
fluorinert and silicone oil is a good candidate for performing future experiments. It is one of the most
typical pairs of liquids used in two-liquid experiments [29–32] for the following reasons: (i) Both
liquids are almost immiscible and (ii) for different kinds of silicone oils, the viscosity changes over a
wide range. In the present paper, we perform computations for a particular system of liquids, that of
fluorinert FC70 (liquid 1) and silicone oil 10 (liquid 2), previously used in microgravity experiments
(see, e.g., [31]). It is characterized by the following parameter values: η = 3.04, κ = 0.522, α = 2,
ρ = 0.482, σ = 2.6, a = 1.5, and Bi = 10. For that system, the interval of oscillatory instability by
heating from above is −0.004 97 < Q < 0.0710 (see [22]). Below we set M = −2 and MQ = −0.5
(Q = 0.048).

For the values of the parameters listed above, the real part Reλ(k) of the complex growth rate
λ(k) corresponding to oscillations with the wave number k is determined by the formula

Reλ(k) = 0.142k2 − 9.92k4.
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FIG. 5. Temporal evolution of amplitudes r22(τ ) (solid line) and r2,−2(τ ) (dashed line) for M = −2 and
MQ = −0.5 (pattern AR1).

Later on, we call it just the growth rate. Thus, any disturbances with wave numbers in the interval
0 < k2 < k2

∗ ≈ 0.143 grow in time; the maximum growth rate corresponds to k2 = k2
m = k2

∗/2 ≈
0.718 × 10−2.

In a finite region, the set of admissible wave vectors is discrete. The periodic boundary conditions
on the boundaries of a finite computational region 0 � X � L and 0 � Y � L determine the set of
admissible disturbance wave vectors

kx = mk0, ky = nk0, k0 = 2π/L,

where m and n are integer numbers. For L = 240, we obtain k2
0 ≈ 0.685 × 10−3, hence (km/k0)2 ≈

10.5. Therefore, among all the admissible disturbances, the disturbances with (m, n) = (±1,±3)
and (m, n) = (±3,±1) have the maximum growth rate λ(10k2

0 ) ≈ 0.51 × 10−3. For comparison,
let us present also the growth rates for some other disturbances: For (m, n) = (±1,±2) and
(m, n) = (±2,±1), λ(5k2

0 ) ≈ 0.371 × 10−3; for (m, n) = (±2,±2), λ(8k2
0 ) ≈ 0.483 × 10−3; and

for (m, n) = (±2,±3) and (m, n) = (±3,±2), λ(13k2
0 ) ≈ 0.481 × 10−3.

At fixed values of L, M, and MQ, inside the interval 0 < k2 < k2
∗ determined by the linear

stability theory, there exists a subinterval of stable nonlinear wave patterns satisfying the periodicity
conditions. For instance, in the case when L = 240, M = −2, and MQ = −0.5, alternating rolls
with three different values of the wave number have been observed in numerical simulations:
(i) alternating rolls with basic wave vectors (2k0, 2k0) and (2k0,−2k0) (AR1), k2 = 8k2

0 (see Fig. 2);
(ii) alternating rolls with basic wave vectors (k0, 3k0) and (3k0,−k0) or (k0,−3k0) and (3k0, k0)
(AR2), k2 = 10k2

0 (see Fig. 3); and (iii) alternating rolls with basic wave vectors (−k0, 2k0) and
(2k0, k0) or (k0, 2k0) and (−2k0, k0) (AR3), k2 = 5k2

0 (see Fig. 4).
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FIG. 6. Phase trajectory in the plane (r22, r2,−2) for M = −2 and MQ = −0.5 (pattern AR1).

Recall that alternating rolls are a nonlinear superposition of two standing waves oscillating with
a certain temporal period T . The amplitudes of these waves oscillate with period T/2; the phase
shift between oscillations of both standing waves is equal to T/4. For the pattern AR1 with basic
wave vectors (2k0, 2k0) and (2k0,−2k0), the temporal evolution of amplitudes r22(τ ) and r2,−2(τ )
is shown in Fig. 5. The phase trajectory in the plane (r22, r2,−2) is shown in Fig. 6. Patterns AR2
and AR3 are quite similar to AR1, except for the orientation and lengths of basic vectors.

At a certain time instant τ = τ0, r22 = 0 and pattern AR1 resembles a system of rolls parallel to
the diagonal Y = X [see Fig. 2(b)]. At the time instant τ = τ0 + T/8, r22 = r2,−2 and the pattern
resembles a system of squares [that time instant is seen especially well for pattern AR3 in Fig. 4(c)].
At the time instant τ = τ0 + T/4, r2,−2 = 0 and pattern AR1 resembles a system of rolls parallel to
the diagonal Y = −X [see Fig. 2(d)]. Note that the maxima of amplitudes of both waves are exactly
equal:

max
τ

r2,−2(τ ) = max
τ

r22(τ ).

The quantities hmax, j , j = 1, 2, oscillate with period T/4 (see Fig. 7).
Let us emphasize that the support of the spatial Fourier spectrum of the pattern contains an

infinite number of combinations of basic wave vectors with integer coefficients. For instance, pattern
AR3 shown in Fig. 4, in addition to basic wave vectors (2k0, k0) and (−k0, 2k0), includes any
wave vectors kmn = m(2k0, k0) + n(−k0, 2k0), m = 0,±1, . . . and n = 0,±1, . . .. The amplitudes
of waves corresponding to combinational wave vectors are comparable to the amplitudes of the
basic ones; see Fig. 8, where the evolution of amplitudes for waves with wave vectors (k0, 3k0) =
(2k0, k0) + (−k0, 2k0) and (3k0,−k0) = (2k0, k0) − (−k0, 2k0) is presented. As shown in [22],
the natural evolution of the system from the initial condition corresponding to the mechanical
equilibrium state with a small random disturbance leads to pattern AR2 with the squared wave
number k2 = 10k2

0 , which corresponds to the disturbance with the maximum growth rate.
Due to the coexistence of three kinds of stable patterns (tristability), the following questions

arise: How can one create a definite pattern? Can a weak spatial inhomogeneity of the interfacial
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FIG. 7. Temporal evolution of hmax,2(τ ) for M = −2 and MQ = −0.5 (pattern AR1).

FIG. 8. Temporal evolution of amplitudes r13(τ ) and r3,−1(τ ) for M = −2 and MQ = −0.5 (pattern AR3).
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heat release or consumption change the evolution of the system significantly and eventually create
a pattern of a different kind?

In the case of a monotonic instability, the answer is rather straightforward: In order to create the
pattern with the wave vector k, one has to apply the modulation of the parameter of the kind

MQ(X) = M̄Q + 	MQ sin(k · X + φ). (32)

The modulation of the parameter creates a disturbance with the wave vector k which grows due to
the instability until the nonlinear stationary pattern with the basic wave vector k is formed. Then
the parameter modulation is eliminated. If the pattern created by modulation is stable, it is retained;
otherwise, it evolves towards a pattern with another wave vector. This idea has been successfully
applied for stationary roll patterns in the case of Rayleigh-Bénard convection in [5].

Here we are going to create a definite oscillatory pattern by means of a stationary parameter
modulation (32). The numerical simulations reveal two different scenarios.

Scenario 1. The oscillatory pattern with the same basic wave vector k is created.
Specifically, we have performed the simulations with the interfacial heat consumption determined

by the formula

MQ(X,Y, τ ) =
{

M̄Q + 	MQ sin[2k0(X − Y )], 0 � τ � τm

M̄Q, τ > τm,
(33)

where M̄Q = −0.5 and 	MQ = 0.05. For sufficiently large τm, a modified AR1 pattern is developed
during the time interval 0 � τ � τm (see Sec. VI for details). For τ > τm, when 	MQ vanishes, the
pattern is transformed into AR1 shown in Fig. 2.

Scenario 2. An oscillatory pattern with different basic wave vectors is created.
Specifically, we have applied the parameter modulation

MQ(X,Y, τ ) = M̄Q + 	MQ sin[k0(X + 3Y )], (34)

with M̄Q = −0.5 and 	MQ = 0.012. One could expect that this kind of modulation will support
pattern AR2 with basic wave vectors ±(k0, 3k0) and ±(−3k0, k0). However, after diminishing 	MQ

in small steps, we have obtained pattern AR3 with basic wave vectors ±(k0,−2k0) and ±(2k0, k0)
shown in Fig. 4.

The reason is that the stationary modulation with the wave vector (k0, 3k0) forms a bridge
between modes with wave numbers (k0,−2k0) and (2k0, k0). These modes have equal frequencies;
therefore a stationary modulation creates a resonant coupling between them. That resonance leads
to the formation of pattern AR3.

VI. MODIFICATION OF PATTERNS UNDER THE ACTION OF HEAT
CONSUMPTION MODULATION

Let us describe in more detail the modification of patterns caused by the heat consumption
modulation.

A. Time-periodic patterns

The inhomogeneity (33) violates the translational invariance of the problem with respect to
translations along the direction (2k0,−2k0), while the invariance to translations along the direction
(2k0, 2k0) is retained. Therefore, the Fourier component c2,−2 tends to zero (see Fig. 9), while both
components s22 and c22 are generally different from zero (see Fig. 10). Because of the modulation,
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FIG. 9. Temporal evolution of the Fourier component s2,−2(τ ) (solid line) for M = −2, M̄Q = −0.5, and
	MQ = 0.05 (modified pattern AR1). The component c2,−2 (dashed line) tends to 0 at large τ .

FIG. 10. Temporal evolution of the Fourier components s22(τ ) (solid line) and c22(τ ) (dashed line) for
M = −2, M̄Q = −0.5, and 	MQ = 0.05 (modified pattern AR1).
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FIG. 11. Temporal evolution of amplitudes r22(τ ) (solid line) and r2,−2(τ ) (dashed line) for M = −2, M̄Q =
−0.5, and 	MQ = 0.05 (modified pattern AR1).

FIG. 12. Phase trajectory in the plane (r22, r2,−2) for M = −2, M̄Q = −0.5, and 	MQ = 0.05 (modified
pattern AR1).
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FIG. 13. Temporal evolution of hmax,2(τ ) for M = −2, M̄Q = −0.5, and 	MQ = 0.05 (modified pattern
AR1).

the mean value

s̄2,−2 = 1

T

∫ T

0
s2,−2(τ )dτ �= 0,

while s̄22 = c̄22 = 0. The oscillations of r22(τ ) and r2,−2(τ ) are shown in Figs. 11 and 12. Their
period coincides with the oscillation period of Fourier components s22, c22, and s2,−2. The quantities
hmax, j (τ ), j = 1, 2, oscillate with the same period T (see Fig. 13).

Snapshots of contour lines are shown in Fig. 14. In addition, we considered the influence of
the perturbation (34) on the pattern AR3 with the basic wave vectors (−k0, 2k0) and (2k0, k0). The
components (k0, 3k0) and (3k0,−k0) are generated by both the nonlinear interaction of basic Fourier
components (see Fig. 8) and the external perturbation.

As explained above, because of the modulation, c13 = 0 and s̄13 �= 0 (see Fig. 15). The evolution
of amplitudes r13 and r3,−1 is shown in Figs. 16 and 17. The oscillation period of hmax, j , j = 1, 2,
coincides with that of Fourier components s13, s3,−1, and c3,−1 (see Fig. 18).

B. Quasiperiodic oscillations

The oscillatory patterns described in Sec. VI A keep their symmetry with respect to two
orthogonal symmetry axes in the course of oscillations (see Fig. 14). Let us discuss now the action
of modulation (27) incompatible with the reflection symmetry of the pattern. For instance, let us
consider the action of the modulation

M(X,Y, τ ) = M̄Q + 	MQ sin k0X (35)

on pattern AR1. Let us introduce new variables X̄ = (X + Y )/
√

2 and Ȳ = (Y − X )/
√

2. In the
absence of modulation, with an appropriate shift of the origin, pattern AR1 is symmetric with respect
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FIG. 14. Snapshots of contour lines of h1(X,Y, τ ) − 1 for modified alternating rolls with basic wave
vectors (2k0, 2k0 ) and (2k0,−2k0 ) (modified pattern AR1) for M = −2, M̄Q = −0.5, 	MQ = 0.05, and
(a) τ = 1 500 250, (b) τ = 1 500 500, (c) τ = 1 500 750, and (d) τ = 1 501 000.

to each of the transformations

X̄ → −X̄ , Ȳ → −Ȳ . (36)

Within that pattern, waves moving in positive and negative directions of axes X̃ and Ỹ have equal
amplitudes and frequencies, and thus the pattern is time periodic. The disturbance

	MQ sin k0X = 	MQ sin[k0(X̄ − Ȳ )/
√

2]

violates symmetry (36). Therefore, waves moving in the positive and negative directions of axes
X̄ and Ȳ have different amplitudes and frequencies. The superposition of those waves leads to the
amplitude pulsation on the background of a pattern moving as a whole. Generally, the pulsation
period and the time needed for passing the distance L by the moving pattern are incommensurate;
therefore the flow is quasiperiodic in time. An example of quasiperiodic oscillations of Fourier
components s22(τ ) and c22(τ ) and the corresponding phase trajectory in the plane (s22, c22) are
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FIG. 15. Temporal evolution of Fourier component s13(τ ) (solid line) and plot of c13(τ ) = 0 (dashed line)
for M = −2, M̄Q = −0.5, and 	MQ = 0.012 (modified pattern AR3).

FIG. 16. Temporal evolution of amplitudes r13(τ ) (solid line) and r3,−1(τ ) = 0 (dashed line) for M = −2,
M̄Q = −0.5, and 	MQ = 0.012 (modified pattern AR3).
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FIG. 17. Phase trajectory in the plane (r13, r3,−1) for M = −2, M̄Q = −0.5, and 	MQ = 0.012 (modified
pattern AR3).

FIG. 18. Temporal evolution of hmax,2(τ ) for M = −2, M̄Q = −0.5, and 	MQ = 0.012 (modified pattern
AR3).
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FIG. 19. Temporal evolution of Fourier components s22(τ ) (solid line) and c22(τ ) (dashed line) for M =
−5, MQ = −0.75, and 	MQ = 0.25 (quasiperiodic oscillations).

FIG. 20. Phase trajectory in the plane (s22, c22) for M = −5, MQ = −0.75, and 	MQ = 0.25
(quasiperiodic oscillations).
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FIG. 21. Snapshots of contour lines of h2(X,Y, τ ) − h for quasiperiodic oscillations for M = −5, M̄Q =
−0.75, 	MQ = 0.25, and (a) τ = 2 100 140, (b) τ = 2 100 200, (c) τ = 2 100 220, and (d) τ = 2 100 300.

shown in Figs. 19 and 20. The oscillations of components s2,−2(τ ) and c2,−2(τ ) are similar.
Snapshots of contour lines are shown in Fig. 21.

VII. CONCLUSION

We have considered Marangoni waves in two-layer films under the action of spatial modulation
of the Marangoni number MQ corresponding to the heat source or sink at the interface. In the
case of multistability, the spatial modulation can be used for the creation of a pattern with a
definite spatial structure. The response of the oscillatory system to a stationary spatially periodic
inhomogeneity turned out to be nontrivial. The periodic stationary modulation of parameter MQ

with wave vector k does not always create an oscillatory pattern with k as one of the basic wave
vectors. That modulation can create a pattern with some different basic wave vectors k1 and k2

such that k = k2 − k1 serves as a bridge for a resonance between the oscillations with basic wave
vectors.
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Modification of alternating roll patterns of different scales due to the Marangoni number
modulation has been investigated. It has been shown that the violation of the reflection symmetry of
the pattern by its spatial heat release modulation can lead to a quasiperiodic temporal evolution.
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