
PHYSICAL REVIEW FLUIDS 4, 093604 (2019)

Reframing droplet coalescence: Identifying the distinctive
dynamics of nanofilm evolution

Jhoan Toro-Mendoza ,1,* Oscar Paredes-Altuve,1,2 Miguel A. Velasquez,1 and Dimiter N. Petsev3

1Instituto Venezolano de Investigaciones Cientificas, Centro de Estudios Interdisciplinarios de la Fisica.
Caracas, Venezuela

2Universidad de Chile, Departamento de Fisica. Santiago de Chile, Chile
3University of New Mexico, Department of Chemical and Biological Engineering,

Albuquerque, New Mexico, USA

(Received 4 February 2019; revised manuscript received 20 April 2019;
published 12 September 2019)

The richness of the dynamics of the thin film formed between two coalescing Brownian
droplets is presented. Simulations based on a previously developed model [Phys. Rev.
E 81, 051404 (2010)] which solves two coupled Langevin equations in the lubrication
limit were performed. The time evolution of the thickness and radius of the cylindrical
film is evaluated for the first time in terms of phase space, entropy of permutation,
mean-square displacements, and creeping compliance. This new perspective of analysis
reveals the specific and distinctive features of the nanofilm formation and breaking: (1)
a well-defined attractor-type phase space which slightly become less disperse as they
approach instead of single deterministic trajectories observed in hydrodynamic dominated
systems, (2) complexity values larger than the ones expected for Fractional Brownian
Motion, (3) a super-diffusive behavior of the film thinning but a sub-diffusive behavior of
the film growing, and (4) the effective shear forces in the film that strongly depends on its
configuration. Remarkably, the major role of thermal fluctuations in to modulate the strong
non linear effects of hydrodynamic interactions, forcing the film to explore configurations
well delimited by the potential energy.
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I. INTRODUCTION

Understanding droplet coalescence is both an old and ongoing challenge. Coalescence occurs
whenever the intervening separating fluid film breaks against repulsive forces between droplets. The
advent of nanosystems, active matter, and smart materials, which requires the adequate manipulation
of droplets as well as the proper understanding of the contact and eventual film rupture, has
moved the frontiers of such a problem for the strong effects of molecular interactions and thermal
disturbances at the nanoscale [1–3]. Other critical scenarios for droplet coalescence are those of
highly concentrated liquid-liquid dispersions such as gels and emulsions [4–6], where the effect of
deformations leads to dramatic and unexpected changes in geometry [7], viscoelastic response [8,9],
phase separation [10,11] and jamming [12,13]. The main quest ahead is to compare and contrast the
current understanding of coalescence of macro droplets to the description of submicron droplets
whose contact is mediated by fluid nanofilms in order to find the specific and distinctive features of
the film formation and rupture.
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Previously, we reported an algorithm based on the resolution of two coupled Langevin-type
equations to generate the trajectories of both film thickness and radius [14]. In that report, the
analysis focused on the suitability of the algorithm for modeling films at different physicochemical
conditions. Particularly, it was analyzed the contribution of each term of the equation of motion to
the evolution of the configuration of the film leading to coalescence. Here, our aim is to deepen
the understanding of the nanofilm thinning process and coalescence of two oil droplets in water
applying for the first time within this context concepts like permutation entropy, phase space, and
creeping compliance to analyze those trajectories. With these alternative tools, it is revealed the
rich and complex dynamics of the film showing the differences and similarities to those observed in
larger systems and new pathways in the analysis of coalescence of Brownian emulsion droplets are
put forth.

Hitherto, the main focus of attention has been paid to hydrodynamic-dominated systems where
the dynamics of the film follows single and well-defined trajectories and the surface evolution
exhibits dimple formation [15–17]. In that case, the time required for the breaking of a film with
thickness h is estimated by tc = ∫

dh/U , where U is the velocity function obtained from the
resolution of the Navier-Stokes equation with the proper boundary conditions. These models have
been supported by experiments revealing that droplet approach and subsequent deformation follow
six stages, namely: (1) at a distance hi, the surface of the droplets slightly deform, (2) the sign of the
local curvature of the droplets change forming a bell shape called dimple, (3) the depth of the dimple
evolves until the internal pressure is high enough to oppose to the increase of surface area while the
droplets approach each other, (4) the dimple depth decreases until a planar circular parallel film is
formed in that zone and the intervening liquid drains until (5) the droplets coalesce or (6) a stable
parallel circular thin film called Newton black film finally forms when mechanical equilibrium is
reached and, therefore, thermal fluctuations are barely influential [17]. On the contrary, experimental
studies on liquid nanofilms actively affected by thermal fluctuations which compete with potential
and hydrodynamic forces have been rather sparse, mostly due to the difficulties in directly capturing
the rapid variations of the film evolution, in addition to the difficulties in measuring the actual
deformation during the collision of droplets undergoing Brownian motion. These kind of films are
present in the contact zone between nanodroplets where the high Laplace pressure is not enough
to prevent deformation. The effects on the overall system have been demonstrated [18], although a
quantitative theoretical description at the nanoscale remains elusive [1]. Actually, the applicability
of continuum description to both coalescence and interfacial dynamics is under scrutiny due to the
molecular effects as the scale decreases [5,19], as well as the possible existence of scaling laws
governing coalescence [2,20,21].

Striking and potentially applicable new phenomena are being experimentally studied such as
contactless coalescence [22], jumping droplet coalescence, active underwater droplets [23], which
require a full understanding of the evolution of the separating film. A recent report from Perumanath
et al. [24] concludes from molecular simulations that the thermal disturbances play a major role in
the coalescence of two nanodroplets in vacuum leading to a stochastic behavior. In our case, the
presence of water between the two droplets increases the viscous friction and lessens the effect
of capillary waves while the complex role of the surface interactions is kept. We will also show
that thermal disturbances strongly modulate the non linear behavior dictated by hydrodynamic
interactions, forcing the film to adequately follow the pathway defined by the potential energy.

II. NUMERICAL SCHEME

In large colliding droplets, the film radius r grows at constant film separation h forced by
the action of hydrodynamic resistance [17,25,26]. In contrast, for nanosized films, it is plausible
that both r and h simultaneously evolve governed by two coupled equations of evolution of the
cylindrical film formed between two truncated spherical oil droplets of mass m and radius a in
a medium with viscosity η [14]. A formal strategy is to solve the time dependent Smoluchowski
equation for the probability P of one central droplet to form a planar circular film with radius r and
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thickness h with another droplet of the same size a [27]

∂P(r, h, t )

∂t
= ∇ · {D(r, h) · (∇P(r, h, t ) + P(r, h, t )∇βW (r, h))} (1)

where W represents the total direct interactions between the particles, D the diffusion matrix
representing the hydrodynamic interactions, and β−1 the Boltzmann factor (kBT ). The resolution
of Eq. (1) gives the life time of the film, i.e., the time for the droplets to coalesce and allows one
to obtain the phase space of the system. An alternative treatment of the problem is to write the
Langevin equation for each variable appearing in the Smoluchowski equation and solve the coupled
set to obtain the trajectories. This treatment was applied by Ermak and McCammon to formulate the
widely known Brownian dynamics algorithm [28]. They demonstrated that it is possible to recreate
the phase space by averaging the trajectories from several evaluations of the Langevin equations. In
analogy to Brownian dynamics, it was proposed in a previous report an algorithm to model the film
formed between two head-on colliding droplets in the high friction lubrication limit [14]. Written in
the finite differences form, the solution for the coordinates of the Langevin coupled equations reads
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and
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The displacements R(�t ) and H(�t ) are random variables that conform to a multivariate Gaussian
distribution [28]. The procedure needs a random number generator which, in our case, follows
two different distributions depending on whether film thickness or radius is the case (see the
Appendix in Ref. [14]). For H, the distribution used to generate the random number l is given
by the Gaussian distribution fG(l ) = 1√

2π
e−l2/2. Instead, for the random numbers m necessary to

generate the displacement in R, a Rayleigh distribution is used fR(m) = me−m2/4. Note that, by
definition, the numbers obtained with the Rayleigh distribution are always positive. This means
that the contribution to the film due to thermal fluctuation are in the direction of growing. This is
clearly unphysical because the film radius can randomly increase or decrease as a results of the
thermal disturbances. To ameliorate the situation we adopt the following procedure to ensure both
positive and negative contributions to the radius film fluctuations: (1) a random Rayleigh number
is generated using a suitable numerical procedure, (2) using a uniform random numbers generator
a number between 0 and 1 is generated, and (3) if the latter number is less than 0.5, the Rayleigh
random number is selected to be positive, otherwise is selected to be negative.

Once the random numbers are calculated, we determine the covariance matrix which is given by
the diffusion tensor matrix. As it was demonstrated by Ermak and McCammon [28], the coupling
between hydrodynamic interactions and random displacements are given by

Li(�t ) =
i∑

j=1

σi jXj, (4)

where L1 = R, L2 = H, X1 = l , X2 = m, and σi j represent the weighting factors calculated from

σii =
√√√√Dii −

i−1∑
k=1

σ 2
ik, (5)

σi j =
(

Di j −
j−1∑
k=1

σikσ jk

)
σ−1

j j , i > j. (6)
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FIG. 1. Truncated spheres geometry model of two colliding emulsion droplets of size a with the cylindrical
film formed between them with radius r and thickness h. In our model, both parameters vary simultaneously
with time.

This procedure is known as the Choleski decomposition [29,30]. The matrix σσ t = 2Dδt , the
diffusion tensor is given by D = kBT ζ−1, and the elements obtained in the lubrication limit are
ζrr = 6πηr2

h(1−εs ) , ζhh = 3πηa2

2h (1 + r2

ah + r4

a2h2 ), and ζhr = ζrh = − 3πηr3

h2 [26].
Finally, the total interaction energy W is the sum of the van der Waals, electrostatic, and

extensional components. The van der Waals interaction potential for two equally sized truncated
spheres reads [25]

WvdW(r, h) = −AH

12

(
4a2

(2a + h)2
+ 4a2

h(4a + h)
+ 2 ln

[
h(4a + h)

(2a + h)2

]
+ 128a5r2

h2(2a + h)3(4a + h)2

)
,

(7)

where, AH is the Hamaker constant. At moderately high (<25 mV) and constant surface potential
�0, the electrostatic potential is given by [25]

Wel = πε0εκ�2
0 {[1 − tanh(κh/2)]r2 + 2aκ−1 ln[1 + exp(−κh)]}, (8)

where, κ−1 = (2e2z2Cel/ε0εkBT ) is the screening Debye length for symmetric electrolytes. In
absence of the Gibbs elasticity, the energy due to the surface extension is [25]

Wext = πγ r4/2a2. (9)

Within this scheme, the numerical experiment starts with the initial configuration of the film (the
values are indicated in the captions of the figures) and the film evolves until the coalescence occurs
at 1 nm of separation. The accuracy of the truncated sphere model was studied by Denkov et al. [31]
by comparing the actual shape based on the volume conservation to the geometry shown in Fig. 1,
finding errors in the total interaction potentials between 2% and 10%.

III. RESULTS AND DISCUSSION

A. Configuration and velocities space

Figures 2(a) and 2(b) show the r − h configuration and velocity space (Vi, i = r, h) of the
film during thinning, respectively. Energy contour lines in Fig. 2(a) are representative of the total
interaction potential W = WvdW + Wel + Wext where the numbers in there indicate the values of the
energy at that configuration. The bottom of Fig. 2(a) is the attractive zone where the droplets tend
to be closer leading to film breaking (∼−21kBT ). For large separations, the positive energy curves
are well separated allowing to the film to explore more configurations (∼7.5 kBT ). The asymmetry
of the dispersion of velocities and the differences in the order of magnitude shown in Fig. 2(b) is
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FIG. 2. Configuration space and velocities of the evolving film: (a) h vs. r with energy contour lines
(separation between lines 3 kBT ; the numbers indicate the values of the energy at that configuration), (b) Vh vs.
Vr , (c) Vr vs. r, (d) Vh vs. r, (e) Vr vs. h, and (f) Vh vs. h. In all these cases, the initials conditions used are h0 = 20
nm and r0 = 30 nm for 10 numerical coalescence realizations. The time step �t � mD0

ii/kBT was selected in
accordance with the Brownian dynamic procedure for friction dominated systems (10−8 s). The values of
parameters used are: a = 1 μm, interfacial tension γ=1 mN/m, water viscosity η = 8.91 × 10−4 kg m−1s−1,
fundamental electric charge e = 1.60210 × 10−19 C, vacuum permitivity ε0 = 8.85 × 10−12 Fm−1, relative
dielectric constant of the water at room temperature ε = 80.4, electrolyte concentration Cel = 0.5 M, surface
electric potential �0 = 15 mV, and emulsion parameter εs = 0.001. The velocities were directly calculated
from �xi/�t . Each run corresponded to different initial random seeds, and the averaging was obtained from
1000 runs.

an indicative of the freedom of h to explore more possible values than r. It can be understood by
comparing the configurations explored during the coalescence process to the energy contour lines of
Fig. 2(a). Indeed, the effect of the potential energy competes with thermal fluctuations and viscous
friction. Remarkably, in absence of random forces, the strong nonlinear effects of the diffusion
tensor lead to the film to perform a decrease in thickness during approach and an increase as droplets
separate, as it is shown in the Appendix. Therefore, the main role of the random fluctuations is to
modulate the nonlinear variations observed in the thickness evolution and constrain the film to move
within the boundaries limitated by the potential forces.

Figures 2(c)–2(f) depict the values of both axial and radial film velocity in r and h. As it is
observed, as r decreases Vr accesses a wider number of values until it reaches more defined and
delimited values dictated by the potential energy prior to coalescence. In this sense, this final
configuration acts on the film as an attractor. Vh slightly depends on r for low and intermediate
values, and the stronger effect is observed at the larger r values due to the high friction offered by
this configuration. Both the radial and axial velocities are able to range over more values as the
film thins by a combined effect of the tendency of the system to reach a favorable configuration and
an increase of viscous friction, respectively. In other words, unlike large films, nanofilms execute a
stochastic exploration of different possible configurations delimited by the interaction potential and
governed by friction and thermal disturbances. In that sense, it is useful to quantify the separated
contribution of the viscous and potential forces present in the nanofilm.

B. Viscous and potential forces

The average individual magnitude of the forces derived from the energy potential 〈Fp〉 and the
h-component of viscous friction 〈Ff h〉 are compared in Fig. 3. As the film thins both forces increase
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FIG. 3. Potential force during the approaching of two deformed droplets with the average distance 〈h〉. We
use the symbols in brackets for the forces to represent their values estimated from the average values of r and
h. Initial configurations of the film are h0 = 20 nm and r0 = 10 nm (red), 20 nm (blue), 40 nm (green), 50
nm (brown), and 60 nm (orange). The inset shows the average hydrodynamic friction Ff in the h direction,
calculated from Ff = ζ · V. Unlike the potential forces, the dispersion exhibited by Ff h is due to the random
forces expressed through V .

in all cases for different initial film configuration. However, the potential force collapses onto
one curve indicating that it affects evenly during the evolution of the film. Inversely, the average
values of the h component of the friction force are dispersed and increases its magnitude as the
droplets close, contrary to the results given for Fig. 2(e). The latter can also be understood by the
fact that the friction is ruled by the film radius rather than the thickness, being congruent with
the dispersion of the axial velocity observed in Fig. 1(c). Such a dispersion in the values of the
friction is indicative that the strain response (a measure of the created surface area) of the film
should vary accordingly. The force in the radial axis is two orders of magnitude lower that the axial
component (not shown here) and slightly affects the dynamics. At large separations, the friction
force is dominant (in average) over the potential ones. On the contrary, the magnitudes of 〈Fp〉
and 〈Ff h〉 become comparable as the droplets approaches, leading to coalescence. For large films,
the behavior of the thinning velocity is mainly dictated by the contour conditions to solve the
Navier-Stokes equation leading to single smoothed trajectories [26]. In our case, on the contrary,
the stochastic evolution of the film configurations are limited to move in a well-defined space.

C. Mean-square radial and axial displacements

This far our analysis of the nanofilm is limited to static values. An inspection to the mean-
square displacement (MSD) in both axial and radial directions shown in Figs. 4(a) and 4(b) allows
to identify the impact of the potential energy and friction on the time evolution of the film. The
initial stage of 〈�r2〉(=〈r2〉 − 〈r〉2) is typical of a anomalous diffusion process. Interestingly, after
reaching a maximum, 〈�r2〉 decreases as a consequence of the action of the potential [see Fig. 2(f)].
An even more complex evolution is exhibited by 〈�h2〉 in Fig. 4(b). First, a maximum is reached
at a time around 55 μs followed by the appearance of a minimum at twice that time; after then
a super-diffusive process takes place. Frequently, anomalous diffusion processes are described in
terms of the viscoelastic response and a generalized Stokes-Einstein relation is used to obtain both
the dissipative and the storing components [32]. In the case here observed, the storing is made by
the action of the potential forces on r, as was also observed in the values for the radial velocity in
Figs. 2(c) and 2(e) during the approach. The average behavior of the film thinning represented in the
inset of Fig. 4(b) shows an evolution contrary to that reported for hydrodynamic-influenced systems
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FIG. 4. Mean-square displacements in (a) r and (b) h, for initial values of h0 = 20 nm and r0 10 nm (red),
20 nm (blue), 30 nm (green), 40 nm (black), 50 nm (brown), and 60 nm (orange). Inset (a) average value of
r for the different initial configurations and 10 realizations, and (b) average value of h (colored transparent
curves; the blue envelope curves represent the standard deviation). The curves represented in (c) correspond to
the creeping compliance estimated for all the mentioned cases: the inset represents the estimated values of J
from J (t ) = [A0 − A(t )]/A0/(� − �0 ) (y axis has the same units and magnitudes that the outer curves), while
outer curves in (c) correspond to the Maxwell-Kelvin phenomenological model.

where h reaches a plateau which eventually breaks [33,34]. An interesting fractal model developed
by Karakashev et al. [35] accounts for the changes in the surface heterogeneities and the thinning
velocity is predicted as

Vh = 2h3�P

3ηr2

(
r2δP

16γ h

)(2−β )/(2+β )

, (10)

where β is the fractal dimension of such heterogeneities assumed to lie between 1 and 3. In our case,
that parameter should have physical meaningless negative values to partly reproduce our results.

D. Creeping compliance

It is a common practice to obtain the viscoelastic response G̃ of Brownian systems from
MSD curves. In our case, to obtain that information from the Laplace transformation of the
curves of Figs. 3(a) and 3(b) is disadvantageous, since the application of the method developed
by Mason and Weitz [32] showed inconsistencies in the obtained values. According to them,
G̃ = s

6πa [6kBT/s2〈�r̃2〉 − ms], where m is the mass of the particle and s is the frequency of the
Laplace space (we assumed that the “particle” is the film). Instead, to complement the analysis
of the behavior of the film, the creeping compliance J was estimated and the results are shown in
Fig. 4(c). Creeping compliance allows to probe the internal dynamics of the film as a nonequilibrium
response against dilational stress [36]. This quantity is the ratio between the change in the surface
area A and the applied stress � as

J (t ) = [A0 − A(t )]/A0

(� − �0)
. (11)

In our case, the applied stress is given by the attractive force acting in the axial direction. In the inset
of Fig. 4(c) the evolution of J directly calculated from that definition is shown. It can be noted that
for the different initial values an initial region of increase of J exists until a maximum is reached
and then an abrupt decrease is observed. Now, the initial region can be understood in terms of the
phenomenological model of Maxwell-Kelvin [37]

J = γK (1 − e−t/(γK ηK ) ) + γM + t/ηM, (12)

where ηM,K and γM,K are the viscosity and interfacial tension of Maxwell and Kelvin, respectively.
As known, the first term of this model accounts for the region where the delayed elastic response
takes place, and the second one represents the linear response observed. It can be noticed that the
evaluation of this model plotted in Fig. 4(c) shows that J is larger along the increase of r0, a signature
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TABLE I. Values of γK,M and ηK,M determined via Eq. (12) [see Fig. 4(c)]. The units are in MKS and
h0 in nm.

h0 ηK ηM γK γM

10 0.0144 0.1567 0.0022 0.0004
20 0.0139 0.1511 0.0017 0.0007
30 0.0133 0.1566 0.0015 0.0013
40 0.0119 3.6176 0.0019 0.0022
50 0.0079 ∼1012 0.0021 0.0032
60 0.0043 ∼1012 0.0033 0.0045

of a lower energy requirement for changing the area by the axial stress or, in other words, a lower
effective shear force is needed. In Table I, the values obtained for ηM,K and γM,K for the different
initial h0 demonstrate that the the Kelvin parameters describe more adequately the evolution of
the film since the values for viscosity and interfacial tension are in the order of the values used
(η = 8.91 × 10−4 kg m−1s−1 and γ = mN/m). However, it is also observed that the values of ηK

are slightly larger than the viscosity of water. This is due to the additional repulsive effect of the
film friction and extensional energy.

The observed increase of J is also responsible for the observed behavior of 〈�r2〉: lower J allows
potential forces to dominate over friction, thus reducing the possible configurations visited by r. It
is worthy to mention that experiments regarding the redistribution of stresses in flowing emulsions
have found that the contact zone is directly responsible for local variations of stresses affecting the
overall rheological behavior [12]. Our results indirectly support these findings since small changes
in the film configuration have tremendous impact on the response of the film to the action of external
stresses which facilitates the appearance of heterogeneities in the interdroplet contact throughout
dense moving emulsions.

E. Complexity-entropy plane

The complex dynamics of the thinning process here observed can be quantitatively described by
a complexity C and entropy H plane. Thus, the time series of both r and h are analyzed in terms of
the permutation entropy introduced by Bandt and Pompe [38], which is a symbolic encoding scheme
based on the ordinal relation between the amplitude of neighboring values of a given time series.
In other words, permutation entropy is the Shannon entropy of the distribution of order patterns.
Later, Rosso et al. [39] extended that methodology and introduced a representation space (CH
plane) whose complexity and entropy measures are defined in terms of the probability distribution
P as

C[P] = QJ [P, Pe]HS[P], and HS[P] = S[P]/Smax, (13)

respectively, where S is the Shannon entropy with Smax = S[Pe] = ln N (0 � HS � 1), Pe is the
uniform distribution, QJ is defined in terms of the extensive Jensen-Shannon divergence as

QJ [P; Pe] = Q0S[(P + Pe)/2 − S[P]/2 − S[Pe]/2]. (14)

To analyze the complexity and entropy of this system we use the distribution defined by Bandt and
Pompe [38]. In their work, they take the time series and group the values into vectors of dimension
n and then they classify them according to how their components are ordered according to its
magnitude. For example, for a time series {4, 5, 3, 2, 5, 1}, if you want to perform the analysis
for n = 2, then you must separate the vectors: {4, 5}, {5, 3}, {3, 2}, {2, 5} and {5, 1}, which are
classified according to the rule: if xt < xt+1 then it is said to have order 01, whereas if they fulfill the
inverse relation, xt+1 < xt , then it is of order 10. With this in mind, we have a normalized discrete
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FIG. 5. Dependence of complexity C with permutation entropy H for h (blue), r (red), Vh (orange), and
Vr (green). Black lines represent maximum and minimum complexities, and diamonds represent fractional
Brownian motion obtained by Rosso et al. [39] Entropy and complexity were calculated from the distribution
permutation of dimension 6 for one realization, as proposed by Bandt and Pompe [38]. From it, the Shannon
entropy and complexity were derived. This was applied to the different sets of initial parameters using the
averaged values of ten runs.

distribution P, with values P (01) = 2/5 and P (10) = 3/5, on which we can determine its entropy
using the Shanon’s formula.

In Fig. 5 we have plotted the right-hand region of the CH plane, since it is the region where
it is expected to find the fingerprint of stochastic processes. As it is mentioned in Ref. [39], it is
possible to define a generalized power spectrum to fractional Brownian motion (FMB) as � ∝ | f |−α

with α = H + 1(1 < α < 3), where H is the Hurst parameter. The upper and lower limits of the
complexity-entropy relation are represented in black lines, and in diamonds the values obtained
for FBM for different Hurst parameter values (from right to left from H = 0.1 to H = 0.8).
The indicated value corresponds to H = 0.5, that is, the traditional Brownian motion. The Hurst
coefficient is a measure of the persistence of movement in the system, i.e., for values greater than
0.5 the dynamics will persist in one direction while for values less than 0.5 the dynamics will
alternate between one direction or another, it is why for H = 0.8 is found at small values of entropy
and of greater complexity than the others. Regarding the realizations of h, r, Vh, and Vr , we note
that they are located in the upper region indicating that it has a greater complexity than the FBM
processes, this is due to the presence of the nonlinear potentials and the hydrodynamic interactions.
We also observe that the axial and radial velocities are grouped in a region of less complexity and
higher entropy, this being that when we are in the overdamped regime. Besides, the influence of the
thermal disturbances on the distribution of the permutations is more important, so there is greater
flipping in the process direction than in the case of the variables r and h. Instead, the variables r
and h are in different regions, with h in a region of less entropy, forced inexorably towards smaller
values, indicating that there is a preferred direction of the process. This is why we find h in a region
of less entropy and greater complexity than the FBM process of H = 0.8. On the contrary, r is in
a region of a larger entropy than h since it presents an average growth, less accelerated than the
decline of h.
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IV. CONCLUDING REMARKS

We have used the concepts of configuration and velocity space, permutation entropy and creeping
compliance to analyze the evolution of the flat cylindrical film formed between two coalescing
Brownian emulsion droplets. The following distinguishing properties were discovered:

(1) Both the film configuration and velocities move in a well-delimited space defined by the
combined action of interdroplet interaction and friction driven by thermal disturbances.

(2) The main role of thermal disturbances is to modulate the non linear fluctuations observed
in the thickness evolution and constrain the film to evolve within the boundaries delimited by the
potential forces.

(3) The configurations visited by the film becomes less dispersed as the droplets approach
behaving like a sink (attractor).

(4) The complexity exhibited by the thinning process is larger that the one expected for
Fractional Brownian Motion due to the nonlinear nature of the process.

(5) The mean-square displacement in the axial direction indicates a super-diffusive process; on
the contrary, a sub-diffusive process is observed in the radial direction.

(6) The sensitivity of the creeping compliance to the film configuration could be useful in the
understanding of rheology, jamming, an stability of dense emulsions, since the overall behavior of
the system is representative of small changes in the intervening thin film dynamics as it was shown
here.

Finally, the perspective followed here opens new possibilities in the conceptual framework used
to analyze the evolution and breakup of fluid nanofilms, and to experimentally explore some of
our predictions, specially those in contrast to the known behavior of macroscopic thin liquid films.
In this regard, we propose to perform experiments involving interferometric measurements at the
fluid/fluid film to scrutinize the fast changes dynamics observed in either the optical thickness or
the refractive index of the liquid film [40].
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FIG. 6. Evolution of the film radius r for different electrolyte concentrations (a) 0.01 M, (b) 0.1 M,
(c) 0.2 M, and (d) 0.5 M. (e) Evolution of the film thickness h leading to coalescence (color curves) and to
receding (black curve).
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APPENDIX: FILM EVOLUTION IN ABSENCE OF THERMAL DISTURBANCES

In this Appendix the evolution of the film is shown in absence of random forces, i.e., when the
random terms R and H, in Eqs. (2) and (3) are neglected. In Figs. 6(a)–6(c) the evolution of the
film radius r is shown for different electrolyte concentration from 0.01 to 0.5 M with the rest of the
parameters being the same. The role of electrolytes is to screen the electrostatic repulsion between
the charged droplets. For the lower concentration, the repulsive electrostatic force prevents droplets
coalescence. On the contrary, coalescence was observed for the rest of electrolyte concentrations
as can be observed in Fig. 6(e). Noticeably, the nonlinear behavior which is mainly dictated by the
gradients of the rr component of the diffusion tensor strongly affects the dynamic. In fact, it leads
to a tendency to the film to decrease during thinning but growing during receding. Instead, a soft
trajectory is exhibited by the film thickness, as Fig. 6(e) shows. Even though similar non linear terms
of Eq. (2) appear in Eq. (3), the effects are less dramatic on the dynamics. Needed is to emphasize
that those configurations departing from r � h will lie outside the applicability of the lubrication
limit.
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