
PHYSICAL REVIEW FLUIDS 4, 093903 (2019)

Compressibility effects of supersonic Batchelor vortices

Toshihiko Hiejima *

Department of Aerospace Engineering, Osaka Prefecture University, 1-1 Gakuen-cho,
Nakaku, Sakai, Osaka 599-8531, Japan

(Received 6 May 2019; published 16 September 2019)

Transition processes in supersonic Batchelor vortices with small disturbances are
investigated numerically at Mach numbers 1.5–5.0. The Batchelor vortices for isentropic
and uniform stagnation-temperature vortices are considered in terms of thermodynamic
properties. In the evolutions, the former vortices are not influenced by compressibility
effects; however, the latter have demonstrated slow growth as the Mach number increases.
Compressibility effects primarily mean that fluctuation growth related to turbulence is
suppressed as the Mach number increases. In spatial fluctuation energy production, isen-
tropic vortices exhibit only kinetic energy fluctuations and uniform stagnation-temperature
vortices cause large entropy fluctuation energy with increasing the Mach number. When the
Mach number is large, the kinetic fluctuation energy is greatly decreased and the increase in
entropy fluctuations is associated with reduced kinetic fluctuation energy. In addition, it is
found that the entropy fluctuation property at uniform stagnation temperatures is consistent
with the expression derived from the kinetic fluctuation energy based on Morkovin’s
hypothesis. The present results support the notion that the coefficient of variation of
density is appropriate to evaluate compressibility effects. Entropy fluctuation generalizes
fluctuation of thermodynamic quantity such as density fluctuation. Therefore, it follows
that the property of entropy is strongly related to intrinsic compressibility.

DOI: 10.1103/PhysRevFluids.4.093903

I. INTRODUCTION

In high-speed flows, turbulence structures are strongly affected by compressibility. The spreading
rate of a shear layer decreases sharply as the Mach number increases because compressibility
inhibits the entrainment of mass and turbulent diffusion. Early studies suspected that the density
ratio between the two streams in shear layers caused the reduced growth rate. However, for
various density ratios, Brown and Roshko [1] showed that reduced spreading rates were due to
compressibility effects and should not be attributed solely to the density ratio. Bogdanoff [2],
Papamoschou and Roshko [3] introduced the notion of convective Mach number Mc as a parameter
that can determine compressibility effects effectively. From flow visualisations, Clemens and
Mungal [4] observed that large-scale coherent structures in a shear layer change as the Mc increases.
Although the Mc parameter could successfully estimate compressibility, it has also been pointed
out that the compressibility parameter may not be sufficient because the spreading rates organized
by the convective Mach number Mc demonstrate significant scatter [5]. Based on multiple shear
layer measurements, Slessor et al. [6] proposed a way to correct scattering in the spreading rate
relative to a convective Mach number by introducing another compressibility parameter. Barre et al.
[7] pointed out that the anisotropy of turbulent stresses appeared to be affected by compressibility.
Vreman et al. [8] showed that compressibility effects are reflected in pressure-strain correlations and
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the Reynolds stress anisotropy tensor. They proposed a model for the reduced pressure fluctuations
that considered the anisotropy effect. For shear flows, Pantano and Sarkar [9] demonstrated that as
the Mc increases, the pressure-strain term decreases, which lead to inhibited energy transfer from
streamwise to cross-stream fluctuations.

Compressibility studies have focused extensively on turbulent boundary layers and shear flows
[10–14]. According to Morkovin’s hypothesis [12], compressibility effects do not become important
until the fluctuating Mach number exceeds 0.3, which is equivalent to a freestream Mach number of
approximately four. Moreover, the turbulence structure is closely related to that in the corresponding
constant-density flow, i.e., incompressible flow. For supersonic flows with moderately high Mach
numbers, the direct effects of compressibility on wall turbulence at zero pressure gradients are
small and significant differences occur due to variations in the thermodynamic properties across
the layer. Duan et al. [15] stated that the possible effects of compressibility are reflected by
increasing fluctuations of thermodynamic quantities. For example, density fluctuations greater
than 5% were measured in supersonic turbulent boundary layers at Mach number 3.0 [16]. If the
root-mean-square density fluctuation is not large compared to the absolute density in the boundary
layers and wake flows below Mach number 5, or jet flows below Mach number 1.5, the effects
of density fluctuations on turbulence are small with a steady pressure distribution [10]. However,
fluctuations of thermodynamic quantities and turbulent Mach numbers increase dramatically when
the freestream Mach number increases [14].

Gerolymos and Vallet [17] investigated fluctuations of thermodynamic variables in compressible
turbulent plane channel flow. They stated that the coefficient of variation of density ρ̂/ρ (the ratio of
the standard deviation to the mean) is the optimal measure of compressibility effects on turbulence
and that the dilatational terms are often negligible. Moreover, using supersonic and incompressible
heated boundary layers, Liu and Pletcher [18] studied the effects of density fluctuation and profile on
compressibility. They found that both compressibility and density profile effects satisfied the
similarity laws for the boundary layer profile and that the density profile effect influences density
fluctuation significantly. Although there is a close relationship between compressibility, variable
density profile and density fluctuation, the explicit relation in compressible flows has not been
clarified.

In thermodynamic quantities, entropy changes are fundamental. Density fluctuations are closely
related to entropy (temperature) fluctuations. Goldstein [19] investigated analytically the turbulence
generated by the interaction of random entropy fluctuations with nonuniform mean flows and
demonstrated that the energy of entropy-generated turbulence increases much more rapidly with a
contraction ratio than that of imposed upstream turbulence. From an integration of the mean entropy
equation, Lele [11] indicated that increased entropy and the associated total pressure loss may be
significant at moderate and high convective Mach numbers. Therefore, the relation between entropy
fluctuations and turbulence must also be considered to elucidate compressibility effects.

In terms of compressibility effects, the following shear flows define the significance of stream-
wise vorticity. Schadow et al. [20] studied the compressible spreading rates of supersonic coaxial
jets for circular and rectangular inner jets. They found that the spreading rates varied with the
convective Mach number in a manner similar to plane shear layers and that the rectangular jet
was superior to the circular jet relative to spreading rate. Apparently, the increase of spreading rate
is considered to be due to streamwise vortices generated from the rectangular geometry. It is known
that naturally developing, three-dimensional structures (streamwise vortical structures) enhance
the growth rate of the turbulent mixing layer [11]. Experimental and numerical investigations
[21–23] suggest that streamwise vortices have a high mixing performance in supersonic flows that is
connected to relaxation of compressibility effects. The property of the vortices can also be inferred
from the growth of three-dimensional waves in shear layers, which reduce compressibility beyond
the convective Mach number 0.6 [24]. In fact, compressible streamwise vortices originally develop
as three-dimensional waves with a fast growth rate and possess variable thermodynamic (pressure,
density and temperature) profiles that increase the propensity for fluctuation growth. Note that the
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compressibility effect, i.e., vortical activity suppression, differs from acoustic modes [25], which
grow stronger as the Mach number increases.

As mentioned above, streamwise vortices have shown promise as a way to reduce compressibility
effects and produce supersonic turbulence (fluctuation growth). However, to date, few studies have
investigated the mechanism for compressibility of streamwise vortices. In terms of streamwise
vorticity and based on a few experiments, Naughton et al. [26] considered a compressibility effect
of swirling flows and demonstrated that the growth rate of swirling jets was greater than that of
nonswirling counterparts. According to linear stability analysis of streamwise vortices with uniform
stagnation temperatures [27], the greater the Mach number, the larger the density fluctuation. In
contrast to boundary layers and shear flows, in nonlinear developments of streamwise vortices, the
mechanism of the reduced spreading rate remains unclear. Similar to the vortices, how compress-
ibility effects are caused by a nonuniform thermodynamic profile has not been clarified. Therefore,
as a step toward understanding of universal compressibility effects, it is important to know the
fluctuation feature through the evolution of streamwise vortices, which, unlike boundary layers and
shear flows that are nearly parallel flows, are associated with a nonuniform pressure profile.

In previous works, supersonic Batchelor vortices at uniform stagnation temperatures have been
studied in terms of linear stability analysis [27], direct numerical simulation [28,29] and vortex
breakdown [30,31]. The present study investigates the effects of variable thermodynamic properties
on spatial evolution and compressibility effects in a supersonic Batchelor vortex as a streamwise
vortex, which is important to clarify the fundamental physics in high-speed flows. Many vortical
flows have been interpreted using linear stability theory and nonlinear simulations. In this study, the
spatial evolutions of streamwise vortices with linear unstable modes and random disturbances are
investigated numerically for two types of thermodynamic conditions under the theme of fluctuation
growth.

The remainder of this paper is organized as follows. In Sec. II, the numerical method and
computational conditions, including the use of supersonic Batchelor vortices as inflow conditions,
are described. In Sec. III, the results of spatial development of linear unstable modes are provided
and discussed. Based on a detailed analysis of fluctuation energies, how effective entropy fluctuation
is on the compressibility of vortices developed by varying Mach numbers is shown in Sec. IV
using linear unstable and random disturbances. Conclusions and suggestions for future work are
presented in Sec. V.

II. NUMERICAL FORMULATIONS

A. Nondimensionalization of physical variables

The dimensional density, three velocity components, pressure, temperature, and entropy are
denoted ρ∗, u∗

i , p∗, T ∗ and s∗, respectively. The reference length of a Batchelor vortex is defined
as δ∗

s that denotes the swirl thickness obtained from Γ ∗ = (πδ∗
s )ω∗

x,max, where ω∗
x,max denotes the

maximum axial vorticity and Γ ∗ represents the total circulation of the entire distributed axial
vorticity. By using the freestream sonic velocity c∗

∞(= √
γ R∗ T ∗∞) and density ρ∗

∞, the physical
variables can be normalized as follows:

ρ = ρ∗

ρ∗∞
, ui = u∗

i

c∗∞
, p = p∗

ρ∗∞c∗2∞
, T = T ∗

γ T ∗∞
, s = s∗

C∗
v

, r = r∗

δ∗
s

, x = x∗

δ∗
s

, t = c∗
∞
δ∗

s

t∗,

(1)

where γ is the ratio of the specific heats, R∗ is the gas constant, T ∗
∞ is the freestream temperature

and C∗
v = R∗/(γ − 1) represents the specific heat at a constant volume, because, in a perfect gas

containing simple molecules, specific heat is constant over a wide temperature range. Here the
freestream Mach number M∞ and Reynolds number Re are defined as

M∞ = U ∗
∞

c∗∞
, Re = ρ∗

∞ U ∗
∞ δ∗

s

η∗∞
, (2)

where U ∗
∞ is the freestream velocity and η∗

∞ is the viscosity.
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FIG. 1. Comparison of Bachelor vortex profiles with experimental measurements in supersonic streamwise
vortices for (a) axial velocity and (b) azimuthal velocity. Reprinted with permission from T. Hiejima, Phys.
Fluids 25, 114103 (2013). Copyright 2013 American Institute of Physics.

B. Supersonic Batchelor vortex

To study the compressibility effects of supersonic streamwise vortices, Batchelor vortices [32]
are used under supersonic flows because their profiles are compatible with many experimental
swirling flows at high Reynolds numbers, as shown in Fig. 1. The radial, azimuthal, and axial
velocities (ur , uθ , and ux, respectively) of the Batchelor vortex are given as follows:

ur (r) = 0, uθ (r) = M∞
q

r
[1 − exp(−r2)], ux(r) = M∞[1 − μ exp(−r2)], (3)

where q and μ denote the swirl intensity (circulation) and axial velocity deficit, respectively. For
incompressible streamwise vortices, the linear growth rate increases as the swirl increases [33,34].
In contrast, in supersonic flows, it is difficult to generate a streamwise vortex with a strong swirl (i.e.,
large circulation) due to the incidence shockwave or separation on a device. According to devices
generating a Batchelor-type vortex in supersonic flows [26,35], the maximum swirl intensity is
approximately q ∼ 0.2. Here q = 0.16. It has also been shown that the fluctuation growth of the
vortex with a large swirl is weak due to rotational stabilisation [28,36,46]. The axial velocity deficit
is roughly 0.5–0.8 because a flow behind the devices that generated the vortex is similar to a wake
flow. Note that, in Fig. 1, the deficit μ ≈ 0.3 because the measured points are set downstream far
from the devices; however, the axial velocity profiles recover the deficit in the wake flows.

The normalized entropy equation is defined as

s = log

(
p

ργ

)
+ const. (4)

At high Reynolds numbers, the mainstream flows do not appreciably depend on viscosity; hence,
they can reasonably be regarded as inviscid supersonic flows. Using the radial momentum equation
and the derivation of the entropy definition Eq. (4), the density ρ(r) and pressure p(r) required for
compressible flows in basic inviscid steady flow are given as follows:

d p

dr
= ρ

uθ
2

r
,

dρ

dr
= ρ

γ

(
1

p

d p

dr
− ds

dr

)
. (5)

The Crocco equation is expressed as follows:

1

γ − 1
T

ds

dr
= γ

γ − 1

dT0

dr
− uθ ωx + ux ωθ, (6)
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TABLE I. Eigenvalues of unstable modes obtained from compressible linear stability analysis at M∞ = 2.5,
q = 0.16, and μ = 0.5.

Inflow Batchelor vortex −αr −αi m ω/M∞

Isentropic condition 0.74407 0.16023 −1 0.583
Isentropic condition 0.74957 0.15633 −2 0.745
Isentropic condition 0.83186 0.15427 −3 0.938
Isentropic condition 0.96355 0.15439 −4 1.160
Isentropic condition 1.11657 0.15502 −5 1.395
Isentropic condition 1.28088 0.15572 −6 1.637
Uniform stagnation temperature 0.67001 0.14040 −1 0.562
Uniform stagnation temperature 0.68514 0.12691 −2 0.718
Uniform stagnation temperature 0.78638 0.12295 −3 0.918
Uniform stagnation temperature 0.92943 0.12181 −4 1.145
Uniform stagnation temperature 1.08770 0.12153 −5 1.382
Uniform stagnation temperature 1.25647 0.12155 −6 1.626

where ωx and ωθ are the axial and azimuthal vorticities, respectively. For the entropy gradient in
Eq. (5), one case is described by Eq. (6), assuming that the stagnation temperature T0 is uniform.
The other case is derived from an isentropic condition, i.e., ds/dr = 0; here, it means a uniform
entropy.

C. Linear stability analysis

The linear disturbance is represented as φ(r) exp[i(αx + mθ − ωt )], the eigenfuction is φ(r) =
{R,U,V,W, P,Ωx}, where R,U,V,W, P, and Ωx denote the density, radial velocity, azimuthal
velocity, axial velocity, pressure, and axial vorticity disturbances, respectively. Here the axial wave
number is αr , the growth rate is −αi (α = αr + iαi; complex), the azimuthal wave number (integer)
is m, the frequency (real) is ω. Inviscid linearized disturbance equations are derived as second order
ordinary differential equations. A shooting method is used to solve the complex eigenvalue α and the
eigenvalues for the maximum growth rate are listed in Tables I and II. The previous study provides
details about the eigenvalue problem solution [27].

TABLE II. Eigenvalues of unstable modes obtained from compressible linear stability analysis at M∞ =
5.0, q = 0.16, and μ = 0.5.

Inflow Batchelor vortex −αr −αi m ω/M∞

Isentropic condition 0.62707 0.12618 −1 0.501
Isentropic condition 0.70971 0.14535 −2 0.710
Isentropic condition 0.81857 0.14955 −3 0.923
Isentropic condition 0.95553 0.15173 −4 1.150
Isentropic condition 1.11323 0.15329 −5 1.398
Isentropic condition 1.27964 0.15450 −6 1.633
Uniform stagnation temperature 0.51812 0.09795 −1 0.476
Uniform stagnation temperature 0.59555 0.09009 −2 0.662
Uniform stagnation temperature 0.72954 0.08741 −3 0.881
Uniform stagnation temperature 0.88176 0.08605 −4 1.113
Uniform stagnation temperature 1.03914 0.08526 −5 1.349
Uniform stagnation temperature 1.20055 0.08480 −6 1.588
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FIG. 2. Relations between the growth rate and the axial wave number, −αi vs. −αr , obtained from
linear stability theory at M∞ = 2.5, q = 0.16 and μ = 0.5; (a) isentropic condition, (b) uniform stagnation
temperature.

The linear disturbance of the Bachelor vortex were obtained from the linear stability analysis.
Figure 2 shows the growth rate −αi as a function of −αr for q = 0.16 and μ = 0.5 at M∞ = 2.5.
The result shows that the maximum growth rate of isentropic vortices is larger than that of uniform
stagnation temperature vortices and the axial wave number −αr increases as the azimuthal wave
number −m increases under both the thermodynamic conditions. In other words, briefly −αr is
proportional to −m on the most unstable mode; note that in shear layers the instability characteristics
is often expressed by the relation between αr and −αi. Thus, the properties of developing vortices
can be observed by focusing on the azimuthal wave number.

D. Governing equations

The normalized governing equations are the three-dimensional, unsteady, compressible Navier–
Stokes equations in the general coordinates ξi (i = 1–3), which are given as

∂

∂t

(
Q
J

)
+ ∂F i

∂ξi
= ∂Fv i

∂ξi
, (7)

Q =

⎡
⎢⎢⎢⎣

ρ

ρ u1

ρ u2

ρ u3

e

⎤
⎥⎥⎥⎦, F i =

⎡
⎢⎢⎢⎣

ρ Ui

ρ u1 Ui + p (J−1∂ξi/∂x1)
ρ u2 Ui + p (J−1∂ξi/∂x2)
ρ u3 Ui + p (J−1∂ξi/∂x3)

(e + p)Ui

⎤
⎥⎥⎥⎦, Fv i =

⎡
⎢⎢⎢⎢⎣

0
τ1k (J−1∂ξi/∂xk )
τ2k (J−1∂ξi/∂xk )
τ3k (J−1∂ξi/∂xk )
βk (J−1∂ξi/∂xk )

⎤
⎥⎥⎥⎥⎦,

J−1 = ∂x1

∂ξ1

(
∂x2

∂ξ2

∂x3

∂ξ3
− ∂x2

∂ξ3

∂x3

∂ξ2

)
+ ∂x1

∂ξ2

(
∂x2

∂ξ3

∂x3

∂ξ1
− ∂x2

∂ξ1

∂x3

∂ξ3

)

+ ∂x1

∂ξ3

(
∂x2

∂ξ1

∂x3

∂ξ2
− ∂x2

∂ξ2

∂x3

∂ξ1

)
,

where Q is a vector of conservative variables, and F i and Fv i contain the convective and viscous
fluxes, respectively. The Jacobian J transforms the coordinate system from a physical space to a
computational space. J−1∂ξi/∂xk are the derivatives of the coordinate conversion, i.e., the metrics.
The thermodynamics relation, the normalized equation of state and the transport coefficients are
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expressed as follows:

e = p

γ − 1
+ 1

2
ρ uk uk, p = ρ T,

τi j = η(T )

ReM

(
∂ui

∂x j
+ ∂u j

∂xi
− 2

3
δi j

∂uk

∂xk

)
, βi = uk τik + qi, (8)

qi = − γ

(γ − 1)

η(T )

ReM Pr

∂T

∂xi
, Ui =

(
J−1 ∂ξi

∂xk

)
uk,

where e is the total energy, τi j is the viscous stress tensor, qi is the conductive heat flux, Ui are the
velocity components at the cell interface, and ui are the velocity components in Cartesian coordi-
nates. The Reynolds number based on the sonic velocity is defined as ReM = (ρ∗

∞ c∗
∞ δ∗

s )/η∗
∞(=

Re /M∞), and the Prandtl number Pr = 0.72. The viscosity η is calculated from Sutherland’s law,

η(T ) = T
3
2

1 + ϑ

T + ϑ
, (9)

where ϑ = 110.4/(γ T ∗
∞) is normalized by the freestream temperature.

E. Numerical methods and computational framework

The purpose of this study is to investigate the compressibility effects of Batchelor vortices on
transition process. High accuracy is required for simulations of small disturbances that evolve
in supersonic flows. The convective flux is evaluated using the AUSMDV scheme [37], which
is classified into the advection upwind splitting method (AUSM), and the weighted essentially
nonoscillatory scheme with ninth-order accuracy for the interpolation of primitive variables at cell
interfaces [38–40]. The viscous flux terms are calculated to eighth-order accuracy using a central
difference method. The temporal integration adopts a four-step, fourth-order accuracy scheme [41].

The physical domain is a rectangular box with sides Lx, Ly, and Lz. The grid spacing is uniform
in a space that is four times the diameter of the vortex core and centered on the vortex axis. Beyond
this region, the grid splays out at irregular intervals. Note that the vortex core radius is close to
the site of the maximum azimuthal velocity. The computational space is also a rectangular box
composed of grids of uniform width Δξi = 1. Supersonic inflows are introduced in the x direction
and fixed Batchelor vortices for q = 0.16 and μ = 0.5 or 0.8 with the addition of disturbance. The
outflow condition at x = Lx is extrapolated to the zeroth order. To simulate an isolated vortex without
a contaminated center, symmetry conditions are applied on the boundary surfaces that, except
for y–z planes, compose x–y and x–z planes; although they correspond to periodicity conditions,
any induction from the other vortices is negligible under Lx > 40 and q = 0.16. The Reynolds
number based on the sonic velocity ReM is 9000. Numerical simulations were performed under two
thermodynamic conditions (Sec. II B).

F. Small disturbance conditions

The spatial evolutions of Batchelor vortices were investigated under the following disturbance
conditions. First, to develop linear disturbances, numerical simulations were performed for μ = 0.5
at M∞ = 2.5 and 5.0 with the addition of unstable modes for m = −1 to −6 which were obtained
from an inviscid linear stability analysis. The maximum amplitude of the disturbance is set to 1 %
of the mainstream flow amplitude. Although unstable modes evolving from a Batchelor vortex are
classified into various types (see, for example, Refs. [42–44]), the inviscid mode arises in supersonic
flows due to the high Reynolds numbers. The computational domain consists of Lx = 200, Ly =
Lz = 40 and the spatial resolution is Nx = 601, Ny = Nz = 251. Note that only for M∞ = 5.0 under
a uniform stagnation temperature, Lx = 300 and Nx = 901 due to the late transition.

093903-7



TOSHIHIKO HIEJIMA

(a () b) (c)

0
1
2
3
4
5
6
7

0 20 40 60

    R   
    U    
    V  
    W 
    P 
   Ω x

  LST: -αi x

ln
( |

φ 
| /

  |
φ 

| x 
= 

0 )

x
0

0.01

0.03

0.05

0 0.5 1.0 1.5 2.0

x = 8 
  LST: |R|
  LST: |U|
  LST: |V|
  LST: |W|
  LST: |P|   10
  DNS: |R|
  DNS: |U|
  DNS: |V|
  DNS: |W|
  DNS: |P|   10

A
m

pl
itu

de
 d

ist
ri

bu
tio

ns

r

×

×

-2π

-π

0

0 1.0 2.0

x = 8

Ph
as

e 
di

st
ri

bu
tio

ns

r

0
1
2
3
4
5
6
7

0 20 40 60 80

    R   
    U    
    V  
    W 
    P 
   Ω x

  LST: -αi x

ln
( |

φ 
| /

  |
φ |

x 
= 

0 )

x
0

0.01

0.03

0.05

0 0.5 1.0 1.5 2.0

x  = 8 
  LST: |R|
  LST: |U|
  LST: |V|
  LST: |W|
  LST: |P|   102

  DNS: |R|
  DNS: |U|
  DNS: |V|
  DNS: |W|
  DNS: |P|   102

A
m

pl
itu

de
 d

ist
ri

bu
tio

ns

r

×

×

-2π

-π

0

0 1.0 2.0

x  = 8

Ph
as

e 
di

st
ri

bu
tio

ns

r

FIG. 3. Comparison of results from linear stability theory (LST) and direct numerical simulation (DNS) for
eigenfunction profiles of unstable mode m = −3 at M∞ = 2.5, q = 0.16, and μ = 0.5; (upper) isentropic con-
dition, (lower) uniform stagnation temperature: (a) growth rate, −αix = ln(|φ|/|φ|x=0); φ = {R,U,V,W, P,
and Ωx} are disturbances in the density, radial velocity, azimuthal velocity, axial velocity, pressure, and axial
vorticity, respectively. (b) Amplitude and (c) phase at x = 8.

Second, to develop random disturbances, simulations were performed for μ = 0.5 and 0.8.
Note that random noise (white noise) whose amplitude is 3% of the mainstream flow amplitude
is added. The computational domain and the resolution are Lx = 300, Ly = Lz = 40 and Nx = 901,
Ny = Nz = 251, respectively. As a compressibility parameter, the Mach number M∞ varied among
1.5, 2.5, 3.5, and 5.0. Note that the condition M∞ < 5 satisfies the calorically perfect gas law and
corresponds to a Mach number coming into the combustor of a scramjet engine, which represents
approximately one third of the flight Mach number 8–15 [45]. Thus, investigating compressibility
effects under these conditions is an important undertaking.

G. Linear developments of normal modes

To clarify the linear growth of two thermodynamic profiles, Fig. 3 shows the streamwise
variations in the growth rate and the eigenfunction (amplitude and phase) profiles of the disturbances
obtained from the direct numerical simulation (DNS) and those obtained from the linear stability
theory (LST) for m = −3. In Fig. 3(a), the growth rates obtained from DNS are consistent with
those of LST (black line) during the initial growth stage. Each eigenfunction profile is very close
to the linearized solution at x = 8, while the nonlinearity surfaces there. Although it is not shown
here, each mean-flow profile for x < 16 is in agreement with the inflow profile [30]. Thus, it is
found that the numerical formulation with the high Reynolds number satisfies the solution of the
inviscid linear stability analysis during the early stage. In all disturbance profiles, the amplitude of
the axial velocity disturbance is the greatest, which is pronounced in the Batchelor vortex [46,47].
Large differences between the two thermodynamic profiles occur in the density disturbance. For a
uniform stagnation temperature, the amplitude is the second greatest and the phase change occurs
at the vortex outer edge, and for the isentropic vortex, the density disturbance is identical to the
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pressure disturbance in phase, and the flow field becomes homentropic. Therefore, it is shown that
the disturbance characteristic of the Batchelor vortex differs according to the thermodynamic profile.

III. SPATIAL DEVELOPMENTS OF LINEAR UNSTABLE MODES

A. Effect of azimuthal wave numbers

This subsection describes the effects of azimuthal wave numbers in spatially developing
Batchelor vortices with small disturbances. Figure 4 shows the isosurface of the second invariant of
the velocity gradient tensor Q [48], which is useful for quantitatively visualising vortical structures,
for m = −1 to −6 at M∞ = 2.5, q = 0.16, and μ = 0.5. Then, the Q is given by the following
equation:

Q = 1

2
(−Si jSi j + Ri jRi j + P2),

Si j = 1

2

(
∂u j

∂xi
+ ∂ui

∂x j

)
, Ri j = 1

2

(
∂u j

∂xi
− ∂ui

∂x j

)
, P = ∂uk

∂xk
, (10)

where Si j and Ri j are the strain-rate and vorticity tensors, i.e., the symmetric and asymmetric
components of the velocity gradient tensor ∂ui/∂x j , respectively, and P is the divergence of the
velocity vectors. In each case, spiral (large-scale) structures, which depend on the wave number
based on each unstable mode, are visible around the inflow vorticity at an early stage, as reported
by Abid [42], Broadhurst and Sherwin [49]. However, the effectiveness of the thermodynamic
condition on evolutions differs in Fig. 4. For m = −1, structures similar to vortex rings develop
in both cases. For m = −2, vortical structures similar to a conceptual representation of a vortex
breakdown described by Lambourne and Bryer [50] are shown in Figs. 4(c) and 4(d). Moreover,
for m = −1 and −2, isentropic cases exist small scales that are not observed in uniform stagnation-
temperature cases at the downstream. For m = −3 and −4, at a uniform stagnation temperature,
spiral structures grow from within the vortex core [see also Fig. 5(b)], while the structures break
up downstream. In contrast, the isentropic cases cause a large growth in the radial direction
while the spiral structures remain as large-scale structures. For m = −5 and −6, many small scales
are observed downstream, compared to less than m = −4. The isentropic vortex spreads outward
more than the uniform stagnation-temperature vortex; however, the difference is small compared to
the results for m = −3 and −4. Accordingly, it can be observed that the isentropic vortices exhibit
relatively high instability in nonlinear development.

To study developing structures in planes that are perpendicular to the mainstream, Fig. 5 shows
the contour lines of axial vorticity for m = −3 and −6 in four y–z planes. Since disturbances
develop as a spiral three-dimensional wave in this study, the behavior of streamwise (axial) vorticity
gives a useful piece of information to us. Each development of spiral structures from within the
vortex core is pronounced and occurs with accompanying reversed-sign vorticity. Note that the
generation of negative axial vorticity in the y–z planes could play a crucial role in large-scale
bursting and assists turbulence enhancement. Since angular momentum is conserved in vortices
at high Reynolds numbers, negative circulation that is related to negative vorticity increases at
large positive circulation that is regarded as a local overshoot in profile. Circulation overshoot is
associated with a centrifugal instability and are also required for maintaining the turbulent state
[36]. Thus, negative vorticities are important for fluctuation development. The spread of uniform
stagnation-temperature vortices is weak compared to that of an isentropic vortex. For the isentropic
case where m = −3, three twin vortices grow clearly at x = 40, and small eddies appear in the
center. In particular, the large effect of outward expansion is seen in this case [Figs. 4(e) and 5(a)].
Jacquin and Pantano [36] showed that turbulence produced within an incompressible Batchelor
vortex core has to overcome a dispersion buffer that lies adjacent to the vortex core before turbulent
fluctuations can reach the periphery of the vortex. Thus, the appearance of small scales in the
vortex core is important for the vortex destabilisation. Furthermore, the development of the axial
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FIG. 4. Isosurfaces of the second invariant of the velocity gradient tensor Q at M∞ = 2.5, q = 0.16, and
μ = 0.5: (left) isentropic condition and (right) uniform stagnation temperature; (a), (b) m = −1, (c), (d) m =
−2, (e), (f) m = −3, (g), (h) m = −4, (i), (j) m = −5, (k), (l) m = −6.
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(c)
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(a)

FIG. 5. Contour lines of axial vorticities ωx in various planes perpendicular to the axial flow: (a) m =
−3, isentropic condition; (b) m = −3, uniform stagnation temperature; (c) m = −6, isentropic condition, and
(d) m = −6, uniform stagnation temperature, at M∞ = 2.5, q = 0.16, and μ = 0.5.

vorticity in the plane is very similar to that of the incompressible Batchelor vortex that deals with
the evolution of normal modes [46]. This suggests that the compressibility effect is small in a plane
perpendicular to the main flow. For m = −6, the formed spiral structures are slim and symmetrical
up to x = 40. In the isentropic case, smaller structures appear in the central area of the vortex as
is the case for m = −3, and such structures may trigger the collapse of the vortex downstream.
Based on the m = −6 results, the large-scale streamwise vortex (inflow Batchelor vortex) becomes
chaotic downstream during the evolution of the high-wave-number mode. Note that, since the inflow
includes only pure normal-mode disturbance, the source of such small scales could be due to a
truncation error in the initial eigenfunction profiles and a high Reynolds number.

B. Mach number effects

In this subsection, the effects of Mach number are investigated in connection with compressibility
effects. First, consider the isentropic condition with the large growth rate at M∞ = 5.0 (see,
Table II). In Sec. III A, the spatial evolutions show that small scales near the center are effective
in the bursting. To observe the internal structures in detail, Fig. 6 shows the helicity density
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FIG. 6. Transition processes of Batchelor vortices described by helicity density contours in the cross-
sections through the vortex axis: (left) M∞ = 2.5 and (right) M∞ = 5.0; (a), (b) m = −1, (c), (d) m = −2,
(e), (f) m = −3, (g), (h) m = −4, (i), (j) m = −5, (k), (l) m = −6, for q = 0.16 and μ = 0.5 under isentropic
condition. Positive and negative helicities are rendered in black and white, respectively.

contours h = ui ωi (ωi are the vorticity components) in x–z cross-sections through the vortex axis
at M∞ = 2.5 and 5.0, and the positive and negative helicities are rendered in black and white,
respectively. Helicity contours provide useful information about the transition processes of vortices
[30]. In the early stage, the generated spiral structures (white) in the cross-sections are characterized
as asymmetric and symmetric in response to the even-odd mode. In terms of developing structures,
there is not a large difference between M∞ = 2.5 and 5.0 (except m = −4 and over x ∼ 150). For
m = −1, the feature of vortex breakdown, which the positive helicity is partly lacking on the center
axis [31], is found in the contours. For m = −2, there appears to be no difference depending on the
Mach number. For m = −3, the spiral structures widen outwards and small scales arise near the axis
located in a gap between the spread structures, as shown in Fig. 4(e). When small scales appear in
the vicinity of the vortex axis, they influence each other inside and outside the vortex, and eddies
increase downstream. For m = −4, when M∞ = 2.5, the evolution resembles that of m = −3. When
M∞ = 5.0, it is similar to that of m = −5 at M∞ = 2.5. For m = −5, the structure appears to a
hybrid configuration of m = −4 and m = −6 (the outward spread is weak as described next). For
m = −6, both M∞ cases demonstrate that development in a plane perpendicular to the mainstream
is small downstream, even under the isentropic condition. These results suggest that since the shear
eddying region changes depending on the mode, the spreading rate cannot be estimated properly by
using the thickness of the region, such as shear layers and no-swirling jets. In addition, it is found
that compressibility effects of the isentropic vortices are weak in that the spreading rate and the
fluctuation growth stay unchanged against the Mach number.

Second, consider uniform stagnation-temperature vortices. Figure 7 shows the isosurface of the
second invariant of the velocity gradient tensor in Eq. (10) at M∞ = 5.0, q = 0.16 and μ = 0.5 for
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FIG. 7. Isosurfaces of second invariant of velocity gradient tensor Q: (a) m = −1, (b) m = −2, (c) m =
−3, (d) m = −4, (e) m = −5, (f) m = −6, at M∞ = 5.0, q = 0.16 and μ = 0.5 under uniform stagnation
temperature.

m = −1 to −6. In marked contrast to isentropic cases, the vortical structures differ significantly
compared to those at M∞ = 2.5 in Fig. 4 (right). For each wave number, spiral structures developed
around the large-scale vortices are slim and tiny, and small scales are not observable downstream.
For m = −6, there is little outward extension in the radial direction, and the development might be
very weak and suppressed. Thus, developments with a high wave number at high Mach numbers
are passive in the vortices. Compressibility effects are most obvious on the development of uniform
stagnation-temperature vortices.

IV. ENTROPY EFFECTS ON BATCHELOR VORTICES

A. Definition of fluctuation energies

Here, the compressibility effects of the Batchelor vortex are considered from a thermodynamic
fluctuation perspective. One influence of the compressibility on the flow is the irreversible energy
transfer process from kinetic to internal energy. Fluctuation growth is evaluated using the total
fluctuation energy Ê (= K̂ + P̂ + Ŝ), which is given as follows:

K̂ = 1

2
ρ ûk ûk, P̂ = 1

2

p̂2

γ p
, Ŝ = 1

2

p

γ (γ − 1)
ŝ2, (11)

where the (—) and (∧) symbols denote the mean and fluctuating components, respectively. K̂ is
the fluctuation kinetic energy, P̂ is the fluctuation pressure energy, and Ŝ is the fluctuation entropy
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energy. The entropy fluctuation is defined as

ŝ = p̂

p
− γ

ρ̂

ρ
. (12)

Note that both Eqs. (11) and (12) are derived by linear approximation [30,51,52]. According to
Morkovin’s hypothesis, stagnation-temperature fluctuations are expected to be negligible compared
to static temperature fluctuations [10]. By assuming that pressure fluctuations are negligible,
fluctuations in the thermodynamic variables can be estimated using the state of equation, p = ρ T ,
given as follows:

T̂

T
� −(γ − 1)M

2 ûx

ux
= −(γ − 1)

M

c
ûx, − ρ̂

ρ
= T̂

T
, (13)

where M is the local Mach number and c is the speed of sound. This relationship is derived by
differentiating the conservation law of enthalpy (stagnation temperature) and is also known as the
strong Reynolds analogy (SRA).

For the two thermodynamic conditions, fluctuation pressure energy P̂ is very weak and then p̂ is
negligible, because pressure fluctuation p̂ is much smaller than the other physical fluctuations under
the normalized inflow condition (Fig. 3). From Eq. (12), it is found that the entropy fluctuation
corresponds to the density fluctuation in the uniform stagnation-temperature vortex. Then, ŝ is
derived from Eq. (13) as follows:

ŝ � −γ
ρ̂

ρ
= −γ (γ − 1)

M

c
ûx. (14)

By substituting Eq. (14) into Eq. (11) and using M � M∞ and c2 = γ p/ρ, the fluctuation entropy
energy Ŝ is given as follows:

Ŝ � (γ − 1)M2
∞

ρ û2
x

2
. (15)

It would be useful if this relation could be expressed by fluctuation kinetic energy K̂ . In a swirling
flow, each component in the velocity fluctuation becomes large due to the three-dimensional effect.
When the anisotropy ratios are defined as ûr/ûx and ûθ /ûx, assume that ûθ ≈ ûr , and the coefficient
between ûx and K̂ is defined as follows:

βK = 1 + 2

(
ûr

ûx

)2

. (16)

Note that the magnitude of fluctuation in shear flows depends on the scale of the velocity deficit,
differing from the boundary layer standardized by the boundary layer thickness. Using the averaged
kinetic energy K and velocity correlation τ 0,∞, which is associated with the axial velocity deficit
yielding instability in the Batchelor vortex, the following relation is obtained approximately:

K

τ 0,∞
� 1

2(1 − μ)
, (17)

where K = ρ uk (∞)uk (∞)/2 and τ 0,∞ = ρ [ux(0) ux(∞)]. The average velocity correlation is
similar to the reciprocal of the structure parameter [13], which denotes the ratio of the anisotropy
tensor ûiû j to K . The relationship between velocity fluctuation and the average velocity correlation
based on the numerical data using random disturbances is shown in Fig. 8. Note that the vertical
axis is integrated over the cross-sectional area that is perpendicular to the x-axis. The values on the
vertical axis depend on the deficit μ, and the averages of the data obtained from M∞ = 1.5 to 5.0 are
close to the estimation Eq. (17). In boundary layers, the change in anisotropy due to compressibility
is weak and independent of the Mach number [15]. In the vortices, from the values of M∞ = 5.0,

093903-14



COMPRESSIBILITY EFFECTS OF SUPERSONIC …

(a () b)

-1

0

1

2

3

4

5

100 150 200 250 300

M = 1.5
M = 2.5
M = 3.5
M = 5.0
K / τ

0, 

2(
u r

 / 
u x

)2

x

^̂
^̂

8

0

2

4

6

8

10

12

100 150 200 250 300

M = 1.5
M = 2.5
M = 3.5
M = 5.0
K / τ

0, 

2(
u r

 / 
u x

)2

x

^̂
^̂ 8

FIG. 8. Comparison of velocity fluctuation and average velocity correlation obtained from developments
with random disturbances: (a) μ = 0.5 and (b) μ = 0.8.

the anisotropy is considered to be influenced by the compressibility; however, here, it is estimated
using Eq. (17). Using Eqs. (15), (16), and (17), the fluctuation entropy energy is estimated by

Ŝ � (γ − 1)M2
∞

K̂

βK
. (18)

This indicates that Ŝ is compactly connected to K̂ based on Morkovin’s hypothesis.

B. Spatial developments of normal-mode disturbance

Figures 9 and 10 show the fluctuation energies, K̂ , P̂, Ŝ and Eq. (18) integrated over the
cross-sectional area that is perpendicular to the axial flow for m = −1 to −6 at M∞ = 2.5 and
5.0 under uniform stagnation temperature. As discussed previously, very small pressure fluctuations
are observed in these figures. Although there is no significant difference between the linear growth
rates for m = −3 to −6 in Tables I and II, each fluctuation energy magnitude differs in the nonlinear
evolutions. For M∞ = 2.5, the fluctuation kinetic energy K̂ decreases as wave number m increases,
and Ŝ is comparable to K̂ . In terms of the fluctuation profile, Eq. (18) differs from Ŝ at m = −1
and −2. For m = −1, there are characteristic double peaks in the K̂ distribution. The feature of the
fluctuation K̂ may indicate the presence of vortex breakdown. Note that vortex breakdown occurs
at low wave numbers (e.g., m = −1) and low Mach numbers [30]. In contrast, Eq. (18) agrees with
Ŝ for m = −3 to −6, where small scales are confirmed in Figs. 4(f) and 4(h). For M∞ = 5.0, Ŝ is
consistently greater than K̂ . Although Ŝ and Eq. (18) disagree at low wave numbers (m = −1 to
−4), they coincide at m = −5 and −6. It also suggests that swirl-type flows, which occur a vortex
breakdown and possess a compressibility relaxation, differ from shear flows in fluctuation property
because large scales (i.e., low wave numbers) are often subject to the fluctuation growth in shear
flows. As a result, Eq. (18) becomes consistent with Ŝ when the wave number is high. This suggests
that Morkovin’s hypothesis [12] proposed in turbulent fluctuation is also applicable to the fluctuation
growth of a high wave number.

To analyze small downstream structures associated with high wave numbers, the amplitudes of
axial velocity disturbance decomposed by Fourier modes m = −1 to −12 are normalized against
those of the initial added unstable modes m = −1, −3, and −6 at M∞ = 2.5 (Fig. 11). The linear
modes develop initially. Then, for each case, the wave numbers of the higher harmonics appear
near x = 20. For example, when m = −3, the first three higher harmonics are −6,−9, and −12.
For m = −1, the amplitude of high wave numbers generated downstream is low. For m = −6, the
linear region is short and there is a mixture of many modes downstream. These tendencies do not
contradict the fluctuation feature shown in Fig. 9, where Ŝ matches Eq. (18) at high wave numbers.
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FIG. 9. Fluctuation energies of kinetic K̂ , pressure P̂, entropy Ŝ, and Eq. (18): (a) m = −1, (b) m = −2,

(c) m = −3, (d) m = −4, (e) m = −5, (f) m = −6 at M∞ = 2.5, q = 0.16, and μ = 0.5 under uniform
stagnation temperature. Note that Eq. (18) is plotted as the closed circles.
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FIG. 10. Fluctuation energies of kinetic K̂ , pressure P̂, entropy Ŝ, and Eq. (18): (a) m = −1, (b) m =
−2, (c) m = −3, (d) m = −4, (e) m = −5, (f) m = −6 at M∞ = 5.0, q = 0.16, and μ = 0.5 under uniform
stagnation temperature. Note that Eq. (18) is plotted as the closed circles.
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FIG. 11. Streamwise variations of normalized amplitude of axial velocity disturbance decomposed by
modes m = −1 to −12: (top) isentropic condition and (bottom) uniform stagnation temperature; inflow
disturbance mode (a, d) m = −1, (b, e) m = −3, (c, f) m = −6 for q = 0.16 and μ = 0.5 at M∞ = 2.5.

Isentropic vortices quickly create other modes in addition to the initial mode and uniform stagnation
temperature vortices show that the nonlinearity that results in the emergence of other modes occurs
at a relatively slower rate. These are consistent with the earlier result indicating that isentropic
vortices are more unstable than uniform stagnation-temperature vortices and have the nature against
compressibility effects.

C. Spatial developments of random disturbance

In Sec. IV B, the evolutions of normal-mode disturbance indicated that, when the wave number
of normal-mode is large, the feature of fluctuation energy closes in Eq. (18). It is important how
different it is to evolve normal modes from random disturbances. Here, the developments of the
Batchelor vortex with random disturbance are investigated for M∞ = 1.5 to 5.0.

Consider the fluctuation variables related to the evolution of random disturbance. In boundary
layers, it has been reported that compressibility effects are considerable when the fluctuating Mach
number is greater than 0.3 [14]. In supersonic flows, the turbulence Mach number is known as an
indicator of the significance of the compressibility effects. The fluctuating Mach number M̂ and
turbulence Mach number Mt are defined as [13]

M̂ = M − M, M =
√

uk uk

c
, Mt =

√
ûk ûk

c
. (19)

Note that M denotes the local Mach number. In spatial evolution with small amplitude disturbances,
the maximum M̂ and Mt of the Batchelor vortices are given in Table III. Overall, M̂ increases
with increasing Mach number M∞ and M̂ ≈ 0.0355–0.0398M∞; thus, all the M̂ < 0.3 for small
amplitude disturbance. The M̂ of the isentropic vortices is slightly less than that of the uniform
stagnation-temperature vortices, which suggests that an increased density fluctuation of the latter
vortices contributes to reduced sonic speed. Moreover, since the Mt of the former is nearly identical
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TABLE III. Maximum M̂ and Mt in evolutions of the Batchelor vortices with small random disturbance
(maximum amplitude 3% of the mainstream flow).

M∞ = 1.5 M∞ = 2.5 M∞ = 3.5 M∞ = 5.0 μ Thermodynamic conditions

M̂/M∞ 0.0355 0.0373 0.0368 0.0370 0.5 Isentropic condition
M̂/M∞ 0.0367 0.0374 0.0388 0.0384 0.5 Uniform stagnation temperature
M̂/M∞ 0.0377 0.0374 0.0369 0.0395 0.8 Isentropic condition
M̂/M∞ 0.0378 0.0398 0.0393 0.0397 0.8 Uniform stagnation temperature
Mt/M̂ 1.0034 1.0008 1.0023 0.9823 0.5 Isentropic condition
Mt/M̂ 0.9711 0.8988 0.8613 0.8421 0.5 Uniform stagnation temperature
Mt/M̂ 1.0056 1.0109 1.0224 0.9808 0.8 Isentropic condition
Mt/M̂ 0.9531 0.8664 0.8654 0.8389 0.8 Uniform stagnation temperature

to that of the latter and is greater than the M̂ of the former, the fluctuation velocity is dominant. For
the latter, since Mt is smaller than M̂, it is suggested that density fluctuation affects the structure.
Note that evolutions are heavily dependent on the intensity of initial disturbances. From a transition
perspective, it is also necessary to study an evolution with larger amplitude as an initial disturbance.

For the isentropic condition, Fig. 12 shows the helicity density contours in the cross-sections
through the vortex axis for q = 0.16 and μ = 0.8 at M∞ = 1.5 to 5.0. At M∞ = 1.5, vortex
breakdown occurs because there are regions with no vortex on the central axis (Ly = Lz = 20). Note
that a vortex breakdown is defined as when the vortex axis disappears in a broad sense; therefore,
helicity density is useful to recognize it [31]. The downstream structures at M∞ = 2.5 are similar
to those in M∞ = 1.5. Even at M∞ = 3.5, the tendency of vortex breakdown with the downstream

(d)

(c)

(b)

(a)

X

Z
0.72

0.22

-0.27

0 100 300200

FIG. 12. Evolutions of Batchelor vortices (q = 0.16, μ = 0.8) with random disturbance described by the
helicity density contours in the cross-sections through the vortex axis: (a) M∞ = 1.5, (b) M∞ = 2.5, (c) M∞ =
3.5, and (d) M∞ = 5.0 under isentropic condition.
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FIG. 13. Evolutions of Batchelor vortices (q = 0.16, μ = 0.8) with random disturbance described by the
helicity density contours in the cross-sections through the vortex axis: (a) M∞ = 1.5, (b) M∞ = 2.5, (c) M∞ =
3.5, and (d) M∞ = 5.0 under uniform stagnation temperature.

small structures is observed. When q is small and μ is large, the growth mode selected for the vortex
field is m = −1 based on the LST [27]. It is known that vortex breakdown is strongly related to
m = −1 [53]. The present results do not contradict these previous studies. It is also found that much
smaller scales appear behind the vortex breakdown at the downstream. Remarkably, the outward
spreading is sustained at M∞ = 5.0, where there is an oscillation in the entire eddying region. This
spreading indicates a type of entropy effect, which is related to a baroclinic property [29], because
the evolution is caused by the entropy profile. For example, baroclinic vortex instabilities are present
in ocean physics [54] and astrophysics [55]. In these cases, the instability is related to the global
entropy gradient. The isentropic vortices exist at much smaller scales even at M∞ = 5.0. Therefore,
it is suggested that the compressibility effect weakens.

For uniform stagnation temperature, the helicity density contours in the cross-sections through
the vortex axis for q = 0.16 and μ = 0.8 at M∞ = 1.5 to 5.0 are shown in Fig. 13. At M∞ = 1.5,
vortex breakdown occurs, similar to that shown in Fig. 12(a). For M∞ = 2.5 and 3.5, there is
a vortical feature observed in the breakdown; however, these are low small scales compared to
isentropic cases. At M∞ = 5.0, although asymmetric vortical structures induced by the transitions
develop around the Batchelor vortex, the vortex axis remains clearly downstream. Again, it is found
that the spreading rates of the isentropic cases (Fig. 12) are extremely large compared to the results
of the uniform stagnation-temperature vortices (Fig. 13) at high Mach numbers.

From the results shown in Fig. 13, compressibility effects are observed in uniform stagnation-
temperature vortices. To study the effects from a thermodynamics fluctuation perspective, Fig. 14
plots the fluctuation energies of K̂ , P̂, Ŝ and Eq. (18) integrated over the cross-sectional area
perpendicular to the axial flow for μ = 0.5 and 0.8, M∞ = 1.5–5.0. Note that all cases also result
in P̂ � 0. The results demonstrate that fluctuation kinetic energy K̂ decreases as M∞ increases. In
contrast, the fluctuation entropy energy Ŝ increases with increasing M∞ and exceeds K̂ . At a large
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FIG. 14. Fluctuation energies of kinetic K̂ , pressure P̂, entropy Ŝ, and Eq. (18): (top) axial velocity deficit
μ = 0.5 and (bottom) μ = 0.8; (a), (e) M∞ = 1.5, (b), (f) M∞ = 2.5, (c), (g) M∞ = 3.5, (d), (h) M∞ = 5.0
under uniform stagnation temperature. Note that Eq. (18) is plotted as the closed circles.

Mach number, the ratio of Ŝ to Ê increases drastically. It is noteworthy that Eq. (18) based on the
Morkovin’s hypothesis is in good agreement with Ŝ for each case (random disturbance evolutions).
According to a recent study of thermodynamics fluctuation [56,57], the density fluctuation is the
correct variable when evaluating compressibility effects. The present results also indicate that Ŝ
based on density fluctuation corresponds to compressibility strength.

D. Compressibility effects on Batchelor vortices

Kinetic fluctuation energy is important for turbulent growth. Using data obtained from the
fluctuation energies of K̂ , P̂, Ŝ integrated over the cross-sectional area perpendicular to the axial
flow, Fig. 15 plots K̂/Ê against Ŝ/Ê and M∞ versus Ŝ/Ê and K̂/Ê for isentropic cases. As can
be seen in Figs. 15(a) and 15(d), kinetic fluctuation energy K̂ gathers in the vicinity of Ŝ ≈ 0;
therefore, K̂ � Ê . During the evolution, entropy fluctuation energy Ŝ is almost zero, and the K̂/Ê
ratio is nearly equal to unity. Note that the filled circle denotes the average, and the error bar is the
existence span. Both Ŝ and P̂ are very small for the isentropic vortices. The nonlinear region is also
subject to the initial condition ŝ = 0. This result is expected given that p̂/p = γ ρ̂/ρ, as obtained
from Eq. (12). The fluctuation property Ê � K̂ is specific for energy in compressible flows, and the
isentropic effect impacts nonlinear developments.

Figure 16 plots K̂/Ê against Ŝ/Ê and M∞ versus Ŝ/Ê and K̂/Ê for uniform stagnation-
temperature vortices. As Mach number M∞ increases, entropy fluctuation energy Ŝ increases while
kinetic fluctuation energy K̂ decreases. In contrast to the isentropic cases, the sum of K̂ and Ŝ is
constant as shown in Figs. 16(a) and 16(d). The present results satisfy the following:

K̂ � Ê − Ŝ. (20)

The entropy effect observed in the linear stability analysis [27] is operative in nonlinear regions.
Since an increase in entropy fluctuation correlates with decreased kinetic fluctuation energy, this
result represents the compressibility effect based on entropy fluctuation.

Consider the characteristics of K̂ against Mach number M∞. Here, the results shown in Figs. 15
and 16 are summarized using Mach number M∗

0 as described in Eq. (21). Figure 17 shows the ratio
of K̂ to Ê as a function of M∗

0 for the isentropic and uniform stagnation-temperature vortices. The
pressure fluctuations are negligibly small for the two thermodynamic conditions. For the isentropic
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versus K̂/Ê (the filled circle denotes the average and the error bar indicate the existence span).
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FIG. 16. Uniform stagnation-temperature conditions: (top) the axial velocity deficit μ = 0.5 and (bottom)
μ = 0.8; (a, d) Ŝ/Ê (ratio of entropy Ŝ to total Ê ) versus K̂/Ê (ratio of kinetic K̂ to total Ê ), (b, e) M∞ versus
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093903-21



TOSHIHIKO HIEJIMA

(a () b)

0

0.5

1.0

1.5

0 1 2 3 4 5

 μ = 0.5
 μ = 0.8
K / E = 1.0

M*
0

 K
E

^̂

^̂

^̂ ^̂

0

0.5

1.0

0 1 2 3 4 5

 μ = 0.5
 μ = 0.8
Present Theory

M*
0

 K
E

^̂

^̂
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indicates the existence span).

cases, the ratio of K̂/Ê against M∗
0 is almost unity, except that it decreases slightly at M∞ = 5.0.

Thus, K̂ is unaffected by the Mach number. For the uniform stagnation-temperature cases, the K̂/Ê
ratio decreases with increasing M∗

0 . Eliminating Ŝ from Eqs. (18) and (20), we derive the following:

K̂

Ê
� 1

1 + γ−1
2 M∗

0
2
, (21)

where M∗
0 = M∞/

√
βK . Note that βK depends on the velocity deficit μ. The curve obtained from

Eq. (21) is consistent with the average values of K̂/Ê described by the circle in Fig. 17(b). From an
analogy perspective, this feature is similar to the relation between the convective Mach number and
the growth rate [2,6,8,27]. Moreover, when the velocity deficit is large, compressibility weakens.

Suitable scaling factors are required to compare different results that represent compressibility
effects. As mentioned previously, isentropic vortices only exhibit fluctuating kinetic energy, and
uniform stagnation-temperature vortices exhibit large entropy and small kinetic fluctuations as the
Mach number increases. To summarize the results of isentropic and uniform stagnation-temperature
vortices using the fluctuation averaged values, Fig. 18 plots K̂/Ê against Ŝ/Ê with the two
thermodynamic conditions. The kinetic fluctuation energy K̂ corresponds to fluctuation growth
and entropy fluctuation energy Ŝ expresses the degree of compressibility. In this relationship, total
fluctuation energy Ê is saved as the sum of K̂ and Ŝ. Compressibility effects arise from irreversible
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FIG. 18. Ŝ/Ê versus K̂/Ê plotted using the average value of each case.

093903-22



COMPRESSIBILITY EFFECTS OF SUPERSONIC …

transfer from kinetic to internal energies. In developments, entropy fluctuation energy Ŝ does not
occur in isentropic vortices and increases in uniform stagnation-temperature vortices. Therefore,
from the energy transfer, it follows that the entropy fluctuation reflects the compressibility effect
appropriately.

V. CONCLUDING REMARKS

Previous studies have indicated that supersonic streamwise vortices are not susceptible to com-
pressibility effects in aerospace applications [21–23,27]. Unlike basic shear flows, since streamwise
vortices have a crossflow component with the mainstream, the produced fluctuations are transferred
to the radial direction perpendicular to the main flow. Thus, it is easy to assume that compressibility
can be avoided. However, despite considerable research, little is known about the mechanism and
main factors of instability suppression, which are caused by an increased Mach number. In previous
studies of boundary layers and shear layers [13], it was suggested that compressibility effects
are associated with thermodynamic profiles and fluctuations in compressible flows. The subject
of this paper is to clarify the effect that the thermodynamic properties of streamwise vortices
have on compressibility effects. The spatial evolutions and compressibility effects of supersonic
Batchelor vortices with small disturbances were investigated for various Mach numbers. In terms
of thermodynamic properties of Batchelor vortices, isentropic and uniform stagnation-temperature
vortices were examined.

In the evolutions of linear unstable modes (from m = −1 to −6), spiral structures based
on each unstable mode appeared around the inflow Batchelor vortex. The effectiveness of the
thermodynamic condition on evolutions differed depending on the wave number and Mach number.
In particular, the development of the isentropic vortex with m = −3 spread outward and gave rise
to small scales near the axis such that the spreading rate was significantly large. For uniform
stagnation-temperature cases, developments with a high wave number at high Mach numbers
were weak in the vortices. Since the shear eddying region changes depending on the inflow
thermodynamic property and the unstable mode, the spreading rate of Batchelor vortices cannot
be estimated by the thickness of the region. This stands in contrast to shear layers and no-swirling
jets. In the developments of random disturbances, vortex breakdown occurs at low Mach numbers in
both thermodynamic conditions, and small scales appear behind the breakdown at the downstream.
Figure 2 shows that the difference between most unstable modes to each normal mode m is very
small and plural modes have a possibility of competing in white noise. Note that the growth rate
for |m| = 1 is slightly large in both the conditions. This may be a factor that vortex breakdown
occurs in developments of random disturbances. For isentropic cases, the difference in developing
vortical structures is small in response to an increased Mach number. From vortical structures, it
is observed that isentropic vortices exist at much smaller scales and larger spreading rates than the
uniform stagnation-temperature vortices at a high Mach number. Thus, it follows that the isentropic
vortices are not subject to compressibility effects, and the uniform stagnation-temperature vortices
are suppressed in vortical growth with increasing Mach number.

Compressibility effects of the Batchelor vortex with nonuniform thermodynamic profiles were
considered from a thermodynamic fluctuation perspective. In spatial developments, the property of
fluctuation energies indicates that the isentropic vortices only exhibited kinetic energy fluctuation
and that uniform stagnation-temperature vortices yielded large entropy fluctuation in the total
fluctuation energy. For uniform stagnation-temperature cases, the increase in entropy fluctuations
was associated with reduced kinetic fluctuation energy and evolution of the Batchelor vortices was
affected by the compressibility effects based on the fluctuation properties. As a result, a feature of
compressibility effects was expressed correctly by the entropy fluctuation obtained from the density
fluctuation. This is consistent with the analysis of compressible turbulence by Gerolymos and Vallet
[57] in that the compressibility is strongly related to the density (entropy) fluctuation. In addition, it
was found that the entropy fluctuation property at uniform stagnation temperatures can be estimated
from the fluctuation kinetic energy using the expression derived from Morkovin’s hypothesis [12],
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which is primarily applied to compressible boundary layers. This result will be useful relative to
evaluating the degree of compressibility in flows with near uniform stagnation temperatures. For
example, the expression is expected to be valuable for supersonic jets that frequently employ the
Crocco–Busemann relation [58], which is close to a uniform stagnation temperature. The finding
highlights the fact that the kinetic fluctuation energy corresponds to the degree of disturbance
growth and that the entropy fluctuation energy expresses the degree of compressibility. Therefore,
the present study provides important results that are expected to lead to clarification of universal
compressibility effects to flow fields with nonuniform thermodynamic profiles.

In a vortex evolution under the isentropic condition obtained as a rigorous solution of Euler’s
equation, the kinetic fluctuation energy does not contribute remarkably to the internal fluctuation
energy. If we could obtain a vortex with an isentropic profile, then the compressibility effect, i.e.,
reduction in the disturbance growth as the Mach number increases, should be reduced as described
above. Exploring why the connection between kinetic fluctuation and thermodynamic fluctuation
becomes weak in such a homentropic flow will be the focus of future work.
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APPENDIX: GRID INDEPENDENCE STUDY

To check the resolution, the following results were compared between four grids: (grid A) 601 ×
87 × 87, (grid B) 601 × 121 × 121, (grid C) 601 × 171 × 171, and (grid D) 601 × 251 × 251.
Figure 19 shows the streamwise variations in the growth rate of the axial velocity disturbance W
and the spatial developments of Ê for an isentropic vortex with m = −6 at M∞ = 2.5. In terms of
evolution of the normal mode, there was little difference between grid C and grid D and the growth
rate was in agreement with the spatial growth rate of the inviscid LST during the initial stage. In
terms of total fluctuation energy, although the peak values of grid A and grid B are lower than others,
there is not a large difference between grid C and grid D during the nonlinear development. Thus,
more than resolution of grid C was reasonable in spatial evolutions.
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FIG. 19. Streamwise variations in the growth rate for the unstable mode m = −6 at M∞ = 2.5, q = 0.16,
and μ = 0.5; (a) axial velocity disturbance W and (b) total fluctuation energies Ê .
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