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We utilize the externally forced linearized Navier-Stokes equations to study the recep-
tivity of pre-transitional boundary layers to persistent sources of stochastic excitation.
Stochastic forcing is used to model the effect of free-stream turbulence that enters at
various wall-normal locations and the fluctuation dynamics are studied via linearized
models that arise from locally parallel and global perspectives. In contrast to the widely
used resolvent analysis that quantifies the amplification of deterministic disturbances at a
given temporal frequency, our approach examines the steady-state response to stochastic
excitation that is uncorrelated in time. In addition to stochastic forcing with identity
covariance, we utilize the spatial spectrum of homogeneous isotropic turbulence to model
the effect of free-stream turbulence. Even though locally parallel analysis does not account
for the effect of the spatially evolving base flow, we demonstrate that it captures the
essential mechanisms and the prevailing length scales in stochastically forced boundary
layer flows. On the other hand, global analysis, which accounts for the spatially evolving
nature of the boundary layer flow, predicts the amplification of a cascade of streamwise
scales throughout the streamwise domain. We show that the flow structures that are
extracted from a modal decomposition of the resulting velocity covariance matrix can be
closely captured by conducting locally parallel analysis at various streamwise locations
and over different wall-parallel wave-number pairs. Our approach does not rely on costly
stochastic simulations and it provides insight into mechanisms for perturbation growth,
including the interaction of the slowly varying base flow with streaks and Tollmien-
Schlichting waves.

DOI: 10.1103/PhysRevFluids.4.093901

I. INTRODUCTION

Laminar-turbulent transition of fluid flows is important in many engineering applications.
Predicting the point of transition requires an accurate understanding of the mechanisms that govern
the physics of transitional flows. Since the 1990s, numerical simulations with various levels of
fidelity have been used to uncover many essential features of the transition phenomenon. In spite of
this progress, the complicated sequence of events that leads to transition and the inherent complexity
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of the Navier-Stokes (NS) equations have hindered the development of practical control strategies
for delaying transition in boundary layer flows [1–3].

It is generally accepted that the transition process can be divided into three stages: receptivity,
instability growth, and breakdown [1]. In the laminar boundary layer flow, disturbances that lead to
transition are amplified either through modal, i.e., exponential, instability mechanisms or nonmodal
amplification, e.g., via transient growth mechanisms such as lift-up [4,5] and Orr mechanisms [6–8].
An important aspect in both scenarios is the receptivity of the boundary layer flow to external
excitation sources, e.g., free-stream turbulence and surface roughness. Such sources of excitation
perturb the velocity field and give rise to initial disturbances within the shear that can grow to
critical levels. Depending on the amplitude and frequency of excitation, initial disturbances can
take different routes to transition. For example, low-amplitude excitation of the boundary layer
flow can cause the growth of two-dimensional Tollmien-Schlichting (TS) waves [9–13]. On the
other hand, sufficiently high levels of broad-band excitation can induce the growth of streamwise
elongated streaks that play an important role in bypass transition [2]. The effect of free-stream
turbulence on the growth of boundary layer streaks has been the subject of various experimental
[14–16], numerical [17,18], and theoretical [19,20] studies. In particular, it has been shown that
free-stream disturbances that penetrate into the boundary layer are elongated in the streamwise
direction [21]. While nonlinear dynamical models that are based on the NS equations provide insight
into receptivity mechanisms, their implementation typically involves a large number of degrees
of freedom and it ultimately requires direct simulations. This motivates the development of low-
complexity models that are better suited for comprehensive quantitative studies.

In recent years, increasingly accurate descriptions of coherent structures in wall-bounded shear
flows, e.g., Refs. [22,23], have inspired the development of reduced-order models. Such models are
computationally tractable and can be trained to replicate statistical features that are estimated from
experimentally or numerically generated data measurements. However, their data-driven nature is
accompanied by a lack of robustness. Specifically, control actuation and sensing may significantly
alter the identified modes, which introduces nontrivial challenges for model-based control design
[24]. In contrast, models that are based on the linearized NS equations are less prone to such
uncertainties and are, at the same time, well-suited for analysis and synthesis using tools of modern
robust control. While the nonlinear terms in the NS equations play an important role in transition
to turbulence and in sustaining the turbulent state, they are conservative and, as such, they do
not contribute to the transfer of energy between the mean flow and velocity fluctuations but only
transfer energy between different Fourier modes [25,26]. This property has inspired modeling the
effect of nonlinearity using additive stochastic forcing with early efforts focused on homogeneous
isotropic turbulence (HIT) [27–29]. In the presence of stochastic excitation, the linearized NS
equations have been used to model heat and momentum fluxes and spatiotemporal spectra in
quasi-geostrophic turbulence [30–32]. Moreover, they have been used to characterize the most
detrimental stochastic forcing and determine scaling laws for energy amplification at subcritical
Reynolds numbers [33–35] and to replicate structural [36,37] and statistical [38,39] features of
wall-bounded turbulent flows. In these studies, stochastic forcing has been commonly used to
model the impact of exogenous excitation sources and initial conditions, or to capture the effect
of nonlinearity in the NS equations.

The linearized NS equations have been widely used for modal and nonmodal stability analyses
of both parallel and nonparallel flows [40–42]. In parallel flows, homogeneity in the streamwise
and spanwise dimensions allows for the decoupling of the governing equations across streamwise
and spanwise wave numbers via Fourier transform, which results in significant computational
advantages for analysis, optimization, and control. On the other hand, in the flat-plate boundary
layer, streamwise and wall-normal inhomogeneity require discretization over two spatial directions
and lead to models of significantly larger sizes. Conducting modal and nonmodal analyses is thus
more challenging than for locally parallel flows. However, due to the slowly varying nature of the
boundary layer flow, the application of a parallel flow assumption can still provide meaningful
results. In this setting, primary disturbances can be identified using the eigenvalue analysis of
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the Orr-Sommerfeld and Squire equations [41] and the secondary instabilities can be obtained
via Floquet analysis [12,43]. Moreover, the NS equations can be parabolized to account for
the downstream propagating nature of waves in slowly varying flows via spatial marching. This
technique has enabled the analysis of transitional boundary layers and turbulent jet flows using
various forms of the unsteady boundary-region equations [44,45], parabolized stability equations
[46,47], and the more recent one-way Euler equations [48]. Furthermore, drawing on Floquet theory,
the linear parabolized stability equations have also been extended to study interactions between
different modes in slowly growing boundary layer flow [49].

While the parallel flow assumption offers significant computational advantages, it does not
account for the effect of the spatially evolving base flow on the stability of the boundary layer.
Global stability analysis addresses this issue by accounting for the spatially varying nature of the
base flow and discretizing all inhomogeneous spatial directions. Previously, tools from sparse linear
algebra in conjunction with iterative schemes have been employed to analyze the eigenspectrum of
the governing equations and provide insight into the dynamics of transitional flows [50–54]. Efforts
have also been made to conduct nonmodal analysis of spatially evolving flows including transient
growth [55,56] and resolvent [57–61] analyses. In particular, for flat-plate boundary layer flow, the
sensitivity of singular values of the resolvent operator to base-flow modifications and subsequent
effects on the TS instability mechanism and streak amplification was investigated in Ref. [57].
The growth of flow structures in flat-plate boundary layer flow was also studied in Ref. [58]
and a connection between the results from local eN method and global resolvent analysis was
established. However, previous studies did not incorporate information regarding the spatiotemporal
spectrum and spatial localization of excitation sources. The widely used resolvent analysis [62–64]
is limited to monochromatic forcing and, as such, may not fully capture naturally occurring sources
of excitation.

The approach advanced in the present work enables the study of receptivity mechanisms in
boundary layer flows subject to stochastic sources of excitation. We model the effect of free-
stream turbulence as a persistent white-in-time stochastic forcing that enters at various wall-normal
locations and we analyze the dynamics of velocity fluctuations around locally parallel and spatially
evolving base flows using the solution to the algebraic Lyapunov equation. Our simulation-free
approach enables a computationally efficient assessment of the energy spectrum of spatially
evolving flows, without relying on a particular form of the inflow conditions or computation of the
full spectrum of the linearized dynamical generator. Moreover, the broad-band nature of our forcing
model captures the aggregate effect of all timescales without the need to integrate the frequency
response over all energetically relevant frequencies.

We compare and contrast results obtained under locally parallel flow assumption with those
of global analysis. Coherent structures that emerge as the response to free-stream turbulence
are extracted using the modal decomposition of the steady-state velocity covariance matrix. We
demonstrate how parallel and global flow analyses can be used to quantify the amplification of
streamwise elongated streaks and TS waves, which are important in the laminar-turbulent transition
of boundary layer flows. Our analysis shows that subordinate eigenmodes of the steady-state
velocity covariance matrices that result from global flow analyses have nearly equal energetic
contributions to that of the principal modes. This observation demonstrates that global covariance
matrices cannot be well approximated by low-rank representations. On the other hand, we show how
locally parallel analysis, which breaks up the receptivity process of the boundary layer flow over
various streamwise length scales, can uncover certain flow structures that are difficult to observe in
global analysis. We also demonstrate that modeling the effect of free-stream turbulence using the
spectrum of HIT yields similar results as the analysis based on white-in-time stochastic excitation
with identity covariance matrix. For the considered range of moderate Reynolds numbers, our results
support the assumption of parallel flow in the low-complexity modeling and analysis of boundary
layer flows.

The remainder of this paper is organized as follows. In Sec. II, we introduce the stochastically
forced linearized NS equations and describe the algebraic Lyapunov equation that we use to compute
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FIG. 1. Geometry of transitional boundary layer flow with stochastic excitation d entering in the blue
shaded region.

second-order statistics of velocity fluctuations, extract information about the energy amplification,
and identify energetically dominant flow structures. In Sec. III, we study the receptivity to stochastic
excitations of the velocity fluctuations around a locally parallel Blasius boundary layer profile.
In Sec. IV, we extend the receptivity analysis to stochastically forced nonparallel flows. We
also discuss the effect of exponentially attenuated HIT on the amplification of streaks and TS
waves. In Sec. V, we compare the results of locally parallel and global analyses and examine the
spatiotemporal frequency response of the linearized dynamics. We provide concluding remarks in
Sec. VI.

II. STOCHASTICALLY FORCED LINEARIZED NS EQUATIONS

In a flat-plate boundary layer, the linearized incompressible NS equations around the Blasius
base flow profile ū = [U (x, y)V (x, y) 0]T are given by

∂t v = −(∇ · ū)v − (∇ · v)ū − ∇p + 1

Re0
�v + d,

(1)
0 = ∇ · v,

where v = [u v w]T is the vector of velocity fluctuations; p denotes pressure fluctuations; u, v, and
w represent components of the fluctuating velocity field in the streamwise (x), wall-normal (y), and
spanwise (z) directions; and d denotes an additive zero-mean stochastic body forcing. The stochastic
perturbation d is used to model the effect of exogenous sources of excitation on the boundary layer
flow and, as illustrated in Fig. 1, it can be introduced in various wall-normal regions. In Eqs. (1),
Re0 = U∞δ0/ν is the Reynolds number based on the Blasius length-scale δ0 = √

νx0/U∞, where
the initial streamwise location x0 denotes the distance from the leading edge, U∞ is the free-stream
velocity, and ν is the kinematic viscosity. The local Reynolds number at distance x to the starting
position x0 is thus given by Re = Re0

√
1 + x/x0. The velocities are nondimensionalized by U∞,

spatial coordinates by δ0, time by δ0/U∞, and pressure by ρU 2
∞, where ρ is the fluid density.

A. Evolution model

Elimination of the pressure yields an evolution form of the linearized equations with the state
variable ϕ = [v η]T , which contains the wall-normal velocity v and vorticity η = ∂zu − ∂xw [41].
In addition, homogeneity of the Blasius base flow in the spanwise direction allows a normal-mode
representation with respect to z, yielding the evolution model

∂tϕ(x, y, kz, t ) = [A(kz )ϕ(·, kz, t )](x, y) + [B(kz )d(·, kz, t )](x, y),
(2)

v(x, y, kz, t ) = [C(kz )ϕ(·, kz, t )](x, y),

which is parametrized by the spanwise wave number kz. Definitions of the operators A, B, and C
are provided in Appendix A. We note that an additional assumption of a wall-parallel base flow
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that entails ū = [U (y) 0 0]T renders the coefficients in Eqs. (1) independent of x and thus enables a
normal-mode representation in that dimension as well.

We obtain finite-dimensional approximations of the operators in Eqs. (2) using a pseudospectral
discretization scheme [65] in the spatially inhomogeneous directions. For streamwise-varying base
flows, we consider Nx and Ny Chebyshev collocation points in x and y, and for streamwise invariant
base flows we use Ny points in y. Furthermore, a change of variables is employed to obtain a state-
space representation in which the kinetic energy is determined by the Euclidean norm of the state
vector; see Appendix B. We thus arrive at the state-space model

ψ̇(t ) = Aψ(t ) + Bd(t ), v(t ) = Cψ(t ), (3)

where ψ(t ) and v(t ) are vectors with 2 × Nx × Ny and 3 × Nx × Ny complex-valued components,
respectively (2 × Ny and 3 × Ny components, respectively, for parallel flows), and state-space
matrices A, B, and C incorporate the aforementioned change of variables and wave number
parametrization over kz [over (kx, kz ) for parallel flows].

B. Second-order statistics of velocity fluctuations

We next characterize the structural dependence between the second-order statistics of the state
and forcing term in the linearized dynamics. We also describe how the energy amplification
arising from persistent stochastic excitation and the energetically dominant flow structures can be
computed from these flow statistics. All mathematical statements in the remainder of this section
are parametrized over homogeneous directions.

In statistical steady state, the covariance matrices � = limt→∞ 〈v(t )v∗(t )〉 of the velocity
fluctuation vector and X = limt→∞ 〈ψ(t )ψ∗(t )〉 of the state vector in Eq. (3) are related by

� = CXC∗, (4)

where 〈·〉 denotes the expectation and superscript ∗ denotes complex conjugate transpose. The
matrix � contains information about all second-order statistics of the fluctuating velocity field in
statistical steady state, including the Reynolds stresses. We assume that the persistent source of
excitation d(t ) in Eq. (3) is zero-mean and white-in-time with spatial covariance matrix W = W ∗,

〈d(t1)d∗(t2)〉 = W δ(t1 − t2), (5)

where δ is the Dirac δ function. When the linearized dynamics (3) are stable, the steady-state
covariance X of the state ψ(t ) can be determined as the solution to the algebraic Lyapunov equation

AX + XA∗ = −BW B∗. (6)

The Lyapunov equation (6) relates the statistics of white-in-time forcing, represented by W , to the
infinite-horizon state covariance X via system matrices A and B. It can also be used to compute the
energy spectrum of velocity fluctuations v,

E = trace(�) = trace(CXC∗). (7)

We note that the steady-state velocity covariance matrix � can be alternatively obtained from the
spectral density matrix of velocity fluctuations Sv(ω) as [66]

� = 1

2π

∫ ∞

−∞
Sv(ω)dω.

For the linearized NS equations, we have

Sv(ω) := Tvd(ω)W T ∗
vd(ω) (8)

where the frequency response matrix

Tvd(ω) = C(iωI − A)−1B, (9)
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FIG. 2. The shape of the filter function f (y) for y1 = 5, y2 = 10 with a = 1 (−) and a = 10 (−−).

is obtained by applying the temporal Fourier transform on system (3). We note that the solution X
to the algebraic Lyapunov equation (6) allows us to avoid integration over temporal frequencies and
compute the energy spectrum E using (7); see Sec. V B for additional details.

Following the proper orthogonal decomposition of Refs. [67,68], the velocity field can be
decomposed into characteristic eddies by determining the spatial structure of fluctuations that
contribute most to the energy amplification. For turbulent channel flow, it has been shown that the
dominant characteristic eddy structures extracted from second-order statistics of the stochastically
forced linearized model qualitatively agree with results obtained using eigenvalue decomposition of
autocorrelation matrices that are generated through Direct Numerical Simulation (DNS); see Fig. 15
in Refs. [38,68]. In addition to examining the energy spectrum of velocity fluctuations, we will use
the eigenvectors of the covariance matrix � [defined in Eq. (4)] to study dominant flow structures
that are triggered by stochastic excitation.

Remark 1. Since the linearized dynamics (3) are globally stable even when the flow is con-
vectively unstable [40], the Lyapunov-based approach can be used to conduct the steady-state
analysis of the velocity fluctuation statistics for many flow configurations that are not stable from
the perspective of local analysis.

C. Filtered excitation and receptivity coefficient

Let us specify the spatial region in which the forcing enters, by introducing

d(x, y, z, t ) := f (y)h(x)ds(x, y, z, t ), (10)

where ds represents a white solenoidal forcing, f (y) is a smooth filter function defined as

f (y) := 1

π
[atan(a(y − y1)) − atan(a(y − y2))], (11)

and h(x) is a filter function that determines the streamwise extent of the forcing. Here, y1 and
y2 determine the wall-normal extent of f (y) and a specifies the roll-off rate; Fig. 2 shows f (y)
with y1 = 5 and y2 = 10, for two cases of a = 1 and a = 10. In Secs. III and IV, we study energy
amplification arising from stochastic excitation that enters at various wall-normal locations; see
Table I. For the near-wall forcing with y1 = 0, y2 = 5, and a = 1, more than 96% of the energy of
the forcing is applied within the δ0.99 boundary layer thickness; on the other hand, for the outer-
layer forcing with y1 = 15, y2 = 20, and a = 1, less than 0.1% is applied in that region. Our study
mainly focuses on the forcing with h(x) = 1; the effect of changing the function h is considered in
Sec. IV A.
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TABLE I. Cases of stochastic excitation entering at various wall-normal regions.

Case number Wall-normal region of excitation; [y1, y2] in Eq. (11)

1 (near-wall) [0, 5]
2 [5, 10]
3 [10, 15]
4 (outer-layer) [15, 20]

We quantify the receptivity of velocity fluctuations to stochastic forcing that enters at various
wall-normal regions using the receptivity coefficient

CR := limt→∞〈(Dgv(t ))∗Dgv(t )〉
limt→∞ 〈d∗(t )d(t )〉 = trace(Dg�D∗

g )

trace(W )
, (12)

which determines the ratio of the energy of velocity fluctuations within the boundary layer to the
energy of the forcing. Here, Dg := g(x, y)I , where the function g(x, y) is a top-hat filter that extracts
velocity fluctuations within the δ0.99 boundary layer thickness. In parallel flows, the function g is
invariant with respect to the streamwise direction.

III. RECEPTIVITY ANALYSIS OF LOCALLY PARALLEL FLOW

We first examine the dynamics of the stochastically forced Blasius boundary layer under the
locally parallel flow assumption. In this case, the base flow only depends on the wall-normal
coordinate y and evolution model (3) is parametrized by horizontal wave numbers (kx, kz), which
significantly reduces the computational complexity. We perform an input-output analysis to quantify
the energy amplification of velocity fluctuations subject to free-stream turbulence.

We compute the energy spectrum of stochastically excited parallel Blasius boundary layer flow
with Re0 = 232 (the Blasius length scale is δ0 = 1). Here, we consider a wall-normal region with
Ly = 35 and discretize the differential operators in Eqs. (2) using Ny = 100 Chebyshev collocation
points in y. In the wall-normal direction, homogenous Dirichlet boundary conditions are imposed on
wall-normal vorticity, η(0) = η(Ly) = 0 and Dirichlet-Neumann boundary conditions are imposed
on wall-normal velocity, v(0) = v(Ly) = 0, vy(0) = vy(Ly) = 0, where vy denotes the derivative
of v with respect to y. In the horizontal directions, we use 50 × 51 logarithmically spaced wave
numbers with kx ∈ [10−4, 1] and kz ∈ [5 × 10−3, 10] to parametrize the linearized model (3). Thus,
for each pair (kx, kz), the state ψ = [vT ηT ]T is a complex-valued vector with 2Ny components. Grid
convergence has been verified by doubling the number of points used in the discretization of the
differential operators in the wall-normal coordinate.

We first consider a streamwise invariant (h(x) = 1) solenoidal white-in-time excitation d with
covariance W = I in the immediate vicinity of the wall (case 1 in Table I). Figure 3(a) shows
largest receptivity at low streamwise wave numbers (kx ≈ 0) with a global peak at kz ≈ 0.25.
This indicates that streamwise elongated streaks are the dominant flow structures that result from
persistent stochastic excitation of the boundary layer flow. Such streamwise elongated structures
are reminiscent of energetically dominant streaks with spanwise wave numbers kz ≈ 0.26 that were
identified in analyses of optimal disturbances [69,70]. Slightly smaller spanwise wave numbers
have been recorded from hot-wire signal correlations in the boundary layer subject to free-stream
turbulence [14]. In addition to streaks, Fig. 3(a) also predicts the emergence of TS waves at
kx ≈ 0.19. For outer-layer forcing, the amplification of streamwise elongated structures persists
while the amplification of the TS waves weakens; see Fig. 3(b). It is also observed that as the region
of excitation moves away from the wall, energy amplification becomes weaker and the peak of the
receptivity coefficient shifts to lower values of kz. As we demonstrate in Sec. IV, these observations
are in agreement with the global receptivity analysis of stochastically excited boundary layer flow.
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FIG. 3. Plots of log10(CR(kx, kz )) in the parallel Blasius boundary layer flow with Re0 = 232 subject to
(a) near-wall and (b) outer-layer white-in-time stochastic excitation. The dot and crosses respectively mark the
wave-number pairs associated with TS waves and streaks that are closely examined in this paper.

As noted in Sec. II B, the solution X to Lyapunov equation (6) represents the steady-state (i.e.,
long-time average) covariance matrix of the state ψ of the stochastically forced linearized evolution
model (3), which can be used to compute the energy spectrum in Eq. (7) and the receptivity
coefficient in Eq. (12) in a simulation-free manner. To verify the values of CR reported in Fig. 3,
we conduct stochastic simulations of the forced linearized flow equations at the wave-number pair
(kx, kz ) = (0.19, 0.005), which is marked by the red dot in Fig. 3(a). This wave-number pair allows
us to examine the amplification of TS waves identified in Fig. 3(a). Since proper comparison with the
result of the Lyapunov equation requires ensemble averaging, rather than comparison at the level
of individual stochastic simulations, we have conducted 20 simulations of system (3). The total
simulation time was set to 1.6 × 104 dimensionless time units. Figure 4 shows the time evolution of
CR for 20 realizations of white-in-time forcing d to system (3). The receptivity coefficient averaged
over all simulations is marked by the thick black line. The results indicate that the average of the
sample sets asymptotically approaches the correct steady-state value of CR = 102.85 (cf. Fig. 4).

The one-dimensional energy spectrum presented in Fig. 5(a) quantifies the energy amplification
E over various spanwise wave numbers when forcing enters at different distances from the wall.
This quantity can be computed by integrating the energy spectrum E (kx, kz ) [cf. Eq. (7)] over
streamwise wave numbers. In Fig. 5, the locations at which the energy spectrum peaks correspond

FIG. 4. Time evolution of the receptivity coefficient CR for 20 realizations of near-wall stochastic forcing
to linearized dynamics (3) with (kx, kz ) = (0.19, 0.005) and Re0 = 232. The receptivity coefficient averaged
over all simulations is marked by the thick black line.
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FIG. 5. (a) The one-dimensional energy spectrum, and (b) the receptivity coefficient for the parallel Blasius
boundary layer flow with Re0 = 232 subject to white stochastic excitation entering in the wall-normal regions
covered in Table I: case 1, black; case 2, blue; case 3, red; and case 4, green. The forcing region moves away
from the wall in the direction of the arrows.

to the spanwise scale associated with streamwise elongated streaks. When the forcing region shifts
away from the wall, the energy amplification decreases, indicating that the flow region in the
immediate vicinity of the wall is more susceptible to external excitation. As mentioned earlier,
we also observe that, when the forcing region shifts upward, the boundary layer streaks become
wider in the spanwise direction. Figure 5(b) shows similar trends in the receptivity coefficient as a
function of spanwise wave number kz, which is computed by integrating CR presented in Fig. 3 over
streamwise wave numbers.

The eigenvalue decomposition of the velocity covariance matrix � can be used to identify the
energetically dominant flow structures resulting from stochastic excitation. In particular, symmetries
in the wall-parallel directions can be used to express velocity components as

u j (x, z, t ) = 4 cos(kzz)Re[ũ j (kx, kz )eikxx],

v j (x, z, t ) = 4 cos(kzz)Re[ṽ j (kx, kz )eikxx], (13)

w j (x, z, t ) = −4 sin(kzz)Im[w̃ j (kx, kz )eikxx],

FIG. 6. Contribution of the first eight eigenvalues of the velocity covariance matrix � of the Blasius
boundary layer flow with Re0 = 232 subject to (a) near-wall and (b) outer-layer white-in-time stochastic
forcing.
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FIG. 7. Principal modes with (kx, kz ) = (7 × 10−3, 0.32), resulting from excitation of the boundary layer
flow with Re0 = 232 in the vicinity of the wall. (a) Streamwise velocity component where red and blue colors
denote regions of high and low velocity. (b) Streamwise velocity at z = 0. (c) y–z slice of streamwise velocity
(color plots) and vorticity (contour lines) at x = 500, which corresponds to the cross-plane slice indicated by
the black dashed lines in panel (b).

Here, Re and Im denote real and imaginary parts, and ũ j , ṽ j , and w̃ j correspond to the streamwise,
wall-normal, and spanwise components of the jth eigenvector of the matrix � in Eq. (4). While all
amplitudes have been normalized, the phases of these components have been modulated to ensure
the compactness of v j (x, y, z) around z = 0 [68]; see Ref. [[38], Appendix F] for additional details.

While the sum of all eigenvalues of the matrix � determines the overall energy amplification
reported in Fig. 5(a), it is also useful to examine the spatial structure of modes with dominant
contribution to the energy of the flow. Figure 6 shows the contribution of the first eight eigenvalues
of � to the energy amplification, λ j/

∑
i λi, when the boundary layer flow is subject to stochastic

forcing. For fluctuations with (kx, kz ) = (7 × 10−3, 0.32) and near-wall excitation [cross in Fig.
3(a)], the principal mode which corresponds to the largest eigenvalue contains approximately 93%
of the total energy. On the other hand, for fluctuations with (kx, kz ) = (7 × 10−3, 0.15) and outer-
layer excitation [cross in Fig. 3(b)], the principal mode contains approximately 52% of the total
energy. Figures 7 and 8 show the flow structures associated with the streamwise component of
these most significant modes. From Figs. 7(b) and 8(b), it is evident that the core of streamwise
elongated structures moves away from the wall with the shift of the stochastically excited region.
These streamwise elongated structures are situated between counter-rotating vortical motions in the
cross-stream plane [cf. Figs. 7(c) and 8(c)] and contain alternating regions of fast- and slow-moving
fluid, which are slightly inclined (and detached) relative to the wall. Even though these structures do
not capture the full complexity of transitional flow, as we show in Sec. IV, they contain information
about energetic streamwise elongated flow structures that are amplified by external excitation of the
boundary layer flow. In particular, such alignment of counter-rotating vortices and streaks is closely
related to the lift-up mechanism and the generation of streamwise elongated streaks [69–71].

FIG. 8. Principal modes with (kx, kz ) = (7 × 10−3, 0.15), resulting from outer-layer excitation of the
boundary layer flow with Re0 = 232. (a) Streamwise velocity component where red and blue colors denote
regions of high and low velocity. (b) Streamwise velocity at z = 0. (c) y–z slice of streamwise velocity (color
plots) and vorticity (contour lines) at x = 500, which corresponds to the cross-plane slice indicated by the black
dashed lines in panel (b).
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IV. GLOBAL ANALYSIS OF STOCHASTICALLY FORCED LINEARIZED NS EQUATIONS

The parallel flow assumption applied in Sec. III allows for the efficient parametrization of
the governing equations over all wall-parallel wave numbers kx and kz. While this significantly
reduces computational complexity, it excludes the effect of the spatially evolving base flow on
the dynamics of velocity fluctuations. In global stability analysis, the NS equations are linearized
around a spatially evolving Blasius boundary layer profile and the finite-dimensional approximation
is obtained by discretizing all inhomogeneous spatial directions. In this section, we employ global
receptivity analysis to quantify the influence of stochastic excitation on the velocity fluctuations
around the spatially evolving Blasius base flow.

At any spanwise wave number kz, the state ψ = [vT ηT ]T of linearized evolution model (3) is
a complex vector with 2×Nx×Ny components, where Nx and Ny denote the number of collocation
points used to discretize the differential operators in the streamwise and wall-normal directions,
respectively. While this choice of state variables is not commonly used in conventional global
stability analysis of boundary layer flows, in Appendix C we demonstrate that it yields consistent
results with the descriptor form in which the state is determined by all velocity and pressure
fluctuations. We consider a Reynolds number Re0 = 232 and a computational domain with Lx =
900 and Ly = 35 (boundary layer thickness δ0.99 grows from 5 to 11), where the differential
operators are discretized using Nx = 101 and Ny = 50 Chebyshev collocation points in x and y,
respectively. Similar to locally parallel analysis, we verify convergence by doubling the number of
grid points.

As in Sec. III, in the wall-normal direction we enforce homogenous Dirichlet boundary
conditions on η and homogeneous Dirichlet and Neumann boundary conditions on v. At the inflow,
we impose homogeneous Dirichlet boundary conditions on η, i.e., η(0, y) = 0, and homogeneous
Dirichlet and Neumann boundary conditions on v, i.e., v(0, y) = vy(0, y) = 0. At the outflow, we
apply linear extrapolation conditions on both state variables (v, η) and the wall-normal derivative of
the first component [72],

v(x(Nx ), y) = αv(x(Nx − 1), y) + βv(x(Nx − 2), y),

η(x(Nx ), y) = αη(x(Nx − 1), y) + βη(x(Nx − 2), y),

vy(x(Nx ), y) = αvy(x(Nx − 1), y) + βvy(x(Nx − 2), y),

α = x(Nx ) − x(Nx − 2)

x(Nx − 1) − x(Nx − 2)
, β = x(Nx − 1) − x(Nx )

x(Nx − 1) − x(Nx − 2)
.

We also introduce sponge layers at the inflow and outflow to mitigate the influence of boundary
conditions on the fluctuation dynamics within the computational domain [52,73]; see Ref. [74]
for an in-depth study on the effect of sponge layer strength in the global stability analysis of
boundary layer flow. The results presented in this section are obtained after adjusting the sponge
layer parameters to match the energy amplification obtained via the descriptor form of the linearized
dynamics; see Appendix C for details.

For boundary layer flows, the global operator in Eqs. (3) has no exponentially growing
eigenmodes [40]; see Remark 1. Thus, the steady-state covariance of the fluctuating velocity field
can be obtained from the solution to Lyapunov equation (6) and the energy amplification can be
computed using Eq. (7). As in Sec. III, we examine the influence of streamwise-invariant (h(x) = 1)
white-in-time stochastic forcing with covariance W = I which enters at various wall-normal
regions; this is achieved by filtering the forcing using the function f (y) in (11). Figure 9 shows the
kz dependence of energy amplification and receptivity coefficient for stochastic excitation entering
at various wall-normal regions. Our computations show that the energy amplification increases as
the region of influence for the external forcing approaches the wall, which qualitatively matches
the result of the locally parallel analysis in Sec. III. In particular, for Re0 = 232, the energy
amplification reduces from 2.0 × 106 (for stochastic excitation that enters in the vicinity of the
wall (case 1 in Table I) with kz = 0.32) to 9.6 × 104 (for stochastic excitation that enters away from

093901-11



RAN, ZARE, HACK, AND JOVANOVIĆ

FIG. 9. (a) Energy amplification and (b) receptivity coefficient resulting from stochastic excitation of the
linearized NS equations around a spatially varying Blasius profile with Re0 = 232. Stochastic forcing enters
at the wall-normal regions covered in Table I: case 1, black; case 2, blue; case 3, red; and case 4, green. The
forcing region moves away from the wall in the direction of the arrows.

the wall (case 4 in Table I) with kz = 0.21). Moreover, the structures that correspond to the largest
energy amplification or receptivity coefficient become slightly wider in the spanwise direction, but
this shift to smaller values of kz is not as pronounced as in parallel flows (cf. Fig. 5). The largest
energy amplification and receptivity are observed for structures with kz ∈ [0.21, 0.32], which is in
close agreement with previous experimental [14] and theoretical studies [69,70].

For kz = 0.32, Fig. 10 shows the contribution of the first 50 eigenvalues of the velocity covariance
matrix � resulting from near-wall and outer-layer stochastic excitation. In contrast to locally parallel
analysis (cf. Fig. 6), we observe that other eigenvalues play a more prominent role. The implication
is that in global analysis the principal eigenmode of � cannot capture the full complexity of the
spatially evolving flow. Nevertheless, we examine the shape of such flow structures to gain insight
into the effect of stochastic excitation on the eigenmodes of the covariance matrix � that comprise
the fluctuation field. Figures 11(a) and 12(a) show the spatial structure of the streamwise component
of the principal response to white-in-time stochastic forcing that enters in the vicinity of the wall and
in the outer layer, respectively. The streamwise growth of the streaks can be observed. Figures 11(b)
and 12(b) display the cross section of these streamwise elongated structures at z = 0. As the forcing

FIG. 10. Contribution of the first 50 eigenvalues of the velocity covariance matrix � of the Blasius
boundary layer flow with Re0 = 232 subject to white-in-time stochastic forcing (a) in the vicinity of the wall
with spanwise wave number kz = 0.32 and (b) away from the wall with spanwise wave number kz = 0.21.
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FIG. 11. Principal modes with kz = 0.32, resulting from near-wall excitation of the boundary layer flow
(case 1 in Table I) with Re0 = 232. (a) Streamwise velocity component where red and blue colors denote
regions of high and low velocity. (b) Streamwise velocity at z = 0. (c) y–z slice of streamwise velocity (color
plots) and vorticity (contour lines) at x = 750, which corresponds to the cross-plane slice indicated by the black
dashed lines in panel (b).

region gets detached from the wall, the cores of the streaky structures also move away from it.
As shown in Figs. 11(c) and 12(c), these streaky structures are situated between counter-rotating
vortical motions in the cross-stream plane and they contain alternating regions of fast- and slow-
moving fluid that are slightly inclined to the wall.

We next examine the spatial structure of less energetic eigenmodes of �. As illustrated in
Fig. 10(a), for near-wall stochastic forcing the first six eigenmodes respectively contribute 8.9%,
7.3%, 6.1%, 5.3%, 4.6%, and 4.0% to the total energy amplification. We again use the streamwise
velocity component to study the spatial structure of the corresponding eigenmodes. As shown in
Fig. 13(b), while the principal mode consists of a single streamwise-elongated streak, the second
mode is composed of two shorter high- and low-speed streaks. Similarly, the third and fourth modes
respectively contain three and four streaks. These streaks become shorter in the streamwise direction
and their energy content reduces; see Figs. 13(c) and 13(d). As the mode number increases, the
streamwise extent of these structures further reduces, they appear at an earlier streamwise location,
and their peak value moves closer to the leading edge. This breakup into shorter streaks for higher
modes can be related to the dominant modes identified in locally parallel analysis for increasingly
larger streamwise wave numbers and at various streamwise locations.

As shown in Fig. 13, spatial visualization of various eigenmodes of � resulting from global re-
ceptivity analysis uncovers approximately periodic flow structures in the streamwise direction. The
fundamental spatial frequency extracted from the streamwise variation of the principal eigenmode
of � provides information about the streamwise length scales associated with the dominant flow
structures. Figure 14(a) shows the dominant TS wave-like spatial structure that results from near-
wall stochastic excitation of the boundary layer flow with Re0 = 232 and kz = 0.01. The Fourier

FIG. 12. Principal modes with kz = 0.21, resulting from outer-layer excitation of the boundary layer flow
(case 4 in Table I) with Re0 = 232. (a) Streamwise velocity component where red and blue colors denote
regions of high and low velocity. (b) Streamwise velocity at z = 0. (c) y–z slice of streamwise velocity (color
plots) and vorticity (contour lines) at x = 800, which corresponds to the cross-plane slice indicated by the black
dashed lines in panel (b).
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FIG. 13. Streamwise velocity at z = 0 corresponding to the first six eigenmodes of the steady-state
covariance matrix � resulting from near-wall excitation of the boundary layer flow with Re0 = 232 and at
kz = 0.32: (a) j = 1, (b) j = 2, (c) j = 3, (d) j = 4, (e) j = 5, and (f) j = 6, where j corresponds to ordering
in Fig. 10(a).

transform in the streamwise direction can be used to extract the fundamental value of kx associated
with this spatial structure. As illustrated in Fig. 14(b), the Fourier coefficient peaks at kx ≈ 0.1,
which corresponds to the most significant streamwise flow structures [cf. Fig. 14(a)]. The identified
fundamental wave number is representative of the streamwise variation of this flow structure and
it provides a good approximation of the dominant value of kx that is excited by the near-wall
forcing. For different values of kz, the filled black dots in Fig. 14(c) denote the streamwise wave
numbers extracted from the principal eigenmodes of the covariance matrix �, which contribute
most to the energy amplification. The circles represent the tail of streamwise wave numbers
extracted from other eigenmodes of the matrix �. As shown in Fig. 13, for any kz, less significant
eigenmodes are associated with flow structures that are shorter in the streamwise direction. The
observed trends are in close agreement with the results obtained from locally parallel analysis
[cf. Fig. 3(a)]. In particular, streamwise elongated structures are most amplified for kz ≈ 0.3. On

FIG. 14. Blasius boundary layer flow with initial Reynolds number Re0 = 232 subject to white-in-time
stochastic excitation of the near-wall region (case 1 in Table I). (a) The TS wave-like spatial structure of
the streamwise velocity component of the principal eigenmode of the matrix � at kz = 0.01; (b) Fourier
transform in streamwise dimension; and (c) the distribution of streamwise length scales obtained from various
eigenmodes of the covariance matrix � for various values of the spanwise wave number kz. Filled dots represent
the dominant streamwise wave number associated with the principal eigenmode of �, the red dot corresponds to
the fundamental wave number extracted from panel (b), and circles are the streamwise wave numbers resulting
from less significant eigenmodes.
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FIG. 15. (a) Receptivity coefficient resulting from HIT-based stochastic excitation of system (3) with
Re0 = 232 in the near-wall (black) and outer-layer (blue) regions. The solid lines correspond to streamwise-
invariant forcing [r = 0 in h(x)] and the dashed lines correspond to streamwise decaying forcing with a decay
rate of r = 1.5 in h(x). (b) Receptivity coefficient corresponding to the streamwise-invariant [r = 0 in h(x)]
HIT-based forcing (solid) and white-in-time forcing with covariance W = I (dotted) entering in the near-wall
region.

the other hand, for low spanwise wave numbers, the TS wave-like structures are most amplified for
kx � 0.1 [cf. kx ≈ 0.19 from locally parallel analysis in Fig. 3(a)].

A. Modeling the effect of homogeneous isotropic turbulence

So far, we have studied the energy amplification of the boundary layer flow subject to persistent
white-in-time stochastic excitation with a trivial covariance matrix, W = I . It is also of interest
to model the effect of free-stream turbulence on the boundary layer flow using homogeneous
isotropic turbulence (HIT) [18]. The spectrum of HIT has been previously used as an initial
condition to study transient growth in boundary layer flows based on the temporal evolution of
the solution to the differential Lyapunov equation [75]. Herein, we consider the persistent stochastic
forcing d in system (3) to be of the form defined in Eq. (10). The filter function h(x) := 10−rx/Lx

is used to model the streamwise decay of turbulence intensity (cf. Ref. [[18], Fig. 2]) and the
spatial covariance matrix W of the forcing term ds is selected to match the spectrum of HIT; see
Appendix D for additional details. We utilize such forcing model as well as the input matrix B in
the infinite-horizon Lyapunov equation (6) to compute the steady-state covariance matrix X and
determine the corresponding energy spectrum via Eq. (7).

We first study the receptivity of the linearized NS equations to HIT-based stochastic forcing.
The receptivity coefficient as a function of spanwise wave number kz is shown in Fig. 15(a). As
shown in this figure, the streamwise decay of forcing using the filter function h(x) = 10−rx/Lx has a
minimal damping effect on the receptivity coefficient. Figure 15(b) illustrates a similar trend in the
receptivity coefficient obtained from both types of white-in-time stochastic forcing, which suggests
that stochastic forcing with covariance W = I provides a reasonable approximation of the effect
of HIT. However, it is clear that the boundary layer flow is more receptive to the scale-dependent
distribution of energy (von Kármán spectrum) realized by the HIT-based forcing.

Figure 16 shows the streamwise component of the principal eigenmodes of the velocity
covariance matrix � resulting from near-wall HIT-based excitation of the boundary layer flow
with kz = 0.26. The flow structures closely resemble the streamwise elongated streaks presented
in Fig. 11(b). From Fig. 16(b), we conclude that an exponentially decaying excitation further
elongates the streaks in the streamwise direction. We note that the amplification of streaks and
their prominence in the downstream regions persists, even if the streamwise-decaying forcing
completely vanishes towards the end of the domain. Figure 17 shows the dominant flow structure
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FIG. 16. The x–y slice of the streamwise component of the principal eigenmode from the covariance matrix
� at kz = 0.26 resulting from near-wall HIT-based excitation of the boundary layer flow with Re0 = 232.
(a) Streamwise-invariant forcing [r = 0 in h(x)] and (b) streamwise-decaying forcing [r = 1.5 in h(x)].

that results from near-wall HIT-based forcing of the boundary layer flow with kz = 0.01. This
figure demonstrates that our stochastic analysis is able to predict the amplification of TS wave-like
structures arising from persistent excitation that matches the spectrum of HIT, which is in agreement
with the global stability analysis of Ref. [51]. In contrast, similar stochastic analysis of the parallel
flow dynamics fails to capture such structures; see Ref. [76] for the predictions resulting from locally
parallel analysis.

Figure 18 illustrates the growth of the root-mean-square (rms) amplitude of the streamwise ve-
locity resulting from HIT-based stochastic forcing with various streamwise decay rates: r = 0, 0.5,
1, and 1.5. This figure is obtained by integrating the steady-state response over 50 logarithmically
spaced spanwise wave numbers with 0.01 < kz < 10. When the forcing is not damped (r = 0), the
growth is linear and proportional to the Reynolds number for Re < 400, which is in agreement with
previous studies based on linear stability theory [69,77]. We observe that this linear trend is no
longer present for stochastic forcing with large streamwise decay rates r.

V. DISCUSSION

In this section, we provide connections between the spatial flow structures obtained via locally
parallel and global analyses and examine frequency responses of the boundary layer flow subject to
near-wall stochastic excitation.

A. Relations between locally parallel and global analyses

The eigenmodes resulting from locally parallel and global stability analysis are generally closely
related [40,51]. As shown in the previous sections, both locally parallel and global receptivity
analyses predict largest amplification of streamwise elongated structures and the appearance of
TS waves. However, the size of flow structures and their wall-normal extent can vary with the
streamwise location (Reynolds number). For a proper comparison between the streamwise and
wall-normal extent of flow structures, herein, we adjust the Reynolds number used in locally parallel
analysis to capture the dominant flow structures toward the end of the global streamwise domain.
Moreover, a shorter global domain length Lx should be considered to accommodate subcritical
Reynolds numbers (Re � 360) beyond which the local dynamics are unstable. Even though the
global dynamics are stable, the discretized representation can have spurious unstable modes that
can be avoided by increasing the computational domain. We extend the streamwise domain in the

FIG. 17. The TS wave-like spatial structure of the streamwise component of the principal eigenmode of
matrix � at kz = 0.01 resulting from global analysis of the boundary layer flow subject to near-wall streamwise-
invariant [r = 0 in h(x)] HIT-based stochastic forcing.
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FIG. 18. The rms amplitude of the streamwise velocity resulting from stochastic excitation that corresponds
to the spectrum of HIT entering in the near-wall region (case 1 in Table I). The decay rate for the intensity of
stochastic forcing, r, increases in the direction of the arrow as r = 0, 0.5, 1, and 1.5.

upstream direction to Re0 = 133, but for consistency, display results for Re � 232 after appropriate
scaling based on the Blasius length scale at Re = 232.

For near-wall stochastic excitation (case 1 in Table I), both local and global receptivity analyses
predict the dominant amplification of streamwise elongated structures with kz ≈ 0.3; see Figs. 5
and 9. For near-wall excitation with kz = 0.32, Fig. 19 demonstrates that locally parallel analysis
of the flow with Re = 300 yields qualitatively comparable flow structures (with kx = 0.11) to those
appearing at Re ≈ 300 in the sixth eigenmode of the covariance matrix � resulting from global
analysis. Here, kx = 0.11 is the wave number extracted from spatial Fourier transform of the sixth
eigenmode of �. Moreover, for long spanwise wavelengths, both models predict the amplification
of similar TS wave-like structures in the presence of near-wall excitation (see Fig. 20). These
observations can also be explained by evaluating the source terms in the energy balance equation.
The intrinsic source terms are dominated by production terms that account for interactions between
the fluctuation field and the mean rate of strain, i.e., 〈u, u∂xU 〉, 〈u, v∂yU 〉, 〈v, u∂xV 〉, and 〈v, v∂yV 〉;
e.g., see Ref. [[58], Sec. 4.2]. In transitional boundary layer flow, since ∂xU , ∂yV ∼ O(1/Re) and
∂xV ∼ O(1/Re2), energy production is dominated by the term 〈u, v∂yU 〉, which is well captured by
a locally parallel analysis.

FIG. 19. Streamwise velocity fluctuations resulting from near-wall stochastic excitation of the boundary
layer flow. (a) Principal eigenmode of � obtained in locally parallel analysis with Re = 300 and (kx, kz ) =
(0.11, 0.32) and (b) sixth eigenmode of � resulting from global analysis with kz = 0.32. In the global
computations, Lx = 200 and the dominant flow structures appear at Re ≈ 300.
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FIG. 20. The TS wave-like spatial structure of the streamwise velocity component of the principal
eigenmode of the matrix � resulting from near-wall stochastic excitation of the boundary layer flow. (a) Locally
parallel analysis with Re = 300 and (kx, kz ) = (0.13, 0.01); and (b) global flow analysis with kz = 0.01. The
wave-number pair for the locally parallel analysis corresponds to the TS wave branch in the energy spectrum
of velocity fluctuations. In the global computations, Lx = 200 and the dominant flow structures appear at
Re ≈ 300.

In certain scenarios, locally parallel analysis can extract information about streamwise scales
that may be hidden in global analysis. This feature of locally parallel analysis can be attributed
to the parametrization of the velocity field over streamwise wave numbers, which enables the
separate study of various streamwise length scales. For example, for wave numbers at which the
global receptivity analysis of the flow subject to outer-layer excitation is dominated by near-wall
streaks, locally parallel analysis can uncover the trace of weakly growing outer-layer oscillations
at TS frequencies. This outcome is in agreement with experiments [78] which observe outer-layer
oscillations of comparable length to width (kx ≈ kz) that travel at the phase speed of free-stream
velocity with similar temporal frequency as TS waves.

To further investigate this observation, we re-examine the flow structures that can be extracted
from locally parallel and global flow analyses of the boundary layer flow at Re ≈ 300 subject to
stochastic excitation covering the entire free stream region. In particular, the parameters in Eq. (11)
are set to y1 = 7, y2 = 33, and a = 10 for locally parallel analysis, and y1 = δ0.99 + 2, y2 = 33, and
a = 10 for global flow analysis. Note that δ0.99 in the global analysis is a function of x. By comparing
the phase speed of the outer-layer oscillations to that of TS waves (c ≈ 0.4U∞ obtained from local
temporal stability analysis with Re0 = 232 and kx ≈ 0.19), we obtain ω ≈ 0.076. Finally, Taylor’s
hypothesis (c ≈ U∞) can be used to obtain kx ≈ 0.076 for outer-layer oscillations.

Figures 21(a) and 21(b) show the streamwise component of the steady-state response of the
boundary layer flow with Re = 300 and kz = 0.076 resulting from locally parallel and global flow
analyses, respectively. As mentioned above, locally parallel analysis considers kx = kz = 0.076,
which is in concert with the experimentally observed outer-layer oscillations. These flow structures
represent the aggregate contribution of all eigenmodes of � and they have been obtained from
diag(CuXC∗

u ), where Cu is the streamwise component of the output matrix C. Note that the spatial
structure shown in Fig. 21(a) is obtained by enforcing streamwise periodicity with kx = 0.076.
While locally parallel analysis of the stochastically forced flow predicts the amplification of
structures that reside in the outer layer, the response obtained in global analysis is dominated by
inner-layer streaks and a weaker amplification of outer-layer fluctuations is observed in the presence
of stochastic forcing. As shown in Fig. 21(c), such weak outer-layer oscillations can be observed
in the seventh mode of the covariance matrix � resulting from global analysis. Figure 21(d)
shows the streamwise variation of these flow structures at y = 20, which corresponds to the
wall-normal location where the largest amplitude occurs. The streamwise wavelength of this signal
is approximately the same as the parallel flow estimate (λx = 81 vs λx = 82.7). Such flow structures
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FIG. 21. The rms amplitude of the streamwise velocity component of the response [diag(CuXC∗
u )] obtained

from receptivity analysis of boundary layer flow with Re = 300 subject to full outer-layer stochastic excitation:
(a) locally parallel analysis with kx = kz = 0.076; (b) global flow analysis with kz = 0.076. (c) Contribution
of the first seven eigenvalues of the velocity covariance matrix � obtained via global receptivity analysis and
the flow structures corresponding to the first and seventh eigenmodes. (d) The streamwise velocity profile at
y = 20 from the seventh eigenmode of � illustrated in panel (c). In the global computations, we set Lx = 200
and the outer-layer oscillating structures appear at Re ≈ 300.

may be dominated by higher amplitude streaks as their contribution to the total energy amplification
is appreciably smaller than the contribution of the principal mode (0.15% vs 1.9%). Nonetheless,
similar to the cascade shown in Fig. 13(f), their presence in the eigenmodes of the covariance matrix
points to the physical relevance of flow structures that are identified via locally parallel analysis.

B. Frequency response analysis

The receptivity analysis conducted in this paper quantifies the energy amplification of stochasti-
cally forced linearized NS equations and identifies the dominant flow structures in statistical steady
state. We utilize the solution X to the algebraic Lyapunov equation (6) to avoid the need for
performing either costly stochastic simulations or integration over all temporal frequencies. This
approach facilitates efficient computations by aggregating the impact of different frequencies on
energy amplification. In what follows, we illustrate how additional insight into temporal aspects of
the linearized dynamics can be obtained by examining the spectral density associated with velocity
fluctuations (8).

Application of the temporal Fourier transform on system (3) in combination with a coordinate
transformation

d(t ) = W 1/2d̃(t ),

where d(t ) and d̃(t ) are white-in-time forcings with the spatial covariance matrices W and I ,
respectively, yields

v(k, ω) = Tvd(k, ω)d(k, ω) = Tvd̃(k, ω)d̃(k, ω). (14)
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FIG. 22. Power spectral density �v(k, ω) as a function of temporal frequency ω for a boundary layer flow
with Re0 = 232 subject to near-wall white stochastic excitation. (a) Locally parallel analysis with (kx, kz ) =
(7 × 10−3, 0.32) (blue) and (kx, kz ) = (0.19, 0.01) (red) corresponding to streaks and TS waves, respectively.
(b) Global flow analysis with kz = 0.32 (blue) and kz = 0.01 (red). Black dots correspond to the temporal
frequencies of the Fourier modes plotted in Fig. 23.

Here, k denotes the spatial wave numbers, ω is the temporal frequency, Tvd(k, ω) is the frequency
response of system (3) given in Eq. (15), and

Tvd̃(k, ω) := Tvd(k, ω)W 1/2 = C(iωI − A)−1BW 1/2. (15)

Singular value decomposition of Tvd̃(k, ω) brings the input-output representation (14) into the
following form:

v(k, ω) = Tvd̃(k, ω)d̃(k, ω) =
∑

i

σi(k, ω)ui(k, ω)〈wi(k, ω), d̃(k, ω)〉,

where σi is the ith singular values of Tvd̃(k, ω), ui(k, ω) is the associated left singular vector, and
wi(k, ω) is the corresponding right singular vector. The power spectral density (PSD) quantifies the
energy of velocity fluctuations v(k, ω) across temporal frequencies ω and spatial wave numbers k,

�v(k, ω) = trace[Tvd̃(k, ω)T ∗
vd̃(k, ω)] = trace[Tvd(k, ω)W T ∗

vd(k, ω)] = trace[Sv(k, ω)],

and is determined by the sum of squares of the singular values of the frequency response Tvd̃(k, ω),

�v(k, ω) =
∑

i

σ 2
i (k, ω).

As described in Sec. II B, the energy spectrum E (k) in Eq. (7) can be obtained by the integration of
�v(k, ω) over temporal frequency [35],

E (k) = 1

2π

∫ ∞

−∞
�v(k, ω)dω = 1

2π

∫ ∞

−∞

∑
i

σ 2
i (k, ω)dω.

This approach extends standard resolvent analysis [62–64] to stochastically forced flows and it
allows the spatial covariance matrix W of the white-in-time stochastic forcing d to be embedded
into the analysis. A recent reference [79] also establishes a relation between spectral decomposition
of Sv(k, ω) and dynamic mode decomposition [80].

The PSD of the boundary layer flow with Re0 = 232 subject to near-wall stochastic excitation
is shown in Fig. 22. While locally parallel analysis reveals isolated frequencies at which the PSD
peaks, considerably broader frequency range is important in global analysis. In particular, locally
parallel analysis for a flow with (i) (kx, kz ) = (7 × 10−3, 0.32) identifies nearly steady streaks as
dominant flow structures (the PSD peaks at ω = 0.0063); and (ii) (kx, kz ) = (0.19, 0.01) identifies
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FIG. 23. Fourier modes corresponding to the principal response directions of Tvd(k, ω) for a spatially
evolving Blasius boundary layer flow with Re0 = 232 and kz = 0.32 subject to near-wall stochastic excitation.
(a) ω = 10−5, (b) ω = 0.01, and (c) ω = 0.02.

two peaks at ω = 0.08 and ω = 0.19 which correspond to the TS waves and flow structures in
the outer layer, respectively. On the other hand, the peaks are noticeably less pronounced in the
analysis of the spatially evolving base flow. This suggests that the focus on isolated frequencies
in global analysis may not capture the full complexity of the underlying flow structures. In fact,
the shapes of spatial profiles associated with principal singular vectors of the frequency response
Tvd̃(k, ω) change for different values of ω. As shown in Fig. 23, even though the principal
singular values of Tvd̃(k, ω) for ω = 10−5, 0.01, and 0.02 are comparable (5464, 4732, and 3565,
respectively), the corresponding response directions change from streamwise elongated modes (for
steady perturbations) to oblique modes (at larger frequencies). The outcome is shorter streaks in
the streamwise dimension at higher temporal frequencies and is reminiscent of the various flow
structures resulting from the eigenvalue decomposition of the steady-state covariance matrix (cf.
Sec. IV and Fig. 13). Similar trends are also observed in the spatiotemporal analysis of hypersonic
boundary layers [61].

VI. CONCLUDING REMARKS

In the present study, we have utilized the linearized NS equations to study energy amplification
in the Blasius boundary layer flow subject to white-in-time stochastic forcing entering at various
wall-normal locations. The evolution of flow fluctuations is captured by two models that arise from
locally parallel and global perspectives, and the amplification of persistent stochastic disturbances
is studied using the algebraic Lyapunov equation. Both parallel and global flow analyses predict
largest amplification of streamwise elongated streaks with similar spanwise wavelength. Moreover,
TS wave-like flow structures arise from persistent near-wall stochastic excitation at long spanwise
wavelengths. We have shown that as the region of excitation moves away from the wall, energy
amplification reduces, which suggests that the near-wall region is more sensitive to external
disturbances. We have also examined the spatial structure of characteristic eddies that result from
stochastic excitation of the boundary layer flow. Our computational experiments demonstrate
good agreement between the results obtained from parallel and global flow models and identify
the importance of suboptimal flow structures in global analysis. This agreement highlights the
efficacy of using parallel flow assumptions in the receptivity analysis of boundary layer flows,
especially when it is desired to evaluate the energetic contribution of individual streamwise
scales.

In contrast to resolvent-mode analysis, which quantifies the energy amplification from
monochromatic forcing, our stochastic approach incorporates a broad-band forcing model with
known spatial correlations that captures the aggregate effect of all time scales. Our Lyapunov-based
framework generalizes the concept of receptivity to the amplification of velocity fluctuations from
any external source of persistent excitation with known statistical properties. We note that the
ability of the method to capture relevant flow physics relies on the spectral properties of the
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stochastic forcing that can be used to model the effect of, e.g., free-stream turbulence. In addition
to white-in-time stochastic forcing with trivial (identity) spatial covariance operator, we have also
investigated energy amplification arising from the streamwise-decaying forcing that corresponds to
the spectrum of HIT. Our computations demonstrate close correspondence between these two case
studies. The spatiotemporal spectrum of stochastic excitation sources can be further determined in
order to provide statistical consistency with the results of numerical simulations or experimental
measurements of the boundary layer flow [39,81]. Implementation of such ideas to leverage
statistical data and improve physics-based analysis is a topic for future research.
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APPENDIX A: OPERATOR-VALUED MATRICES IN EQS. (2)

Equation (2) is of the following form:

[
vt

ηt

]
=

[
A11 A12

A21 A22

]
︸ ︷︷ ︸

A

[
v

η

]
+

[
B11 B12 B13

B21 0 B23

]
︸ ︷︷ ︸

B

⎡
⎣du

dv

dw

⎤
⎦,

⎡
⎣u

v

w

⎤
⎦ =

⎡
⎣C11 C12

I 0
C31 C32

⎤
⎦

︸ ︷︷ ︸
C

[
v

η

]
,

with operators defined as

A11 = �−1

[
1

Re
�2 − U�∂x − V �∂y − ∂yV � − 2∂xU∂xx − ∂yyV ∂y + ∂yyU∂x

−∂yyyV − 2(∂xyU∂x + ∂xU∂xy)
(
∂xx − k2

z

)−1
∂xy

]
− σ (x),

A12 = 2ikz�
−1[(∂xyU∂x + ∂xU∂xy)

(
∂xx − k2

z

)−1]
,

A21 = −ikz∂yU, A22 = 1

Re
� − U∂x − V ∂y − ∂xU − σ (x),

B11 = −�−1( f ∂xy + ∂y f ∂x ), B12 = �−1( f ∂xx − k2
z f

)
, � = ∂xx + ∂yy − k2

z ,

B13 = −ikz�
−1(∂y f + f ∂y), B21 = −ikz f , B23 = − f ∂x,

C11 = −(
∂xx − k2

z

)−1
∂xy, C12 = ikz

(
∂xx − k2

z

)−1
,

C31 = −ikz(∂xx − k2
z )−1∂y, C32 = −(

∂xx − k2
z

)−1
∂x.

Here, σ (x) determines the strength of sponge layers as a function of x; see Ref. [74] for additional
details. For parallel flows, Fourier transform in x can be used to further parametrize the operators
over streamwise wave numbers; see Ref. [35] for the expressions of A, B, and C in such instances.
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APPENDIX B: CHANGE OF VARIABLES

The kinetic energy of velocity fluctuations in the linearized NS equations (2) is defined using the
energy norm

E = 〈ϕ,ϕ〉e = 1

2

∫
�

ϕ∗Qϕdy =: 〈ϕ, Qϕ〉,

where � is the computational domain, 〈·, ·〉 is the L2 inner product, and Q is the operator which
determines kinetic energy of the state ϕ = [vη]T on the appropriate state-space [35,82]. With proper
discretization of the inhomogeneous directions, the kinetic energy is given by E = ϕ∗Qϕ. Here,
Q is the discrete representation of operator Q and is a positive definite matrix. The coordinate
transformation ψ = Q1/2ϕ can thus be employed to obtain the kinetic energy via the standard
Euclidean norm: E = ψ∗ψ in the new coordinate space. Equation (3) results from the application
of this change of variables on the discretized state-space matrices Ā, B̄, and C̄

A = Q1/2ĀQ−1/2, B = Q1/2B̄I−1/2
W , C = I1/2

W C̄Q−1/2,

and the discretized input d̄ and velocity v̄ vectors

d = I1/2
W d̄, v = I1/2

W v̄.

Here, IW is a diagonal matrix of integration weights on the set of Chebyshev collocation points.
The operator Q in the global model is of the form

Q =
[
∂†

xy�
†�∂xy + I + k2

z ∂
†
y �†�∂y 0

0 k2
z �

†� + ∂†
x �†�∂x

]
,

where � = (∂2
x − k2

z )−1, I is the identity operator, and † represents the adjoint of an operator. The
representation of Q for parallel flows can be found in Ref. [[35], Appendix A].

APPENDIX C: GLOBAL ANALYSIS USING THE DESCRIPTOR FORM

The descriptor form of the linearized NS equations around the Blasius boundary layer profile is
given by

Fψ̇(t ) = Aψ(t ) + Bd(t ), v(t ) = Cψ(t ), (C1)

where ψ = [u v w p]T and

F =

⎡
⎢⎣

I 0 0 0
0 I 0 0
0 0 I 0
0 0 0 0

⎤
⎥⎦, A =

⎡
⎢⎣

K + ∂yV −∂yU 0 −∂x

0 K − ∂yV 0 −∂y

0 0 K −ikz

∂x ∂y ikz 0

⎤
⎥⎦,

B =

⎡
⎢⎣

I 0 0
0 I 0
0 0 I
0 0 0

⎤
⎥⎦, C = BT ,

where I is the identity operator and

K = 1

Re

(
∂2

x + ∂2
y − k2

z

) − U∂x − V ∂y − σ (x).

Here, σ (x) determines the strength of sponge layers as a function of x. The width and strength
of the sponge layers are selected to guarantee the stability of the generalized dynamics (C1) in
their discretized form, while having minimal influence on velocity fluctuation field. The energy of
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FIG. 24. (a) The streamwise component of the principle eigenmode of output covariance matrix � resulting
from near-wall stochastic excitation (case 1 in Table I) of the linearized model (C1) with kz = 0.32 and Re0 =
232. (b) Streamwise velocity at z = 0. (c) y − z slice of streamwise velocity (color plots) and vorticity (contour
lines) at x = 750, which corresponds to the cross-plane slice indicated by the black dashed lines in panel (b).

velocity fluctuations in Eqs. (C1) can be determined by

E = trace[C(Gc + Gnc)C†],

which is analogous to expression (7) for the evolution model with ψ = [v η]T . Here, † represents
the adjoint of an operator and Gc and Gnc are the causal and non-causal reachability Gramians that
satisfy the following generalized Lyapunov equations:

FGcA† + AGcF† = −Pl BB†P†
l , FGncF† − AGncA† = QlBB†Q†

l , (C2)

where Pl and Ql are the projection operators that project the state space into causal and non-causal
subspaces; see Ref. [[83], Appendix E] for additional details.

After proper spatial discretization of the state space, the procedure for solving the generalized
Lyapunov equations (C2) consists of the following steps: (i) compute the generalized Schur form of
the discretized pair (A, F ), (ii) compute the solution to a system of generalized Sylvester equations,
and (iii) solve the generalized Lyapunov equations (C2) for Gramian matrices Gc and Gnc. The
Schur decomposition and the solution to the Sylvester equations are required to split the state into
slow (causal) and fast (non-causal) parts and to form projection matrices Pl and Ql . For a spatial
discretization that involves n = 4 × Nx × Ny states, the overall computational complexity of this
procedure is O(n3), which is significantly higher than the computational complexity of solving the
Lyapunov equation (6) with n = 2 × Nx × Ny. Moreover, since the state space of the descriptor form
has twice the number of states as the evolution model (3), computations based on this representation
require more memory. We refer the interested reader to Ref. [[83], Appendix E] for additional details
on computing energy amplification using the descriptor form.

To demonstrate the close agreement between the outcome of receptivity analysis based on the
evolution model of Sec. II and the descriptor form (C1), we focus on the energy amplification of
flow structures with kz = 0.32. Similar to Sec. II, we discretize system (C1) by applying Fourier
transform in z and using a Chebyshev collocation scheme in the wall-normal and streamwise
directions. In the wall-normal direction, we enforce homogenous Dirichlet boundary conditions
on all velocity components. In the streamwise direction, we use homogeneous Dirichlet boundary
conditions at the inflow and spatial extrapolation at the outflow for all velocity components.
Moreover, sponge layers are applied at the inflow and outflow to mitigate the influence of boundary
conditions on the fluctuation dynamics. As shown in Fig. 24, the dominant flow structures that result
from near-wall excitation closely resemble the results presented in Fig. 11.

APPENDIX D: MATCHING THE HIT SPECTRUM WITH STOCHASTICALLY
FORCED LINEARIZED NS EQUATIONS

We briefly describe how the spectrum of HIT can be matched using stochastically forced
linearized NS equations; see Ref. [[83], Appendix C] for additional details. The dynamics of
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velocity fluctuations v around a uniform base flow ū = [1 0 0]T subject to the solenoidal forcing
ds = [du dv dw] (∇ · ds = 0) are governed by the linearized NS equations

vt (k, t ) = A(k)v(k, t ) + ds(k, t ),

where k = [kx ky kz]T is the spatial wave-number vector and

A(k) = −
(

ikx + k2

Re

)
I3×3

is the linearized operator. Here, k2 = k2
x + k2

y + k2
z and I3×3 is the identity operator. The steady-

state covariance of velocity fluctuations �(k) = limt→∞ 〈v(k, t )v∗(k, t )〉 satisfies the following
Lyapunov equation,

A(k)�(k) + �(k)A∗(k) = −M(k), (D1)

where M(k) denotes the covariance of white-in-time stochastic forcing. The steady-state covariance
matrix � corresponding to HIT is given by [84]

�(k) = E (k)

4πk2

(
I3×3 + kkT

k2

)
,

where E (k) is the energy spectrum of the HIT based on the von Kármán spectrum [26],

E (k) = LCvk
(kL)4

(1 + k2L2)17/6
.

Here, Cvk = �(17/6)
�(5/2)�(1/3) = 0.48 is a normalization constant in which �(·) is the � function and the

integral length scale L = 1.5 corresponds to numerical simulations of HIT [85]. The input forcing
covariance can be derived by substituting �(k) into Eq. (D1), which yields

M(k) = E (k)

2πRe

(
I3×3 + kkT

k2

)
.

After finite-dimensional approximation of all operators, the covariance of forcing ds, parametrized
by kz, is obtained via inverse Fourier transform in x and y. The resulting covariance matrix M(kz )
includes two-point correlations of the white stochastic forcing in the streamwise and wall-normal
directions and it replaces W in Eq. (6).
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