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Liquid plug formation in an airway closure model
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The closure of a human lung airway is modeled as an instability of a two-phase flow
in a pipe coated internally with a Newtonian liquid. For a thick enough coating, the
Plateau-Rayleigh instability creates a liquid plug which blocks the airway, halting distal gas
exchange. Owing to a bifrontal plug growth, this airway closure flow induces high stress
levels on the wall, which is the location of airway epithelial cells. A parametric numerical
study is carried out simulating relevant conditions for human lungs, in either ordinary or
pathological situations. Our simulations can represent the physical process from pre- to
postcoalescence phases. Previous studies have been limited to precoalescence only. The
topological change during coalescence induces a high level of stress and stress gradients
on the epithelial cells, which are large enough to damage them, causing sublethal or lethal
responses. We find that postcoalescence wall stresses can be in the range of 300% to 600%
greater than precoalescence values and so introduce an important source of mechanical
perturbation to the cells.

DOI: 10.1103/PhysRevFluids.4.093103

I. INTRODUCTION

Respiratory airways are a branching network of tubular structures coated internally with a liquid
film. As shown in Fig. 1, an infinitesimally small varicose perturbation induces a Plateau-Rayleigh
instability driven by the surface tension at the air-liquid interface. Under certain conditions, the
minimum radial distance from the tube centerline to the interface, Rmin(t ), decreases toward zero
during the instability. We refer to this as the precoalescence phase shown in Fig. 1 for t = t1,
t2 with Rmin(t2) being indicated. If the thickness of the undisturbed liquid film, h, scaled by the
airway radius, a, exceeds a critical value of hc/a, Rmin can reach zero at t = tc, i.e., coalescence.
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FIG. 1. Schematic of the airway closure process. The air-liquid interface is depicted at four instants of
time: for t = t1 the interface is slightly deformed, for t = t2 the deformation has increased because of the
Plateau-Rayleigh instability, for t = tc it coalesces while undergoing a topological change, and for t = t4 the
newly formed liquid plug undergoes a bifrontal growth.

The coalescence leads to a topological change, as shown. This is quickly followed by the
postcoalescence phase forming a liquid plug by means of a bifrontal growth, t4. Because of the
topological change, now the minimum distance to the interface is measured in the axial direction,
Zmin(t ), as shown in Fig. 1 for Zmin(t4). This phenomenon is known as airway closure, and a
plugged airway prevents gas exchange for regions of the lung distal to it. Due to flexibility of the
airways [1,2], a direct consequence of the airway closure may be the collapse of the airway, which
contributes to heterogeneous ventilation [3].

Airway closure is usually associated with surfactant deficiency or dysfunction, accumulation of
liquid from infections or edema, or mucus hypersecretion along the airway. Typical lung diseases
involved include asthma [4], pneumonia [5], bronchiolitis [6], cystic fibrosis [7], chronic obstructive
pulmonary disease (COPD [8]), and acute respiratory distress syndrome (ARDS [9]), just to name
a few. It generally occurs in small airways near the end of expiration. The lung volume at which
closure initiates is called the closing volume, a routine pulmonary function test which varies with
disease, age, and gender [10,11]. For an upright lung in gravity, the lower regions have compressed
airway diameters from the weight of the lung above, so closure tends to occur there initially. It is
therefore expected that, under microgravity conditions, airway closure occurs more homogeneously
posing a potential risk, see [12–14].

For a clean interface in a rigid pipe, the critical film thickness is hc/a ≈ 0.12 [15]. This is the
minimum film thickness, normalized with the airway radius, such that the interfacial instability
induces the airway closure within one breathing cycle. Several studies have investigated models
of the precoalescence closure instability under additional circumstances, including the effects of
surfactant, viscoelasticity, nonaxisymmetry, and wall flexibility. The effects of surfactants have
been experimentally studied in capillary tubes in Refs. [16,17], which pointed out that a surfactant
can increase hc/a and decrease the growth rate, which increases the closure time, tc. Theoretical
and computational models based on lubrication theory [17,18] and full Navier-Stokes equations
[19] also confirm these findings. The Marangoni stresses induced by uneven distribution of
interfacial surfactant concentration oppose the closure flow. Halpern et al. [20], using lubrication
theory, showed that viscoelasticity does not strongly affect the critical film thickness hc/a, and
for hc/a < 0.119 airway closure does not occur within a breathing cycle. On the other hand,
if 14% � h/a � 18%, increasing the Weissenberg number speeds up the growth rate when the
viscoelastic fluid exhibits a shear-thinning behavior. The effect of wall compliance has been studied
in Refs. [18,21]. They showed that the airway wall deforms to narrow the tube and reduce the
radius of curvature for the air-liquid interface, thereby enhancing the instability. Heil et al. [22]
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demonstrated how nonaxisymmetric mechanical and hydrodynamic instabilities may lead to the
formation of a plug at lower hc/a than predicted by the axisymmetric models. Prevention of closure
by oscillating the core fluid axially was explored in Ref. [23], where nonlinear saturation of the
instability is reached with growth during the turnaround phase balanced by decay during the stroke
phase when fluid is deposited back onto the wall, a “reversing butter knife.” These previous studies
form a basis and motivate the present work, which does not only cover the precoalescence, but also
extends to coalescence and postcoalescence phases.

Similar topological changes have been extensively studied for liquid bridges, snapping liquid
columns, and liquid jets [24–26]. Even if much attention has been paid to understand the capillary
instability for freely suspended liquids, remarkably less effort has been spent on interfacial
instabilities of liquid-lined pipes [27–30], where the tube boundaries play a major role. The
pioneering work of Newhouse and Pozrikidis [31] investigated the liquid plug formation in a liquid
lined pipe, when the two fluids involved have the same viscosity. The focus of their study was on the
liquid thread which forms right before coalescence and undergoes capillary instability giving rise
to formation of satellite droplets after the closure event. A thorough investigation about liquid-lined
pipes has recently been conducted by Dietze and Ruyer-Quil [32]. However, the relevance of the
topological change on the wall stresses has almost been ignored, so far. Our study focuses on this
aspect, advancing the understanding of liquid plug formation in coated pipes and paying special
attention to the stresses on the pipe wall during the whole plug formation phenomenon.

Reviews of respiratory airway closure, liquid plug propagation, and rupture appear in
Refs. [14,33–35], and a recent paper of Grotberg [36] points out how mechanical stresses and
strains can cause lung disease or injury. While cell injury and its correlation to fluid stresses have
been explored for plug propagation and rupture, less attention has been paid to similar issues for
airway closure flows; see the epithelial cells in Fig. 1. Our previous experimental and numerical
investigations [37,38] have shown that the stress levels due to the capillary instability are also
important. The numerical results of Ref. [38], limited to precoalescence, agree well with the
experimental data of Bian et al. [37] who also provided measurements for the postcoalescence
phases. In this work, we present a computational study for the entire closure process, from pre- to
postcoalescence. Moreover, the effects of the viscosity of the liquid layer and of surface tension
between liquid and gas have not been thoroughly considered in the previous airway closure models,
even though the viscosity of mucus can range over three orders of magnitude. In this paper we
investigate the effects of liquid viscosity and surface tension for various values of the liquid
layer thicknesses, considering the range of parameters of physiological relevance in the human
respiratory system. We simulate the whole process of plug formation and validate our results using
the experimental data of Ref. [37]. The remainder of the paper is organized as follows: In Sec. II
the formulation of the mathematical model is discussed, and in Sec. III we briefly describe the
numerical approach used in the present study. The results are presented and discussed in Sec. IV,
and finally conclusions are drawn in Sec. V.

II. PROBLEM FORMULATION

The airway closure model employed in this study consists of a cylindrical rigid tube of radius
a and length L, internally coated with a Newtonian liquid film of average thickness h, constant
dynamic viscosity μL, and density ρL. The liquid film is surrounded by a gas of constant dynamic
viscosity μG and density ρG at the core of the pipe as shown in Fig. 2. The surface tension, σ ,
between liquid and gas is assumed to be constant.

The interface between the two immiscible phases is assumed to be perturbed from its average
thickness such that its radial location is initially located at

r = RI = a − h[1 − 0.1 × cos(2πz/L)], (1)

where z and r denote the axial and radial coordinate, respectively.
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FIG. 2. Schematic of the geometry of the airway model: the rigid tube has radius a, length L, is coated by
a liquid film (light blue) of average thickness h and surrounded by a gas core. The interface is initially located
at a distance RI from the axis of the pipe.

Making use of a capillary scaling, i.e., nondimensionalizing length, time, pressure, and velocity
with a, μLa/σ , σ/a, and σ/μL, respectively, the nondimensional equations for a two-phase flow
can be written in the single-field formulation as [39,40]

∂t �̃ + u · ∇�̃ = 0, (2a)

∇ · u = 0, (2b)

La�̃(∂t u + u · ∇u) = −∇p + ∇ · [μ̃(∇u + ∇T u)] + χnδs, (2c)

where u = (ur, uφ, uz ) and p denote the velocity and pressure field, respectively, χ = ∇ · n is the
total local curvature of the interface, n the outward unit normal at the interface, δs is the surface Dirac
δ function, which is nonzero only along the two-phase interface, and �̃ and μ̃ are the variable density
and dynamic viscosity field in the single-field approach, which include the effect of the gas-to-liquid
density and dynamic viscosity ratio (� and μ, respectively), i.e., in the liquid phase (�̃, μ̃) = (1, 1)
whereas in the gas phase (�̃, μ̃) = (�,μ). Hence, the nondimensional numbers resulting from the
momentum equation are the Laplace number La, the gas-to-liquid density ratio �, and the gas-to-
liquid dynamic viscosity ratio μ. Moreover, two additional nondimensional groups are introduced to
characterize the geometry of our configuration: the length-to-radius aspect ratio λ and the rescaled
average film thickness ε. The relevant nondimensional parameters can be summarized as

La = ρLσa

μ2
L

, � = ρG

ρL
, μ = μG

μL
, λ = L

a
, ε = h

a
. (3)

To close the mathematical problem, periodic boundary conditions are used in axial direction, while
no-slip and no-penetration are enforced at the tube wall:

u(z = 0) = u(z = λ), u(r = 1) = 0. (4)

III. NUMERICAL SIMULATIONS

The mathematical problem defined in the previous section is tackled assuming that the film
closure can be modeled as an axisymmetric phenomenon, i.e., ∂φ = 0, uφ = 0. Simulations are
performed using a volume-of-fluid (VOF) method implemented in the open-source code BASILISK

[41]. In this method, a second-order finite volume discretization is adopted in space, and the time
integration is carried out by means of a second-order pressure-correction projection method. A
semi-implicit approach is used, which discretizes the viscous terms implicitly and the convective
terms explicitly using the Bell-Collela-Glaz advection scheme [42]. The single-field model is the
natural setting for applying the volume-of-fluid (VOF) method. VOF belongs to the front-capturing
methodologies and employs a fraction field f (r, z, t ) which equals 1 in the liquid and 0 in the gas
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TABLE I. Grid convergence for La = 100, μ = 0.0015, � = 0.001, λ = 6, ε = 0.25.
The simulations are carried out for a final time t = 1000.

Nr Nz maxt (�pw) maxt (�τw)

11 64 1.2766 0.3627
21 128 1.3887 0.4608
43 256 1.3571 0.5163
86 512 1.3488 0.5204

and ranges between these two values across the liquid-gas interface. Hence, the fraction field is here
intended as the volume fraction of liquid in a given computational cell, and it is used to define the
variable material properties in the single-field approach [43,44]:

�̃[ f (r, z, t )] = f + (1 − f )�, (5a)

μ̃[ f (r, z, t )] = f + (1 − f )μ. (5b)

The fraction field is simply advected by the flow velocity:

∂t f + ∇ · ( f u) = 0. (6)

A piecewise-linear geometrical VOF method [45] is used to solve (6), where the interface is
represented as a piecewise linear function within each computational cell. A staggered approach
is employed to achieve a second-order accuracy in time, as described in Ref. [44]. Once it is
advected, the local unit vector is computed using the Mixed-Youngs-Centered method [46] and
the material properties are set in each phase according to (5). Finally, the surface-tension term,
which appears in the momentum equation of a single-field model, has to be discretized. Inaccurate
discretization of a surface tension term typically results in parasitic currents (see Refs. [40,47]),
a common problem for all one-field approaches including the front-tracking and front-capturing
methods (e.g., phase-field and level sets methods). In the following, the approach of Popinet [44] is
employed, combining a height-function estimator for the interface curvature and a balanced-force
surface-tension discretization. It has been shown that such a combination reduces the parasitic
currents significantly and yields a second-order spatial accuracy for challenging benchmark cases
(see Ref. [44]).

The solution is computed on a staggered grid, where the pressure and the velocity fields are
located at the cell centers and at the cell faces, respectively. The other scalar fields such as volume
fraction and material properties are also located at the cell centers. The computational mesh is a
Cartesian grid designed for capturing the quantities of major interest in our study including the
pressure (pw) and the shear stress (τw) on the tube wall. A grid convergence study is first performed,
and the results are reported in Table I, where Nr and Nz denote the number of grid cells in the radial
and axial directions, respectively. In Table I, �pw = max(pw) − min(pw) and �τw = max(τw) −
min(τw) are the maximum difference in the pressure and the shear stress on the wall, respectively.
All the following simulations are computed considering the finest grid, which consists of 512 cells
in the z and 86 cells in the r direction.

IV. RESULTS AND DISCUSSION

In this study we investigate the effect of three nondimensional groups: the Laplace number La,
the relative film thickness, ε, and the gas-to-liquid dynamic viscosity ratio, μ. The parameters
are chosen to characterize the physical phenomenon for airway closures occurring at the ninth to
tenth branching generations in the adult human lungs. Both normal and pathological conditions
are considered. Simulations are performed to examine the time evolution of the instability and
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determine the associated velocities and the wall stresses. The latter are of major relevance for the
epithelial cells in the modeled biological system.

A. Validation

The airway model we numerically simulate is first validated comparing the computational results
with the experimental measurements of Bian et al. [37], who report an experimental study of a
two-liquid closure instability in a pipe, whose inner radius equals 0.058 cm, lined with 96% glycerol
film (μL = 5.498 poise and ρL = 1.251 g cm−3) of initial average thickness ε = 0.23. The core
fluid is silicone oil yielding μ = 0.01 and � ≈ 0.95.

The surface tension between the two fluids is σ = 30 dyn cm−1. The nondimensional parameters
of interest are La = 0.072, μ = 0.01, � = 0.95, and λ = 9.2. As pointed out by Tai et al. [38], the
closure time is an unreliable validation criterion for numerical models, since it is strongly influenced
by the initial amplitude of the perturbation which cannot be experimentally measured with the
required accuracy. Hence, following Ref. [38], we set the initial disturbance amplitude to 5%ε

[10%ε is used in all the other simulations; see (1)] and carry out our comparison with the bench-top
experiments in Ref. [37]. The experimental results are shifted in time to match the experimental tc
with the numerical tc.

In Fig. 3 the numerical results are compared with the experimental visualizations for the
evolution of the interface during the plug formation process including pre- and postcoalescence
phase. Reconstructing the interface shape by the piecewise-linear geometrical VOF method [45],
and comparing the pre- and postcoalescence instants, we observe very good agreement between the
numerical and experimental results demonstrating the predictive capability of our numerical model.
Due to the experimental limitations, the data comparison is reported only for −1.6 � z � 1.6 where
z = 0 refers to the symmetry plane. It is remarkable to observe that the numerical technique we use
captures the whole closure and plug-formation process, handling the topological change leading to
the liquid plug formation. This aspect constitutes the limitations of lubrication approaches, which
were capable of modeling the closure up to Rmin = min (RI ) = 0.4, or sharp-interface methods such
as the one employed by Tai et al. [38], which were able only to extend the limit to Rmin = 0.1. We
anticipate that a reliable computation of the phases after closure will provide important insights of
the physics of the phenomenon and will demonstrate the physiological relevance of injuries due to
airway closure. However, it is beyond the scope of this paper to investigate the formation of the
liquid plug in the very proximity of the coalescence event. The main focus of our investigation is on
the pre- and postcoalescence phase for |t − tc| > 0.01tc. A further proof that our numerical approach
is well suited to our study is provided in Sec. IV C, where the asymptotic power law predicted in
Ref. [38] as Rmin ∝ (tc − t )γ is confirmed by our numerical results.

An additional validation is provided in Fig. 4, where the flow velocity fields and the streamlines
in the glycerol-oil system are reported. The numerical predictions compare very well, qualitatively
and quantitatively, with the experimental measurements obtained by micro-PIV. Four instantaneous
conditions are experimentally available, for which velocity vectors and streamlines are reported in
Ref. [37], two for the precoalscence [Figs. 4(a) and 4(b)] and two for the postcoalscence [Figs. 4(e)
and 4(f)] phase. Corresponding numerical results are depicted in Figs. 4(c) and 4(d) and 4(g) and
4(h). The same scale for the color bar is employed in all the cases to facilitate a direct comparison.
Before coalescence, the pressure gradient induced by a capillary instability drains the fluid from
the thin film near the pipe wall to the bulge [see, e.g., green arrows in Fig. 4(c)] driving the coated
liquid layer to closure. The maximum velocity is located at the bulge tip, and it is directed in radial
direction. Another local maximum of the velocity magnitude is observed in the thin film right at
the connection between the thin film and the bulge, where the liquid draining produces a strong
axial velocity towards the bulge. A strong radial acceleration is observed between the first two
snapshots. The radially dominated flow field precoalescence turns into an axially dominated flow
field postcoalescence, when the core fluid is pinched off by the annular liquid bulge and the plug
is formed. The largest velocities are observed after the coalescence and further drain the liquid film
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FIG. 3. Comparison of the two-phase distribution at different times: first (a)–(c) and third (g)–(i) rows from
the top are the experimental visualizations reported in Ref. [37] using fluorescent particles, whereas second
(d)–(f) and fourth (j)–(l) rows from the top are our numerical results for the corresponding time relative to the
coalescence event. The annular film is in red, while the core fluid is in black. The nondimensional parameters
of interest are ε = 0.23, La = 0.072, μ = 0.01, � = 0.95, and λ = 9.2 and the closure event is depicted in the
axial range −1.6 � z � 1.6. Time is scaled as in Ref. [37] by μLa/ε3σ . (a)–(f) The precoalescence phase due
to the interfacial instability; (g)–(l) the postcoalescence phase, where a bifrontal plug growth is observed.

lining the pipe wall to supply the newly formed plug with additional liquid. At the same time the
plug advances axially, in a symmetric fashion, compressing the two-fluid interface and leading to
formation of a capillary wave, which is responsible for high stress levels along the pipe wall as will
be discussed in detail later. This process is here addressed as bifrontal plug growth.
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FIG. 4. Velocity vectors (arrows) and streamlines for ε = 0.23, La = 0.072, μ = 0.01, � = 0.95, and
λ = 9.2: first (a)–(b) and third (e)–(f) rows from the top are the micro-PIV measurements of Ref. [37], whereas
second (c)–(d) and fourth (g)–(h) rows from the top are numerical results. Time is scaled by μLa/ε3σ .
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FIG. 5. Temporal evolution of the wall shear stress between −0.8 � z � 0.8: the solid black lines denote
the numerical results for z = ±0.8, the dashed black lines for z = ±0.4, while the dashed-dotted line refers to
z = 0; markers refer to the experimental results of Ref. [37] as indicated in the legend. The two colored dashed
lines denote the closure time (tc) and the numerical limit (ts) of Ref. [38]. In these results the numerical closing
time tc is used as the reference time, and the experimental results are thus shifted in time to match with it,
considering the scaling employed in (2).

The last comparison between experiments and numerics is dedicated to the shear stress along the
pipe wall, τw = −μ̃∂ruz|r=1, where, for the current scaling, μ̃ = 1 in the coating fluid. Figure 5 de-
picts the comparison between our simulations (lines) and the experimental measurements (markers)
at five axial locations along the wall between −0.8 � z � 0.8. As seen, the numerical results are
in good quantitative agreement with the experimental data, which completes the validation of our
numerical model.

Beside the demonstrated accuracy of our simulations, it is important to stress the peculiar feature
of the wall shear stress during the closure process. As can be seen from Fig. 5, the rapid growth
of the shear stress in time, which is associated with the capillary instability, does not experience a
maximum at the closure time, but keeps growing even after coalescence, and reaches the maximum
value at t = tm > tc and then relaxes toward the final equilibrium value. The bifrontal plug growth
actually appears to be the most relevant and critical phase for the wall shear stresses regarding
the epithelial cell damage. This feature can be inferred also by the experimental measurements
and further implies the importance for numerical simulations to be able to handle a topological
change of the liquid film. It is emphasized here that the previous computational predictions were
restricted up to an instant before the closure (t � ts) and thus missed the most important phase of
the physiological significance and could only conservatively estimate the maximum shear stress at
the walls. Moreover, even though the coalescence process was well captured by the experimental
measurements, the limited time resolution prevented the experimental measurements to capture the
sharpest peak of τw, which is well resolved by the numerical simulations as shown in Fig. 5. As
a result, the experiments also tend to underestimate the maximum wall shear stress and the stress-
induced cell damage, as well as all the quantities which experience a very sharp growth. In this case,
the maximum shear stress measured in the experiments is 25% smaller than the numerical peak.

B. Airway closure: Relevant lung airway parameters

After the validation of the numerical method, simulations are performed to examine the airway
closure in the physiological conditions. The radius of an adult lung airway at tenth generation is
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TABLE II. Summary of the 18 cases simulated, with the corresponding nondimen-
sional groups.

λ � μ La ε

6 10−3 1.5 × 10−3 100 0.2, 0.25, 0.3
200

3 × 10−4 4
8

1.5 × 10−4 1
2

approximately a = 0.065 cm (see, e.g., Ref. [48]), and typical length-to-diameter ratios for an air-
way are of the order of 3, i.e., λ = 6. Aiming at modeling airway closure in the ninth to tenth branch-
ing generation, these parameters will be assumed throughout our study. We stress that it is physiolog-
ically relevant to define the parameter range in terms of the dimensional quantities (i.e., ρL, ρG, μL,
μG, σ , R and L) and then derive the corresponding nondimensional groups. In particular, varying μL,
in fact, makes physiological sense since a change of mucus viscosity can be due to a pathology or
to aging, and it has an impact on both the Laplace number (La) and the liquid-to-gas viscosity ratio
(μ), whereas varying μ and keeping La constant does not have any physiological correspondence.

Following Tai et al. [38], we additionally assume that the lining liquid can be modeled as a
Newtonian fluid with the properties resulting from a mixture between mucus and serous layers. The
density of the two fluids is not far from that of water, and excursions in ρL are normally negligible.
The density ratio between air and water at 37 ◦C is � = 1.14 × 10−3, so � = 10−3 is representative
of the gas-to-liquid density ratio characterizing the mucus-serous mixture in the liquid film and
the core fluid made out of air. Therefore, � = 10−3 is employed in all the simulations presented
in this paper. Proceeding with our conceptual homogenization adopted to deal with the mixture of
mucus and serous layer, we must consider that the liquid film is more viscous than water. Following
Ref. [38], we assume that μL = 0.13 poise and take the dynamic viscosity of air at 37 ◦C as μG =
1.89 × 10−4 poise, which yields the gas-to-liquid dynamic viscosity ratio of μ = 1.45 × 10−3. The
serous layer is very watery (μS ≈ μH = 0.01 poise, where the subscripts S and H denote serous
liquid and water, respectively) and the dynamic viscosity of mucus (see e.g., Ref. [49]) is reported
to range over several orders of magnitude, passing from 10 to 10 000 times the reference value for
water depending on age, physiological function, and eventual pathological conditions (i.e., 10μH �
μM � 10 000μH, which corresponds to 0.1 poise � μM � 100 poise, where M refers to mucus).
Hence, the dynamic viscosity ratio (and the Laplace number) is varied in our study taking μL in the
range 0.126 � μL � 1.26, which yields to 1.5 × 10−4 � μ � 1.5 × 10−3.

The last assumption in our airway closure model is related to the surface tension σ between
the liquid film and the air core fluid. During the normal operating conditions, the surfactants
released in the lungs tend to decrease the interfacial surface tension to values much lower than
the surface tension σH = 70 dyn cm−1 at the clean water-air interface, penalizing the Plateau-
Rayleigh instability. Hereinafter we assume that the surface tension is constant, and the value
σ = 26 dyn cm−1 is chosen to represent normal conditions, whereas σ = 52 dyn cm−1 is used to
mimicking surfactant-deficient pathological conditions, which are typically associated to the airway
closure phenomenon. This leads to 1 � La � 200. Therefore, simulations are performed for a total
of six combinations of μ and La values, as summarized in Table II, together with the three initial
film thicknesses, i.e., ε = 0.2, 0.25, and 0.3.

C. Analysis of a typical airway closure scenario

A typical scenario observed during an airway closure is depicted in Fig. 6 characterizing the
coalescence process for La = 200, μ = 1.5 × 10−3, � = 10−3, λ = 6, ε = 0.25 in terms of pressure
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FIG. 6. Pressure field (colors), streamlines (yellow lines) and axial velocity in the liquid phase (arrows)
at two precoalescence [(a) t = 600 and (b) t = 736] and two postcoalescence instants [(c) t = 737 and
(d) t = 800]. The turquoise line denotes the interface location. The phenomenon is symmetric in z.

field (color field), streamlines (yellow lines), interface location (turquoise line), and axial velocity
in the liquid (arrows). In the initial growth phase of the instability, the cross-sectional curvature
of the interface 1/RI expands the flow in the liquid film at the location where the bulge is. This
curvature effect dominates over the in-plane compression due to a thicker liquid film at the bulge,
and the lowest relative pressure is observed at the axial location of the bulge tip [see Fig. 6(a)].
Since the selected initial thickness of the film is greater than the critical thickness ε = 0.12, the
airway closure occurs within a breathing cycle. As observed in the previous subsection, this capillary
instability drains the liquid from the film (see arrows) to supply the bulge up to the liquid plug
formation.

Compared to the early stage in Fig. 6(a), the snapshot taken just prior to coalescence [Fig. 6(b)]
exhibits a qualitative difference in the pressure profile, i.e., the pressure has a minimum at the bulge
tip with a sharp gradient in the radial direction. The increase of maximum shear stress in this phase
is evidently seen in the velocity field (arrows) as the radial derivative of uz experiences a significant
increase between t = 600 [Fig. 6(a)] and t = 736 [Fig. 6(b)]. Consistent with the predictions of
Ref. [38], the streamlines (yellow lines) become more and more elongated in the radial direction
as the perturbation grows. After the coalescence [see Fig. 6(c)], the pressure field has its minimum
at the liquid-gas interface near the centerline of the tube (blue area). The flow is then pushed away
from the plane of symmetry and drains even more liquid from the thin coating film to form the
liquid plug closing the airway. This phase corresponds to the formation of a liquid plug in which
the air-liquid interface advances with its two fronts in opposite directions (bifrontal plug growth;
see, e.g., Ref. [50]). The process occurs in a very short time and is characterized by high axial
accelerations. Such a quick postcoalescence phase is comparable to the receding of two air fingers,
whose fronts are moving in opposite directions. We anticipate that during closure and also shortly
afterwards, the pressure and the shear stress experience a sharp increase which is comparable to
the one observed during propagation of liquid plugs and receding of air fingers. Few instants after
closure, the stresses relax in magnitude down to a stationary state [almost reached at t = 800; see
Fig. 6(d)], which is achieved when the plug stops growing and the pressure field is solely determined
by the equilibrium Laplace pressure across the interface.
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FIG. 7. Bottom panel: Location of the liquid-gas interface at significant instants in time. Top-right panel:
wall shear stress τw and wall pressure gradient ∂z pw depicted with the same color coding of the time legend.
Top-left panel: minimum of the interface radial location Rmin = min (RI ) (solid black line), asymptotic power
laws predicted in Ref. [38] (dashed black line), excursions of wall pressure �pw = max (pw) − min (pw)
and shear stress �τw = max (τw) − min (τw) depicted as solid and dashed lines without markers, maximum
absolute values of wall pressure and wall shear stress gradients, |∂z pw|max and |∂zτw|max, respectively, depicted
by solid and dashed red lines marked with bullets. The nondimensional groups are La = 200, μ = 1.5 × 10−3,
� = 10−3, λ = 6, and ε = 0.25.

One of the main focuses of our study is to determine the mechanical stress level on the pipe
wall and, consequently, on the epithelial cells. Figure 7 correlates these quantities with the time
evolution of the liquid-gas interface shown in the bottom panel. The minimum of the interface
radial location RI is depicted as a solid black line in the top-left panel, and it is used to accurately
identify the closure event and correlate it with the stresses and their gradients at the pipe wall (red
lines). The dashed black lines denote the power-law fits Rmin ∝ (tc − t )1/2 and Rmin ∝ (tc − t )7/40,
which are valid near and far from the coalescence time tc, respectively [38], confirming the expected
asymptotic behavior. These same asymptotic trends hold true throughout the parameter space
considered in our study; moreover, also the stress excursions seem to follow the 7/40-power law far
from the coalescence event. According to Refs. [51,52], severe injuries for the epithelial cells are
caused by the presence of high-pressure gradients, a high level of shear stress and of shear stress
gradient at the airway walls. For these reasons, in Fig. 7 (top-left panel) the excursions of wall
pressure �pw = max (pw) − min (pw) and shear stress �τw = max (τw) − min (τw) are depicted
together with the maximum absolute values of wall pressure and shear stress gradients denoted by
|∂z pw|max and |∂zτw|max, respectively. The axial distribution of wall shear stress and wall pressure
gradient are also plotted in the top-right panel of Fig. 7 to show the areas which are more dangerous
for the epithelial cells.

It is noteworthy to observe that the very sharp peaks in all the relevant wall stress quantities
are correlated with the bifrontal plug growth. To the best of our knowledge, this feature of airway
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closure has been overlooked, so far, in all the previous investigations, which focused on only the
plug rupture process for addressing the epithelial cell damage in human lungs. Here we demonstrate
that the shear stress may reach maxt,z(|τw|) ≈ 0.28 just after the coalescence, which, in dimensional
quantities, corresponds to 224 dyn cm−2, almost three times larger than the estimate in Ref. [38],
which stopped the simulations right before the coalescence. Very similar trends are also observed for
the pressure excursion �pw, which provides a good estimate of the average normal stress gradient
over the pipe wall when it is divided by the pipe aspect ratio λ. As depicted in Fig. 7, �pw has a
peak value of maxt (�pw) ≈ 1.3, which corresponds to the dimensional value 1040 dyn cm−2, with
an average maximum wall pressure gradient of maxt (�pw)/λ ≈ 0.216̄, i.e., 2.6̄ × 103 dyn cm−3.
The estimate becomes much more dramatic for cells injury if we consider the maximum local
pressure gradient maxt,z(|∂z pw|) ≈ 2.2, which corresponds to 2.7 × 104 dyn cm−3 [a factor 10
bigger than maxt (�pw)/λ]. Very severe wall shear stress gradients are also seen in Fig. 7, where
maxt,z(|∂zτw|) ≈ 0.65, i.e., 8 × 103 dyn cm−3. As mentioned in the previous remarks, the highest
peaks of damaging stress levels for the epithelial cells occur during the postcoalescence phase, and
an estimate of them using the precoalescence measurements can only be very conservative. This is
well depicted in the top-left panel of Fig. 7. As seen, |∂z pw|max and �pw at closure are at about half
of their peak values, and |∂zτw|max and �τw do not even make it to one third of their peak values
during the precoalescence phase including the closure time.

An interesting qualitative feature characterizing the wall stresses during the closure process is
the change of shape of the distributions of the pre- and postcoalescence stresses and their gradients.
Tai et al. [38] noticed a certain self-similarity between the shear stresses prior to the closure: This
self-similarity is lost after closure and the smooth s-shape function which well fits τw and ∂z pw

before the coalescence turns into a two-hump function with a point symmetry (see Fig. 7, top-right
panel).

A fine detail of the interface dynamics is that a satellite bubble is trapped inside the liquid plug,
as previously reported by Ref. [31]. A varicose fluid thread is observed before plug coalescence (not
shown). The major differences with the results of Ref. [31] is the thread in our study is very short
in longitudinal length. This quantitative difference is mainly caused by the viscosity ratio μ̃ = 1
employed in Ref. [31], which strongly differs from μ̃ ∈ [1.5 × 10−4, 1.5 × 10−3 used in ours. For
a detailed analysis about the viscous-blocking mechanism in liquid lined pipes, we refer the reader
to Ref. [32].

The last remark is related to the location of the two humps in ∂z pw and τw after the closure. Their
maximum absolute values are located at the minimum film thickness along the pipe wall, which
recedes from the symmetry plane following the motion in the liquid menisci, compressed by the
plug formation.

D. Effect of surface tension σ

The Laplace number is linearly proportional to the surface tension. Thus simulations are
performed for La = 200 and La = 100 to investigate the effects of the surface tension while keeping
the other parameters constant at μ = 1.5 × 10−3, � = 10−3, λ = 6, and ε = 0.25. Qualitatively, the
evolution of the interface and the distribution of the wall pressure gradient and of the wall shear
stress for La = 100 are very similar to the results plotted for La = 200 in Fig. 7. Hence, the results
for La = 100 are not depicted hereinafter.

Considering the creeping-flow limit, i.e., La → 0, the convective terms in the momentum
equation are negligible, and the solution of the nondimensional mathematical model depends only
on �̃, μ̃, ε, and λ. Hence, after selecting the two fluids and fixing the geometry and the initial film
thickness, the solution of the Stokesian flow is unique. This implies that, with the current capillary
scaling, the nondimensional closure time is independent of σ , and therefore the dimensional closure
time is inversely proportional to σ : i.e., doubling σ halves tcμLa/σ . Figure 8 depicts Rmin, the wall
stresses, and their gradients against time for La = 100. The closure event, quantified by means of
Rmin, is slightly delayed, in nondimensional time units, by increasing the surface tension σ . Indeed,
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FIG. 8. Minimum of the interface radial location Rmin = min (RI ) (solid black line), excursions of wall
pressure �pw = max (pw) − min (pw) and shear stress �τw = max (τw) − min (τw) depicted as solid and
dashed lines without markers, and maximum absolute values of wall pressure and wall shear stress gradients,
|∂z pw|max and |∂zτw|max, respectively, depicted by solid and dashed red lines marked with bullets. The
nondimensional groups are La = 100, μ = 1.5 × 10−3, � = 10−3, λ = 6, and ε = 0.25.

for La = 200 the airway closure occurs between t = 736 and t = 737, whereas for La = 100 the
minimum radial coordinate of the interface reaches zero between t = 727 and t = 728. The longer
nondimensional closure time tc produced by an increase of σ is due to an increased inertia which
the flow acquire upon an increase of La. We anticipate that this effect is, however, negligible when
it is compared to the sensitivity of tc to the perturbation amplitude (see Ref. [38]) or to the initial
film thickness ε, as discussed in the following subsections. The increasing inertia due to a higher
Laplace number only delays the nondimensional closure time tc. Still, increasing σ decreases the
dimensional closure time tcμLa/σ . In fact, 736 � tc � 737 obtained for σ = 52 dyn cm−1, i.e.,
La = 200, corresponds to a dimensional closure time tcμLa/σ ≈ 0.116 s, whereas 727 � tc � 728,
referred to La = 100 and σ = 26 dyn cm−1, corresponds to tcμLa/σ ≈ 0.229 s. This consideration
makes clear the subtle counterintuitive closure delay (in nondimensional time units only) due to an
increase of La; i.e., the delay is induced by the fact that σ is used in scaling t .

Extending this analysis to the stress-related quantities, the peak values observed for �pw, �τw

and |∂zτw|max are quantitatively very similar: As the Laplace number decreases from La = 200
to La = 100, the peak values of �pw,�τw, and |∂zτw|max decrease about 0.5%, 5%, and 20%,
respectively. In addition, this weak dependence of �pw,�τw, and |∂zτw|max translates into a
nearly linear growth of their corresponding dimensional values with the surface tension, for in-
stance, if maxt,z(|τw|) ≈ 0.28 for La = 200 (and σ = 52 dyn cm−1) corresponds to 224 dyn cm−2,
maxt,z(|τw|) ≈ 0.27 for La = 100 (and σ = 26 dyn cm−1) corresponds to 108 dyn cm−2. This same
trend is also observed in all other cases investigated in this study (see Table III).

The main qualitative and quantitative difference between La = 100 and La = 200 is seen in
the time evolution of the maximum absolute value of the wall pressure gradient. For La = 200
a pronounced peak is observed (see Fig. 7). This is correlated to the airway closure and quickly
fades out from |∂z p|max ≈ 2.2 to |∂z p|max ≈ 1.8 for then experiencing a relatively slow increase.
As shown in Fig. 7, the bifrontal plug growth induces the propagation of a capillary wave. For
La = 100, the stresses due to the capillary wave overshadow the spikelike contribution induced by
the plug formation, and the compression of the liquid menisci induces a rapid increase in |∂z pw|max

during the plug formation and the maximum pressure gradient keeps growing monotonically in
time during the postcoalescence phase, but with a much slower rate (see Fig. 8). As a result,
decreasing the Laplace number brings to a higher postcoalescence |∂z pw|max, by more than 35%.
The monotonically growing trend of |∂z pw|max is discussed in more detail in Sec. IV G.
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TABLE III. Summary of the closure time, the maximum wall stress excursions and the maximum tangential
wall stress gradients for all the 18 cases simulated in our study.

μ La ε tc maxt (�pw) maxt (�τw) maxt (|∂zτw|max)

1.5 × 10−3 100 0.2 2831 1.369 0.495 0.637
0.25 727 1.297 0.534 0.551
0.3 265 1.339 0.572 0.538

200 0.2 2839 1.357 0.525 0.773
0.25 737 1.303 0.571 0.678
0.3 275 1.341 0.607 0.648

3 × 10−4 4 0.2 2215 1.404 0.385 0.392
0.25 617 1.441 0.425 0.424
0.3 227 1.455 0.426 0.464

8 0.2 2215 1.411 0.380 0.393
0.25 616 1.418 0.438 0.423
0.3 228 1.432 0.408 0.468

1.5 × 10−4 1 0.2 2209 1.371 0.378 0.392
0.25 615 1.449 0.420 0.452
0.3 226 1.471 0.463 0.478

2 0.2 2211 1.297 0.380 0.392
0.25 736 1.347 0.570 0.679
0.3 227 1.463 0.461 0.466

E. Effect of liquid film dynamic viscosity μL

The dynamic viscosity of the liquid phase has a twofold effect on the nondimensional groups:
(1) it affects the Laplace number in a quadratically inverse manner, i.e., La ∝ μ−2

L and (2) it is
inversely proportional to the gas-to-liquid dynamic viscosity ratio, i.e., μ ∝ μ−1

L .
Increasing the liquid dynamic viscosity, for instance, upon an increase of the mucus viscosity,

decreases the Laplace number and the relative importance of viscous forces exerted by the air core
flow on the liquid film, slowing down the airway closure in dimensional time. This phenomenon
is demonstrated in Fig. 9, where the parameters � = 10−3, λ = 6, and ε = 0.25 are kept constant

FIG. 9. The effects of the liquid viscosity. The time evolution of the minimum radius of the interface,
RI, Rmin, is plotted for � = 10−3, λ = 6, ε = 0.25, and La = 1, and μ = 1.5 × 10−4 (solid line), La = 4, and
μ = 3 × 10−4 (dashed line), La = 100, and μ = 1.5 × 10−3 (dashed-dotted line).
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FIG. 10. The effects of the liquid viscosity on the time evolution of the excursion of wall stresses �pw

(higher-amplitude curves) and �τw (lower-amplitude curves) for � = 10−3, λ = 6, ε = 0.25 and La = 1, μ =
1.5 × 10−4 (solid line), La = 4 and μ = 3 × 10−4 (dashed line), La = 100 and μ = 1.5 × 10−3 (dashed-dotted
line).

and three combinations of La and μ are considered: La = 1, μ = 1.5 × 10−4 (solid line), La = 4,
μ = 3 × 10−4 (dashed line), La = 100, μ = 1.5 × 10−3 (dashed-dotted line), which correspond to
μL = 0.126, 0.252, and 1.26 poise in our airway closure model, respectively. The reduction of flow
inertia and relative viscous resistance of air have a dramatic impact on Rmin, especially due to the
Laplace number, which increases by two orders of magnitude if μL decreases by one order. For
removing the dynamic viscosity of the liquid from the time axis, the nondimensional time is scaled
as t/

√
La in Fig. 9. In dimensional quantities, upon an increase of μL, the dimensional closure time

increases from tc = 0.229 s for μL = 0.126 poise to tc = 1.934 s for μL = 1.26 poise. As a result,
increasing the dynamic viscosity of the liquid phase slows down the airway closure process, as also
reported for the Stokes-flow limit in Refs. [31,53].

The effect of the liquid film dynamic viscosity on the excursion of wall stresses is shown in
Fig. 10. As seen, a decrease of μL tends to decrease the excursion in normal stress �pw and to
increase and sharpen the one in shear stress �τw at the wall. The same trend is observed for |∂z pw|max

and |∂zτw|max, which slightly grow upon a decrease of μL (not shown).
The wiggles observed in the results are of numerical origin. They are due to the very quick

dynamics of the pre- and postcoalescence phases, to the presence of a pressure jump across the
interface, and to the challenging viscosity ratios tackled in this study. Analogous computational fea-
tures are also reported by other numerical studies when similar flow configurations are considered;
see e.g., Refs. [54,55].

F. Effect of the film thickness ε

The initial thickness of the liquid film has a major impact on the airway closure time. This has
been demonstrated by Refs. [37,38] in previous investigations and is confirmed here for ε = 0.2,
0.25, and 0.3, as shown in Fig. 11 (black lines). Our main focus is, however, on the effects of ε on
the stress level at the airway wall.

Figure 11 reports (in red lines) the excursions of wall pressure �pw and shear stress �τw as well
as the maximum absolute values of wall pressure and shear stress gradients, |∂z pw|max and |∂zτw|max,
as a function of time for three initial film thicknesses: ε = 0.2, 0.25, and 0.3. The other parameters
are kept constant at La = 1, μ = 1.5 × 10−3, � = 10−3, and λ = 6.

The peak value and the trend of �pw, �τw, and |∂zτw|max remain almost unchanged when the film
thickness changes; however, the maximum absolute value of the wall pressure gradient |∂z pw|max

experiences a remarkable increase when the initial film thickness ε decreases. This is observed in
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FIG. 11. The effects of the initial liquid film thickness on the minimum radius of the interface Rmin (solid
black line) and excursions of wall pressure �p = max (pw) − min (pw) and shear stress �τ = max (τw) −
min (τw) depicted as solid and dashed lines without markers, and the maximum absolute values of wall pressure
and shear stress gradients, |∂z pw|max and |∂zτw|max, respectively, depicted by solid and dashed red lines marked
with bullets. The nondimensional groups in common are La = 1, μ = 1.5 × 10−3, � = 10−3, and λ = 6; the
three sets of curves refer to ε = 0.2, 0.25, and 0.3.

all our simulations. The wall pressure gradient |∂z pw|max is related to the local variation of film
thickness, which is produced by the compression of the liquid menisci due to the bifrontal plug
growth. A lower initial film thickness ε produces thinner menisci right beyond the plug, which
explains why |∂z pw|max increases when ε decreases.

G. Effect of the postcoalescence dynamics on the wall pressure gradient

Figure 8 has shown that the maximum wall pressure gradient |∂z pw|max can experience a
monotonically growing trend in time, qualitatively different from the one reported in Fig. 7. The
formation of the liquid plug, its bifrontal growth, the consequent compression of the liquid film on
the pipe wall, and the propagation of the capillary wave are responsible for this effect. Figure 12
depicts the time evolution of minimum radial (Rmin, black solid line) and axial coordinate of the
interface (Zmin, black solid line with bullets), the minimum film thickness [1 − max(RI ), turquoise
solid line] and its axial location for z < 3 (Zmt, turquoise solid line with bullets), and the maximum
wall pressure gradient for La = 1, μ = 1.5 × 10−3, � = 10−3, λ = 6, and ε = 0.25. After the
closure event, the bifrontal plug growth, shown by the growing trend of Zmin, forms a capillary
wave on the shoulder of each of the two interface fronts. These waves compress the liquid film
against the airway wall [see 1 − max (RI )] and slowly propagate symmetrically in axial direction
(see the negative trend of Zmt in the postcoalescence phase). The correlation between the monotonic
growing trend of |∂z pw|max, the liquid plug, and the thin film dynamics is evident from Fig. 12.

H. Comparison of maximum wall stresses and closure times

The maximum of the wall stress excursions maxt (�pw) and maxt (�τw) and the maximum wall
shear stress gradient maxt (|∂zτw|max) are reported in Table III, together with the closure time tc for all
the parameters investigated in this study. The qualitative trends reported in the previous sections for
the wall stresses and their gradients are found to persist in all the simulations. The nondimensional
closure time is remarkably affected by the initial film thickness and experiences significant
variations upon a change of μL. The maximum of the wall pressure excursion is almost insensitive
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FIG. 12. The time evolutions of the minimum radius of the interface, Rmin (black line), the minimum axial
distance between the fronts, Zmin (black line with bullets), the minimum film thickness, 1 − max (RI ) (turquoise
solid line), its axial location for z < 3, Zmt (turquoise solid line with bullets), and the maximum wall pressure
gradient |∂z pw|max. The nondimensional groups are La = 1, μ = 1.5 × 10−3, � = 10−3, λ = 6, and ε = 0.25.

to all the parameters investigated in this study, being always within 1.3 � maxt (�pw) � 1.48. A
more relevant effect of ε, μL, and σ is reported in Table III for maxt (�τw) and maxt (|∂zτw|max),
which are characterized by a monotonic trend in ε when the Laplace number is high enough.

V. CONCLUSIONS

The capillary instability of a liquid-lined tube has been studied to model the airway closure in
human lungs. When the size of the airway diameter becomes very small, e.g., at ninth or tenth
branching generation, the dynamics of the thin liquid film lining the airway is dominated by surface
tension forces and, when the initial liquid film thickness exceeds a critical value, it may undergo a
Plateau-Rayleigh instability which closes the airway within one breathing cycle. This gives rise to
a liquid plug.

In our study we are able to address the entire closure process, expanding beyond the limitations
of the previous investigations. We carry out a numerical study based on the discretization of the
Navier-Stokes system by means of finite volume method (FVM) coupled with a volume of fluid
(VOF) method to simulate both liquid and gaseous phases.

Following the conceptual approach of Tai et al. [38], the annular film which coats the pipe
walls is modeled as a Newtonian fluid whose properties are derived by a homogenization process
which involves the multilayer liquid formed by mucus and serous. A validation of our simulations
has demonstrated excellent agreement with the experimental results of Bian et al. [37], in terms
of wall stresses, flow velocities, and tracking of the liquid-gas interface. Both the pre- and
the postcoalescence phase have been well reproduced. The radial velocities at the bulge tip
dominate before closure, whereas the axial velocity components overshadow the radial motion after
coalescence, leading to a quick plug formation and a very quick compression of the menisci on
the pipe wall. This is what we termed bifrontal plug growth. Indeed, the postcoalescence phase
is conceptually similar to the receding of two air fingers, but even though the receding of an air
finger has been extensively studied in literature, the significance of our study results from being
able to simulate the entire closure process including the sharp topological change observed after the
coalescence. In fact, the shear stresses experiences a postcoalescence peak directly correlated to the
bifrontal plug growth.
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Being confident of the rigorous validation of our simulations against the experimental data, our
investigation sheds significant light on the process, with a major focus on the effect of surface
tension, liquid flow viscosity, and film thickness on the stresses and their gradients over the airway
wall. A batch of 18 simulations is performed to investigate typical conditions of airway closure oc-
curring at the ninth or tenth generation in adult human lungs. Epithelial cells cover the airway wall,
and they normally have a characteristic length of 40 μm. Their injury is therefore induced primarily
by shear stress and gradients of normal and tangential stresses along the pipe wall. Quantifying the
stress level over the airway wall is the main concern of our study, which proved that the high stress
level resulting from the closure of the airway induces serious deformations of the epithelial cells
with a consequent damage which has, most likely, a lethal effect for the cells. This scenario has been
speculated upon in Ref. [38] for a single set of parameters and three initial film thicknesses, but the
quantification of the actual stress level on cells during the whole pre- and postcoalescence process
has never been reported before to our knowledge. With our study we demonstrate that wall normal
and tangential stresses on the cells, together with their gradients, reach values of maxt,z(|τw|) ≈
250 dyn cm−2 (300%–600% of the precoalescence values), maxt,z(|∂z pw|) ≈ 4.50 × 104 dyn cm−3

and maxt,z(|∂zτw|) ≈ 8 × 103 dyn cm−3 for parameters of typical interest in airways for adult lungs,
i.e., La = 200, μ = 1.5 × 10−3, � = 10−3, λ = 6, and ε = 0.20. These levels of stress are much
higher than what required for severely damaging the epithelial cells; indeed, according to the
experimental results of Bilek et al. [51], the cell damage occurs if maxt,z(|τw|) > 12.9 dyn cm−2,
maxt,z(|∂zτw|) > 2.1 × 103 dyn cm−3, and maxt,z(|∂z pw|) > 3.21 × 104 dyn cm−3. Moreover, an
additional confirmation of the lethal effect that wall stresses might have on epithelial cells is reported
in Huh et al. [52], where it is stated that a dangerous condition for the cells occurs when the shear
stress crosses the values of maxt,z(|τw|) > 98.58 dyn cm−2. This dangerous threshold is less than
half of the peak value of the tangential stresses predicted in our airway closure model. Comparing
with the experimentally estimated damaging conditions, Tai et al. [38] concluded that the level of
shear stress in the precoalescence process might be large enough to damage the cells, but pressure
and gradients are smaller than the experimentally determined threshold values. With our simulations
we proved that the peaks in wall stresses and their gradients occur in the postcoalescence phase, and
they are far beyond the damaging thresholds experimentally established. Table III reports a detailed
quantification of the level of stress in all the 18 cases we simulated.

The effect of surface tension, liquid dynamic viscosity and initial thickness of the liquid film has
been investigated for the parameters listed in Table II. Under the creeping-flow limit, a change in
surface tension is inversely proportional to the dimensional closure time and, in our scaling, has
no influence on the nondimensional closure time since we employ σ to scale t . However, when
inertial terms are taken into account in the momentum equation, increasing the surface tension
linearly increases the Laplace number and, consequently, the inertia of the flow. Still, in dimensional
quantities, an increase of σ implies a quicker closure. However, in nondimensional time units, the
closure of the airway is postponed, proving that the dependence of tc on σ is slightly sublinear. The
major effect of σ is observed for the nondimensional wall pressure gradient, which may experience
a qualitative change and, in general, tends to monotonically grow if the Laplace number is small
enough.

If instead of changing the surface tension, one considers a different dynamic viscosity of the
lining liquid, the effect on the nondimensional groups which control the flow is quadratically
observed in La and linearly in the gas-to-liquid viscosity ratio μ. The decrease of one order of
magnitude in μL produces a strong increase of inertia and of relative viscous forces from the air
phase. In nondimensional terms, a delay of the closure event is then observed, associated with an
increase of wall shear stresses and stress gradients, whereas the excursion of the normal stresses
along the walls �pw tends to decrease. Still, in dimensional terms, increasing the liquid viscosity
postpones the airway closure.

Finally, an increase of the initial film thickness ε, speeds up the formation of a liquid plug, as
predicted in Refs. [37,38]. Moreover, even if tangential and normal wall stresses, as well as shear
stress gradients, are more or less insensitive to ε, the initial film thickness has a strong influence on
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FIG. 13. Normalized wall shear stress τ̃w = τw/ max (τw) at t = ts against the normalized coordinate
η = z/zτw,max . The present results (solid line) are compared to the results in Ref. [38] (dashed line).

the wall pressure gradient which increases dramatically when ε decreases. This is a notable feature
of the bifrontal plug growth reported in our study.
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APPENDIX

Besides the comparison with the experimental measurements, two additional validation tests are
carried out. We first validate our solver comparing its results with the ones reported in Ref. [38].
Figure 13 depicts the normalized wall shear stress τ̃w = τw/ max (τw) right before closure at t = ts
against the normalized coordinate η = z/zτw,max . The dashed line refers to the results of Fig. 9(b) in
Ref. [38], whereas the solid line depicts our results. The two curves compare very well.

To further validate the numerical solver, we compare it with the finite-difference front-tracking
code employed in Ref. [55] using the same computational grid. Figure 14 compares their results

FIG. 14. Minimum of the interface radial location Rmin = min (RI ), excursions of wall pressure �pw =
max (pw) − min (pw) and shear stress �τw = max (τw) − min (τw) computed with BASILISK (lines) and with
the numerical solver of Ref. [55] (markers). The nondimensional groups are La = 100, λ = 6, and ε = 0.25.
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in terms of Rmin, �pw, and �τw for La = 100, λ = 6, and ε = 0.25. The closure time predicted
by BASILISK is tFV/VOF

c = 727, whereas the solver of Ref. [55] computes tFD/FT
c = 745, resulting in a

relative deviation of about 2%. This deviation is well explained by the different viscosity and density
ratio employed when simulating the airway closure with the code of Ref. [55]. Owing to numerical
limitations, μ = 1/50 and � = 1/100 are employed in the finite-difference or front-tracking code,
which led to a slightly slower airway closure. Hence, to ease the comparison for Rmin, �pw and �τw,
the results of the finite-difference or front-tracking method are shifted in time of �t = tFV/VOF

c −
tFD/FT
c = −18. The agreement between the two sets of results is very good. Since BASILISK (lines)

employs a finite-volume or volume-of-fluid method, whereas the code of Ref. [55] (markers) uses
a finite-difference or front-tracking method, we conclude that the results discussed in our study can
be considered independent of the numerical methodology used to compute them.
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