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We analyze the near-rolling motion of two-dimensional nonwetting drops down a gently
inclined plane. Inspired by the scaling analysis of Mahadevan and Pomeau [Phys. Fluids
11, 2449 (1999)], we focus upon the limit of small Bond numbers, B � 1, where the drop
shape is nearly circular and the internal flow is approximately a rigid-body rotation except
close to the flat spot at the base of the drop. Our analysis reveals that the leading-order
dissipation is contributed by both the flow in the flat-spot region and the correction to rigid-
body rotation in the remaining liquid domain. The resulting leading-order approximation
for the drop velocity U is given by μU/γ ∼ α/2B ln 1

B , wherein μ is the liquid viscosity,
γ the interfacial tension, and α the inclination angle.
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I. INTRODUCTION

The motion of a liquid drop down a gently tilted nonwetted solid in some cases resembles rigid-
body rolling. For a drop to roll, it must be sufficiently small and the contact angle sufficiently large
such that its shape remains nearly spherical; at the same time, contact-angle hysteresis must be
sufficiently weak so that the drop does not stick to the solid. Mahadevan and Pomeau [1] identified
the scaling law for steady rolling of a drop showing, counterintuitively, that its speed is inversely
proportional to its size. Using superhydrophobic surfaces [2], this surprising prediction has been
confirmed experimentally [3–5].

The scaling analysis of Mahadevan and Pomeau [1] exploits the necessary smallness of the drop
relative to the capillary length (small Bond number B). In that limit, and for a small inclination angle
α, the drop shape remains nearly spherical, with only a small “flat spot” in contact with the solid; the
flow is accordingly a rigid-body rotation except in a small region close to the flat spot. By estimating
the viscous dissipation in the latter region and comparing it to the time rate of change of gravitational
potential energy, Mahadevan and Pomeau found the drop velocity (normalized by interfacial tension
over viscosity) to scale as α/B1/2. The above scaling analysis assumes an idealized nonwetting solid,
where the contact angle is precisely 180◦. In that case, the singularity usually arising at a moving
contact line [6] is alleviated [7]. To demonstrate this, Mahadeven and Pomeau [1] supplemented
their scaling arguments with a local two-dimensional corner analysis close to the contact line (on
scales small compared with the flat spot), based on the rationale that two- and three-dimensional
flows share similar features.

The rolling-drop problem presents a rare example of a well-posed moving-contact-line problem.
Nonetheless, we are not aware of any analytical studies attempting to calculate the rolling speed
or describe the liquid flow field. Perhaps the most relevant analytical study is that of Hodges et al.
[8], who considered a set of closely related problems involving both two- and three-dimensional
liquid drops surrounded by another fluid and moving parallel to a solid substrate. As pointed out by
Hodges et al. [8], their models reduce in certain limits to the rolling regime described in Ref. [1].
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Unfortunately, only scaling results were provided in those specific limits; it was argued by Hodges
et al. that, even in two dimensions, a detailed analysis would necessarily entail boundary-integral
calculations over the whole interior of the drop. For later reference, we note that Hodges et al. [8]
give α/B as the two-dimensional equivalent of the Mahadevan-Pomeau velocity scaling.

Our goal is an asymptotic analysis of drops rolling down a gently inclined nonwetting surface.
Due to the complexity of the problem, we elect to start here by considering two-dimensional
drops; this choice is further motivated by the local solution of Mahadevan and Pomeau [1] and
the availability of numerical simulations in two dimensions [9–11]. To this end, we shall adopt an
approach similar to that of Hodges et al. [8], where the flow problem to be solved is obtained by
linearization about the reference static shape of the drop. Both the static shape and the resulting
linearized flow are characterized by a single parameter, the Bond number. We analyze the small-
Bond-number limit pertinent to rolling droplets analytically. To that end, we utilize the method
of matched asymptotic expansions [12], separately analyzing the flat-spot region and drop-scale
region.

II. FORMULATION

A two-dimensional liquid drop (density ρ, viscosity μ) of area πa2 is placed upon a solid plane
which is inclined at an angle α relative to the horizontal. The contact angle is 180◦. Our interest lies
in the drop velocity down the plane, say, U : it is defined as the velocity of a reference system in
which the flow problem is steady.

We employ a dimensionless formation, normalizing length variables by a, stress variables by
γ /a, and velocity variables by γ /μ. The dimensionless drop velocity μU/γ is denoted by ω. If the
drop were rotating as a rigid circle, ω would represent its angular velocity (normalized by γ /μa).
We attach the Cartesian coordinates (x, y) to the comoving reference frame, with the x axis lying
on the plane while the y axis passes through the drop centroid. We additionally employ the (r, θ )
coordinates, defined by

x = r cos θ, y = r sin θ. (2.1)

The body force (normalized by γ /a2) experienced by the liquid is

B(êx sin α − êy cos α) (2.2)

in which B = ρga2/γ is the Bond number.
Dimensional analysis implies that ω is a function of α and B. For gentle slopes, α � 1, where ω

is proportional to α:

ω/α = a function of B. (2.3)

Our goal is to evaluate that function in the limit B � 1.

III. STATIONARY SHAPE

We begin with calculating the stationary shape at α = 0; see Fig. 1. It is symmetric about the
y axis, with a flat spot between two detachment points at (±l, 0), wherein l is a constant to be
determined. Following Rienstra [13] we employ the intrinsic inclination angle φ, in terms of which
n̂ = êx sin φ − êy cos φ is the unit normal pointing outward and t̂ = êx cos φ + êy sin φ is a unit
tangent. The curvature is dφ/ds, where s is the arc length measured from the detachment point
(l, 0).

The distribution of the pressure p is clearly hydrostatic, say, p∗ − By, wherein the flat-spot
pressure p∗ remains to be determined. The Young-Laplace law reads

dφ

ds
= p∗ − By. (3.1)
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FIG. 1. The stationary shape is attained at α = 0. For 0 < α � 1 the flow problem is solved about that
reference shape.

The dependence of φ upon s is determined by this equation, together with the “initial” condition

φ(0) = 0, (3.2)

representing the presumed 180◦ Young angle. When regarded as functions of s, x and y are governed
by the equations

dx

ds
= cos φ,

dy

ds
= sin φ (3.3)

and the “initial” conditions

x(0) = l, y(0) = 0. (3.4)

With no loss of generality we restrict the calculation to x > 0, where 0 < φ < π . It is then
convenient to employ φ as the independent variable, instead of s. Substituting (3.1) into (3.3) then
gives

dx

dφ
= cos φ

p∗ − By
,

dy

dφ
= sin φ

p∗ − By
, (3.5)

where x and y are now understood to be functions of φ. With that slight abuse of notation, the initial
conditions (3.4) remain valid.

Integration of (3.4) and (3.5) provides the shape in terms of the parameters p∗ and l . The constant
p∗ is determined from the area-conservation constraint,∫ π

0
x

dy

dφ
dφ = π

2
, (3.6)

while the detachment location l is determined from the integral force balance,

p∗l = π

2
B. (3.7)

In principle, the above procedure may be employed to evaluate the drop shape for arbitrary values
of B. We focus here upon the limit B � 1. The force balance (3.7) implies l = O(B), whereby we

093602-3



EHUD YARIV AND ORY SCHNITZER

readily find from (3.4)–(3.6) the leading-order approximations

x = sin φ + · · · , (3.8a)

y = 1 − cos φ + · · · (3.8b)

and

p∗ = 1 + · · · , (3.9)

with O(B) corrections. This leading-order approximation simply corresponds to a circular drop.
Substitution of (3.9) into (3.7) yields the leading-order approximation for the size of the flat spot:

l = B
π

2
+ · · · . (3.10)

The above expansions for x and y are understood to describe the drop scale. It is clear from (3.8a)
that x becomes comparable to l for φ = O(B). To describe the stationary shape of the drop in that
flat-spot region, we write φ = B	 and define the stretched coordinates

X = x/B, Y = y/B. (3.11)

Regarding X and Y as functions of 	, we find from (3.5) and (3.9)

dX

d	
= 1 + · · · ,

dY

d	
= B	 + · · · , (3.12)

together with the initial conditions X (0) = π/2 + · · · and Y (0) = 0 [cf. (3.4) and (3.10)]. Thus to
leading order we have the locally parabolic profile

X = (π/2 + 	) + · · · , Y = B
	2

2
+ · · · . (3.13)

IV. FLOW

We now allow for a gentle slope, α � 1. We employ the following linearization:

u = αũ, p = p∗ − By + α p̃, (4.1)

where ũ = êxũ + êyṽ, with the associated linearizations of the drop velocity and rate-of-strain tensor

ω = α ω̃, e = α ẽ. (4.2)

At leading order in α the resulting flow is associated with the stationary shape. It is governed by
the continuity and inhomogeneous Stokes equations [cf. (2.2)],

∇ · ũ = 0, ∇ p̃ = ∇2ũ + Bêx. (4.3)

At y = 0 it satisfies no-slip and impermeability,

ũ = −ω̃êx. (4.4)

At the free surface it satisfies the dynamic shear-free condition,

n̂t̂ : ẽ = 0, (4.5)

as well as kinematic impermeability,

n̂ · ũ = 0. (4.6)

For a given value of B, the preceding problem provides the linearized flow in terms of the drop
velocity ω̃. The latter is determined by the energy balance,

2
∫∫

ẽ : ẽ dx dy = πB ω̃, (4.7)
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where the left-hand side, in which the integration is carried out over the reference drop domain,
represents the integral dissipation rate (per unit length), while the right-hand side represents the rate
of loss of gravitational potential energy (per unit length). Since the dissipation is unaffected by a
Galilean transformation, we may employ the rate-of-strain tensor in the comoving frame.

Three observations are warranted. First, since the flow problem (4.3)–(4.6) is linear and
homogeneous in ω̃, the left-hand side of (4.7) is proportional to ω̃2. Second, the symmetry of the
reference shape about the y axis implies that ũ is an even function of x while ṽ is an odd function
of it. The third observation is that the dynamic pressure p̃ is determined by (4.3)–(4.6) only up to
an additive constant. The unique determination of the pressure requires the use of the normal-stress
boundary condition [see (3.1)] at O(α); at that order, however, the condition is affected by the O(α)
deviations from the reference shape, whose calculation we wish to avoid. Fortunately, the dynamic
pressure distribution is not required in the subsequent analysis.

V. SMALL DROP

For B � 1 the drop is approximately circular. In most of the drop domain the flow is given by
a superposition of the uniform velocity (4.4) and rigid-body rotation. Such a rigid-body motion,
however, is kinematically incompatible with the flat spot about the origin. In what follows we
employ the method of matched asymptotic expansions [12], separately analyzing the flat-spot
region, of O(B) extent, and the drop-scale region, where the flat spot appears as a point singularity.

We begin by determining the scaling, say, χ (B), of the velocity gradients within the flat-spot
region. Because of asymptotic matching, that is also the scaling of the velocity gradients in the
drop-scale region, and whence the scaling of the velocity itself. It follows that the right-hand side
of (4.7) is O(Bχ ). The contribution of the flat-spot region to the left-hand side of (4.7) is clearly
O(B2χ2). Since that contribution is expected to appear at leading order [1], we conclude that χ =
1/B. It is then convenient to define the leading-order drop velocity,

ω̃ = B−1� + · · · . (5.1)

Consider now the drop-scale region. At leading order, the flow there is provided by a rigid-body
motion which is consistent with (5.1):

ũ = B−1�[(y − 1)êx − xêy] + · · · . (5.2)

This solution trivially satisfies Eqs. (4.3) and conditions (4.5) and (4.6).
The flat-spot region is described in terms of the stretched coordinates (3.11) as well as the

corresponding polar coordinates (R, θ ), defined by [cf. (2.1)]

X = R cos θ, Y = R sin θ. (5.3)

In view of (3.10), the detachment points in the XY plane are (±π/2, 0). To obtain the shape of the
free boundary close to these points we invert (3.13) to obtain

Y = B
(X ∓ π/2)2

2
+ · · · for X ≷ π/2. (5.4)

At leading order, then, the flat-spot region is provided by the upper-half of the XY plane; see
Fig. 2.

The O(B−1) velocity gradients imply O(1) velocities in the flat-spot region; condition (4.4) thus
implies a combination of an O(B−1) uniform velocity with an O(1) spatially varying field. We
accordingly write

ũ = −ω̃êx + U, p̃ = B−1P, (5.5)

where the flat-spot fields U = êxU + êyV and P are O(1) functions of X and Y . Note that (i) U
constitutes the fluid velocity in the laboratory reference frame and (ii) ω̃ may also possess an O(1)
term. As that term does not play a role in the subsequent analysis we have omitted it in Eq. (5.1).

093602-5



EHUD YARIV AND ORY SCHNITZER

X

Y

π/2−π/2

η = 0

η = ∞η = −∞

η < 0 η > 0

ξ = 0ξ = 0
ξ = π

FIG. 2. The upper-half XY plane. Also shown are constant-ξ (solid) and constant-η (dashed) arcs.

At leading order, the flat-spot flow is governed by the homogeneous Stokes equations [cf. (4.3)],

∂U

∂X
+ ∂V

∂Y
= 0,

∂P

∂X
= �U,

∂P

∂Y
= �V, (5.6)

wherein � = ∂2/∂X 2 + ∂2/∂Y 2. At Y = 0 it satisfies the impermeability and no-slip conditions for
|X | < π/2 [cf. (4.4)],

V = 0, U = 0, (5.7)

and a shear-free condition for |X | > π/2 [cf. (4.5)],

∂U

∂Y
+ ∂V

∂X
= 0. (5.8)

At large R, it satisfies asymptotic matching with the rigid-body motion (5.2), whereby

U ∼ �Y, V ∼ −�X for R � 1. (5.9)

Last, we need to impose the free-surface kinematic condition (4.6) at Y = 0. This requires some
care, as the large velocity (5.1) necessitates to account for the small parabolic correction (5.4). This
gives the inhomogeneous condition

�(X ∓ π/2) + V = 0 for X ≷ π/2, (5.10)

which is consistent with (5.9). [Since the shear-free condition (4.5) is independent of the O(B−1)
drop velocity, correction (5.4) does not affect (5.8).]

With (5.9) and (5.10) providing the only inhomogeneous conditions, it is evident that U is linear
and homogenous in �, which is the quantity of interest.

VI. STREAMFUNCTION FORMULATION

It is convenient to employ the streamfunction �,

U = �

(
Y + ∂�

∂Y

)
, V = −�

(
X + ∂�

∂X

)
, (6.1)

where we have factored out the dependence upon � and subtracted off the rigid-body rotation
(5.9). It is clear that �, just like U , is an even function of X . Since it is defined to within an
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arbitrary additive constant, we conveniently set it to zero at the detachment points (±π/2, 0). The
streamfunction is governed by (i) the biharmonic equation

�2� = 0; (6.2)

(ii) impermeability and no-slip at the solid surface [cf. (5.7)],

� = (π/2)2 − X 2

2
,

∂�

∂Y
= 0 at Y = 0 for |X | < π/2; (6.3)

(iii) impermeability and shear-free at the free surface [cf. (5.8) and (5.10)],

� = π2

4
− π |X |

2
,

∂2�

∂Y 2
= 0 at Y = 0 for |X | > π/2; (6.4)

and (iv) the requirement of o(R) velocities at large distances [cf. (5.9)],

� = o(R2) for R → ∞. (6.5)

Note that � represents the streamfunction of the excess flow, relative to the rigid-body rotation.
The “total” streamfunction in the laboratory frame is defined as [cf. (6.1)]

U = �
∂�

∂Y
, V = −�

∂�

∂X
. (6.6)

With no loss of generality, we require that it, too, vanishes at the detachment points. We accordingly
find that

� = X 2 + Y 2 − (π/2)2

2
+ �. (6.7)

VII. CALCULATION OF �

The streamfunction �, defined by the boundary-value problem (6.2)–(6.5), is conveniently
calculated using bipolar coordinates (see Fig. 2), defined via the relations [14]

X = (π/2) sinh η

cosh η − cos ξ
, Y = (π/2) sin ξ

cosh η − cos ξ
. (7.1)

The constant-η curves constitute a family of nonintersecting circles of radius (π/2)/| sinh η|,
centered about ((π/2) coth η, 0). In the upper XY plane, the constant-ξ curves constitute a family
of circular arcs of radius (π/2)/ sin ξ , all passing through the limiting points (±π/2, 0). In terms
of these coordinates, the free surface is ξ = 0, the flat spot is ξ = π , and the fluid domain is the
infinite strip −∞ < η < ∞, 0 < ξ < π . The infinity in the upper XY plane corresponds to η → 0
and ξ → 0. In that limit

X ∼ πη

η2 + ξ 2
, Y ∼ πξ

η2 + ξ 2
, (7.2)

whereby R2 ∼ π2/(η2 + ξ 2).
In terms of the bipolar coordinates, the solid-surface conditions (6.3) become

∂�

∂ξ
= 0 at ξ = π, (7.3a)

� = π2

8 cosh2(η/2)
at ξ = π, (7.3b)
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while the free-surface conditions (6.4) read

� = π2

4

(
1 − | sinh η|

cosh η − 1

)
at ξ = 0, (7.4a)

∂

∂ξ

(
1

h2

∂�

∂ξ

)
− ∂

∂η

(
1

h2

∂�

∂η

)
= 0 at ξ = 0, (7.4b)

wherein

h = π/2

cosh η − cos ξ
(7.5)

is the metric coefficient of both ξ and η. The far-field condition (6.5) becomes

� � (ξ 2 + η2)−1 for ξ, η → 0, (7.6)

and symmetry now implies that � is an even function of η.
The standard practice [15] is to seek � in the form∫ ∞

0 f (ξ, s) cos ηs ds

cosh η − cos ξ
, (7.7)

where the symmetry in η is trivially satisfied; the biharmonic equation implies that the kernel f is a
superposition of the products

cosh sξ cos ξ, cosh sξ sin ξ, sinh sξ cos ξ, sinh sξ sin ξ . (7.8)

In the present problem, however, the cosine-transform structure (7.7) is incompatible with the
inhomogeneous condition (7.4a). This is a nonconventional case where a singular eigenfunction
must be introduced [16]. In particular, we attempt a solution where � is a superposition of (7.7) and
the following eigenfunction of the biharmonic equation (singular at ξ = η = 0),

A
cos ξ

cosh η − cos ξ
, (7.9)

where the constant A remains to be determined. With that superposition, it is readily verified that
satisfaction of the homogeneous conditions (7.3a) and (7.4b) necessitates the form [cf. (7.8)]

f (ξ, s) = C(s)[cosh ξs cos ξ − s sinh ξs sin ξ ] + D(s)[sinh ξs cos ξ − s cosh ξs sin ξ ]. (7.10)

The inhomogeneous condition (7.4a) reads∫ ∞

0
C(s) cos ηs ds + A = π2

4
(e−|η| − 1). (7.11)

The only way for the cosine transform to decay at large |η| is to set

A = −π2

4
. (7.12)

Making use of the transform

e−|η| = 2

π

∫ ∞

0

cos ηs

1 + s2
ds, (7.13)

we then obtain C = π/2(1 + s2). Note that
∫ ∞

0 C(s) ds = π2/4, whereby inspection of (7.7) and
(7.9) reveals that the far-field condition (7.6) is satisfied. All that remains to impose is the inho-
mogeneous condition (7.3b), which simply gives f (π, s) = 0, that is, C cosh πs + D sinh πs = 0.
Substitution into (7.10) then furnishes the kernel

f = π [sinh s(π − ξ ) cos ξ + s cosh s(π − ξ ) sin ξ ]

2(1 + s2) sinh πs
. (7.14)
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Since f is an even function of s, the integral appearing in Eq. (7.7) may be extended to the entire
s axis; in the latter integral, cos ηs may be replaced by eiηs [15]. Due to the even dependence upon
η we may assume with no loss of generality that η > 0; the resulting integral may be evaluated
using contour integration. Thus, the integrand in Eq. (7.7) is integrated over a closed contour in the
complex s plane consisting of the real axis and a large-radius semicircle in the half-plane Im s > 0,
on which the magnitude of eiηs is arbitrarily small. With f having simple poles at s = in (n =
1, 2, 3, . . .), we find using the residue theorem

∫ ∞

0
f (ξ, s) cos ηs ds = πe−η

4
(π − ξ + cos ξ sin ξ )

+ π

2

∞∑
n=2

(−)ne−nη

n2 − 1
[n cos n(π − ξ ) sin ξ + cos ξ sin n(π − ξ )]. (7.15)

The series in Eq. (7.15) may actually be summed in closed form. Substituting into (7.7) and making
use of (7.9) with (7.12) eventually gives the (real-valued) expression

� = π

4(cos ξ − cosh η)
{(ξ − π ) cosh η + sin ξ + π cos ξ

+ [π − ξ + i log(1 − e−η−iξ ) − i log(1 − e−η+iξ )] sinh η}. (7.16)

Although (7.16) was derived under the assumption η > 0, it is readily extended to η < 0 based on
the fact that � is even in η.

We note that at large distances, where ξ, η → 0, (7.16) gives

� ∼ − π

2(η2 + ξ 2)
{2ξ + η[π − arg(η + iξ ) + arg(η − iξ )]}. (7.17)

In the Appendix we analyze the behavior of � close to the detachment points, showing that it
reduces there to the local corner solution found by Mahadevan and Pomeau [1].

VIII. DETERMINATION OF �

Substituting (5.1) into the energy balance (4.7) yields, at leading order,
∫∫

ẽ : ẽ dx dy = π�

2
. (8.1)

With its left-hand side being proportional to �2, (8.1) provides the condition for determining �.
With our velocity scaling being predicated upon the estimate of the contribution to the dissipation
from the flat-spot region, it is tempting to infer that the left-hand side of (8.1) is provided by that
contribution, say,

∫∫
E : E dX dY, (8.2)

wherein E is the symmetric part of the gradient of U in the rescaled coordinates (X,Y ) and the
integration is carried out over the upper XY plane. However, the far-field approximation (7.17)
implies that the latter integral diverges logarithmically. Indeed, making use of (5.3) and (7.2) we
find that (7.17) reads

� ∼ −R

2
{2 sin θ + (π − 2θ ) cos θ} for R � 1, (8.3)

093602-9



EHUD YARIV AND ORY SCHNITZER

10-1 100

1.5

2

2.5

3

3.5

4

FIG. 3. Comparison with the numerical results of Wang [9], shown by the squares. The solid line depicts
the logarithmically accurate leading-order approximation, � ∼ −(2 ln B)−1; the dashed line portrays the
algebraically accurate approximation (8.7) in which β is set to −0.4775.

with the resulting dissipation rate E : E being proportional to R−2:

E : E ∼ 2�2

R2
sin2 θ for R � 1. (8.4)

The above logarithmic divergence is the signature of the “intermediate” case in the asymptotic
evaluation of integrals, where the dominant contribution is neither “local” nor “global” [12]. Indeed,
anticipating that the leading-order correction to the rigid-body motion (5.2) is O(1) (see Sec. IX)
and recalling that rigid-body motion does not contribute to the rate-of-strain tensor, we find that
ẽ = O(1) in the drop-scale region. There is then no a priori reason to neglect the contribution from
that region relative to the left-hand side of (8.1).

With that identification, we may readily evaluate the dissipation at a logarithmic leading order.
We employ the “splitting” technique [12], introducing the parameter λ, which we choose to satisfy
B � λ � 1. In terms of that parameter, the left-hand side of (8.1) becomes

⎛
⎝∫∫

r<λ

+
∫∫
r>λ

⎞
⎠ẽ : ẽ dx dy. (8.5)

The first integral in Eq. (8.5) is dominated by the flat-spot region, namely,

∫∫
R<λ/B

E : E dX dY, (8.6)

which, upon substitution of (8.4), gives π�2[ln(λ/B) + O(1)]. Since (8.5) cannot depend upon
the arbitrary parameter λ, the second integral there must cancel out the ln λ term of the flat-spot
contribution. As that integral is contributed at leading order by the drop-scale region, the second
integral in Eq. (8.5) must be of the form π�2[− ln λ + O(1)]. [It cannot depend upon B, which
does not appear in the O(1) problem of the drop-scale region.] Adding both contributions we obtain
π�2[ln(1/B) + β] wherein the constant β is independent of B. Substitution into (8.1) furnishes the
requisite approximation

� ∼ 1

2
(

ln 1
B + β

) . (8.7)
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The corresponding unscaled velocity is [cf. (2.3)]

ω ∼ α

2B
(
ln 1

B + β
) . (8.8)

In Fig. 3 we compare approximation (8.8) with the numerical computations of Wang [9], as
provided by Fig. 3.19 there. In these computations α was set to 10◦. A reasonable agreement is
obtained for β = −0.4775. Note that the smallest Bond number for which Wang [9] provides data
is 0.2.

IX. DISCUSSION

Both the scaling analyses of Mahadevan and Pomeau [1] and that of Hodges et al. [8] are
predicated upon the assumption that viscous dissipation is dominated by the flat-spot region. In
contrast, our analysis shows that for two-dimensional drops dissipation in the flat-spot region is
commensurate with that on the drop scale; the leading-order contribution in fact arises from the
overlap between these two regions. As a consequence, the scaling of the drop speed with B differs
from that suggested by Hodges et al. [8] by a logarithmic factor.

By exploiting the asymptotic overlap between the flat-spot and drop-scale regions, we have
been able to extract the leading-order dissipation, and hence drop speed, from a local solution
to the flow field in the flat-spot region. Since this leading-order approximation incurs a relative
logarithmic error, it is quite crude. Our analysis, however, also provides a superior, algebraically
accurate, approximation for the drop speed, in terms of a single constant β [cf. (8.8)], a pure number
that is independent of B. We have not calculated β, though we have estimated its value based on
extrapolation of numerical data. We note that to rigorously obtain β one would need to consider the
deviation of the linearized drop-scale flow at O(1) from the leading O(B−1) rigid-body rotation.
This deviation is driven by two mechanisms. The first arises from the need to match the O(1)
flat-spot flow, which does not attenuate [cf. (8.3)]. The second is more subtle and has to do with
the interaction between the O(B−1) rigid-body rotation [cf. (5.2)] and the O(B) deviations of the
equilibrium drop boundary from a circle.

Our approximation scheme is based upon the smallness of both B and α. In particular, the
smallness of α has facilitated our linearization scheme, where the leading-order drop shape is
presumably unaffected by the flow. This assumption is tantamount to neglecting dynamic stresses
as compared with the capillary pressure. In the flat-spot region, where the dimensionless velocity
and length scale are O(1) and O(B), respectively, the dimensional dynamic stress is of order αγ /Ba
(modulus the logarithmic dependence upon B). Since the capillary pressure is of order γ /a, we
find from the above a posteriori scrutinization that our scheme is valid provided α � B. It may
appear that the same condition is simply provided from the analysis of the drop-scale region, where
the dimensionless velocity and length scale are O(1/B) and O(1), respectively, while the capillary
pressure scaling remains the same. In that region, however, the leading-order rigid-body motion
does not result in dynamic stresses, and the estimate αγ /Ba is nonrepresentative.

We conclude by revisiting the scaling analysis for three-dimensional drops, in light of the
anomalous scaling predicted herein for two-dimensional drops. In the present dimensionless
notation, the size of the flat-spot region is O(B1/2) [1,8]. Since velocity gradients associated with
the leading rigid-body rotation are O(ω), the leading-order nonuniform flow in the flat-spot region is
O(B1/2ω) and the contribution of the flat-spot region to viscous dissipation is O(ω2B3/2); comparing
the latter estimate to the O(Bαω) power of gravity yields the celebrated Mahadevan-Pomeau scaling,
ω = O(α/B1/2). Does the drop-scale flow contribute under that scaling? As in the two-dimensional
problem, the deviation of the drop boundary from its reference shape (here a sphere) is still O(B);
the interaction of the O(α/B1/2) rigid-body motion with these deviations gives rise to O(αB1/2)
corrections to the rigid-body motion. Since the rate-of-strain tensor of a rigid-body motion trivially
vanishes, it is evident that the drop-scale contribution to dissipation is O(α2B)—subdominant to
the O(α2B1/2) local contribution. Assuming that the excess flow in the flat-spot region (relative
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to the rigid-body motion) decays sufficiently fast, there is then no mechanism by which the
drop-scale flow may enter the dominant dissipation balance. We accordingly expect that a local
flow solution in the flat-spot region, comparable to the two-dimensional one derived in the present
paper, would suffice to obtain a leading-order algebraically accurate approximation consistent with
the Mahadevan-Pomeau scaling law.
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APPENDIX: BEHAVIOR NEAR THE DETACHMENT POINTS

Consider the flow about the detachment point (π/2, 0), corresponding to the limit η � 1. In that
limit (7.16) gives

� = −π2 cos ξ

2
e−η + π2

2

(
1 − 2 cos2 ξ − ξ

π
+ sin 2ξ

2π

)
e−2η + O(e−3η ). (A1)

Now, near that point we obtain from (7.1)

X − π/2 = πe−η cos ξ + πe−2η cos 2ξ + O(e−3η ), (A2a)

Y = πe−η sin ξ + O(e−2η ). (A2b)

In what follows, it is convenient to employ polar coordinates about the detachment point [cf. (5.3)],

X − π/2 = � cos ϑ, Y = � sin ϑ. (A3)

In terms of these coordinates, (A2) give

� = πe−η + O(e−2η ), ϑ = ξ + O(e−η ). (A4)

Consider now the laboratory-frame streamfunction (6.7),

� = � 2

2
+ π

2

(
X − π

2

)
+ �. (A5)

It is readily seen that the second term in Eq. (A5) cancels out with the leading O(e−η ) term of (A1).
[This is the reason for incorporating two successive terms in both (A1) and (A2a).] It follows that
� = O(� 2) near the detachment point, namely,

� = � 2

2

(
1 + sin 2ϑ

2π
− ϑ

π

)
+ O(� 3), (A6)

in agreement with Eq. (15) of Mahadevan and Pomeau [1].
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