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We analyze a large-eddy simulation data set of wakes of a towed sphere of diameter
D at speed U in a uniformly stratified Boussinesq fluid with buoyancy frequency N and
kinematic viscosity ν. These temporally evolving wakes are simulated using a spectral mul-
tidomain penalty-method-based incompressible Navier-Stokes solver for Fr ≡ 2U/ND ∈
{4, 16, 64} and Re ≡ UD/ν ∈ {5 × 103, 105, 4 × 105}, enabling a systematic examination
of stratified wakes at three different values of Re sufficiently separated in magnitude. As
such, particular attention is paid to the effects of varying Re on the evolution of large-scale
characteristics of stratified wake turbulence. We examine the evolution of horizontal and
vertical integral length scales (�h and �v), horizontal and vertical fluctuation velocities (U
and W), local vertical shear, as well as the resulting dimensionless parameters based on
the above quantities. In particular, the vertical turbulent Froude number Fr�v ≡ 2πU/N�v

is found to be of order unity, a signature of the dynamics in the strongly stratified regime
where shear instabilities develop between anisotropic flow layers. The horizontal turbulent
Reynolds number Reh ≡ U�h/ν stays approximately constant in time and the horizontal
turbulent Froude number Frh ≡ U/N�h decays in time as (Nt )−1, consistent with scaling
analysis of freely decaying turbulence. We characterize the transitions between distinct
stratified flow regimes and examine the effects of body-based parameters Re and Fr on
these transitions. The transition from the weakly to the strongly stratified regime, which
is marked by Fr�v decaying to unity, occurs when Frh � O(0.01). We further show that the
initial value of Reh at which the flow completes the above transition scales as Re Fr−2/3,
which provides a way to predict the possibility of accessing the strongly stratified regime
for a wake of given Re and Fr. The analysis reported here constitutes an attempt to obtain
the predictive capability of stratified wake turbulence in terms of Reynolds number Re,
applying select elements of strongly stratified turbulence theory, so far typically utilized
for homogeneous turbulence, to a canonical inhomogeneous turbulent free-shear flow.

DOI: 10.1103/PhysRevFluids.4.084802

I. INTRODUCTION

The stratified turbulent wake is a frequently occurring free-shear flow in a number of geophysical
and ocean engineering configurations [1]. The wake of a towed sphere is a canonical configuration
which has been used to investigate stratified wakes in numerous laboratory (e.g., [2–7]) and
numerical (e.g., [8–15]) studies. A stratified turbulent towed-sphere wake is, by design, spatially
inhomogeneous in the span-vertical plane and temporally nonstationary in a fixed laboratory refer-
ence frame where the flow follows a distinct life cycle. Motivated by the evolution of the centerline
mean axial velocity U0 with respect to the dimensionless time Nt , where N ≡ √

(−g/ρ0)(dρ/dz)
is the buoyancy frequency, Spedding [5] divided the wake life cycle into three regimes: (i) a
three-dimensional regime for Nt ∈ [0, 2] where U0 ∝ t−2/3, (ii) a nonequilibrium (NEQ) regime for
Nt ∈ [2, 50] where U0 ∝ t−1/4, and (iii) a quasi-two-dimensional regime for Nt ∈ [50,∞) where
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U0 ∝ t−0.76. Such a flow regime classification focuses primarily on mean-flow metrics, and it is not
clear if a regime classification can be drawn based upon the characteristics of wake turbulence, a
question that motivates the present study.

Another significant aspect of Spedding’s wake regime classification is, on account of the inherent
physical space limitations of the laboratory, the absence of any systematic investigation of the
dependence of wake physics on the wake’s body-based Reynolds number Re ≡ UD/ν, where D is
the sphere diameter, U is the tow speed, and ν is the kinematic viscosity. Instead, Spedding focused
on the effects of Fr ≡ 2U/ND, the body-based Froude number. In contrast to the experiments of
Spedding [5], numerical simulations by Diamessis et al. [10] at Re = 105, a value that is one order
of magnitude larger than those obtained in the laboratory, did show qualitative differences in the flow
evolution, such as a significant prolongation of the duration of the NEQ regime in higher-Re wakes,
due primarily to the emergence of secondary shear instabilities within the large-scale pancake
vortices. The effects of varying Re in wakes have also been seen in terms of the internal waves
emitted by the wake turbulence [16–18] and the properties of the turbulent-nonturbulent interface
[19]. A recent numerical data set [20] brings into play an additional, sufficiently removed data point
for Reynolds number at Re = 4 × 105. As such it enables a systematic investigation of the effects of
Re on stratified wake turbulence which is presented in this paper, potentially providing insights into
the structural and dynamical aspects of this canonical turbulent shear flow at geophysically relevant
Re values [1].

Motivated by the scaling argument originally developed by Riley et al. [21] and Lilly [22] and
later improved by Billant and Chomaz [23], Brethouwer et al. [24] proposed a regime classification
for stratified flows, based entirely on the characteristics of turbulence (rather than mean flows as in
Spedding’s wake classification), a theory we briefly review in Sec. II. Presumably due to the ease of
numerical implementation, most pioneering computational studies of the various regimes have been
conducted in a triply periodic, homogeneous turbulence configuration (e.g., [25–27]), constituting
a remarkable series of investigations which laid the foundation for a robust theoretical framework
for classifying stratified flows into various flow regimes based upon the relevance of stratification
and/or viscosity to the flow dynamics. Stratified wakes, which are representative of a canonical type
of localized free-shear flow, provide a unique platform to extend the above theoretical framework
which so far has been typically utilized to interpret homogeneous turbulence to an inhomogeneous
turbulent flow configuration.

In this paper we investigate the stratified turbulence characteristics in wakes of a towed sphere.
Specifically, we focus on the effects of Reynolds number on the characteristics of the large-scale
wake turbulence, e.g., how the structure of the coherent pancake vortices can be altered at larger Re,
as the energy-containing scales become less affected by viscosity, as well as how the self-selection
of vertical integral scale vary with Re and the associated implication for the longevity of turbulence
[10]. As will be shown, a distinct strongly stratified regime can exist in wakes for a specific range of
body-based wake parameters, and accessing this specific regime can in fact have a significant impact
on the evolution of wake turbulence. The main objectives of the paper are thus (i) to examine the
flow structure and temporal evolution of the large-scale turbulent characteristics, such as integral
lengths and velocity scales, and in particular how they may vary with Re and (ii) to investigate the
dynamics and predict the accessibility of the strongly stratified regime in the specific context of
stratified turbulent wakes, i.e., in terms of a wake’s body-based Reynolds and Froude numbers, i.e.,
Re and Fr.

To address these questions, we organize the remainder of the paper as follows. In Sec. II we
provide a brief review of the relevant scaling arguments and apply it specifically to the context of
stratified wake turbulence. In Sec. III the wake configuration under investigation is described and the
numerical data set is introduced. In Sec. IV we present qualitative features of the wake turbulence,
highlighting the Reynolds-number effects on coherent vortical structures. In Sec. V we describe the
time evolution of various characteristics of turbulence, such as length scales, fluctuation velocities,
and local vertical shear, followed by Sec. VI, where the relevant dimensionless parameters are
discussed, with a focus on the trajectories followed by stratified wake turbulence in an appropriately
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defined phase space which sheds light on the flow regime progression. We continue to discuss in
Sec. VI the accessibility of the strongly stratified regime, quantifying the implications of varying
Re, before we conclude the paper in Sec. VII with a summary of our findings and open questions.

II. SCALING ARGUMENTS FOR STRATIFIED TURBULENCE

A. Strongly stratified regime

Scaling arguments [21–24,28] based on the governing equations of motion have led to the
prediction of a distinct flow regime in a strongly stratified fluid. In this regime, which is often
referred to as strongly stratified turbulence (SST), the effect of stratification is strong, driving highly
anisotropic turbulent structures with a larger horizontal integral scale than the vertical, and viscous
effects are weak, allowing for a broad dynamic range between the energy-containing and the viscous
or dissipative scales to support turbulence. Such a regime is also referred to as layered anisotropic
stratified turbulence (LAST) in recent literature (see, e.g., Sec. II of [29]). An instructive way to
identify the potential presence of the SST (or LAST) regime in any given flow is through a diagram
plotted on the (Reh, Fr−1

h ) phase space proposed by Brethouwer et al. [24] (see their Fig. 18 and
Fig. 1 in the present paper), where Reh and Frh are appropriately defined Reynolds and Froude
numbers to describe horizontal turbulent motions:

Reh ≡ U�h

ν
, Frh ≡ U

N�h
. (1)

Here we interpret U as the horizontal component of characteristic fluctuation velocity and �h is
a horizontal length-scale representative of the large, energy-containing turbulent motions, e.g., an
integral scale. It is then possible to combine Reh and Frh to define a buoyancy Reynolds number

R ≡ RehFr2
h = U3

�h

1

νN2
. (2)

Riley and de Bruyn Kops [26] showed that R can be used to predict the potential for secondary shear
instabilities to emerge in a strongly stratified flow. Brethouwer et al. [24] suggested that R measures
the ratio of the vertical advection and diffusion terms in the horizontal momentum equation, if the
vertical scale �v is set by U/N . By examining the vorticity equation, Davidson [30] (see p. 442
therein) showed that R characterizes the ratio of inertial and viscous forces at the integral scale in a
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FIG. 1. Parameter space [24] based on turbulent horizontal Reynolds and Froude numbers Reh and Frh,
respectively, and the proposed regime classification for stratified flows. Gray dashed lines delineate the
proposed transitional boundaries between adjacent regimes.
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strongly anisotropic flow and R � 1 is required to “ensure that viscous effects are confined to the
small scales.”

The SST regime occurs in the asymptotic limit where the stratification is strong, i.e.,

Frh 	 1. (3)

Furthermore, SST requires that the layered structures at the vertical scale U/N are not affected by
viscosity, i.e.,

R ≡ RehFr2
h � 1. (4)

A classical scaling estimate for the dissipation rate ε exists for nonstratified fluids [31], i.e.,

ε ∼ U3

�h
, (5)

which has also been applied in the context stratified flows (see, e.g., [25,32]) and is revisited in
the remainder of this paper (Appendix B). If Eq. (5) holds, R scales with the ε/νN2 parameter,
which is widely used in the literature (see, e.g., [32]). However, the numerical methodology (see
more details in Sec. III and Appendix B) used to generate the data set examined here, lacking an
explicit subgrid-scale model, does not allow for direct estimates for ε; quantitative discussion of ε

is therefore outside the scope of this paper.
It was hypothesized by Billant and Chomaz [23] that, in the asymptotic limits of Frh → 0, the

flow structure may reorganize in a self-similar way under strong buoyancy effects such that the
vertical length scale �v becomes comparable to U/N , i.e.,

�v ∼ U
N

. (6)

In this case �v is independent of viscosity as the length scale follows the inviscid scaling. Such a
self-adjustment of �v has been observed in numerous simulations of homogeneous turbulence in the
SST regime, both forced (e.g., [24]) and unforced (e.g., [33]). Billant and Chomaz [23] showed that
the potential and kinetic energies of the flow are of the same order if Eq. (6) holds. Lindborg [25]
suggested that a balance of inertia and buoyancy forces would be reached if �v adjusts to match
the scaling in Eq. (6) and thus hypothesized that a forward cascade of energy can exist in a highly
anisotropic, strongly stratified flow. Brethouwer et al. [24] (see Sec. 2.3 therein) formally defined
the SST regime as R � 1 and Frh 	 1, a regime for which Eq. (6) is expected to hold such that the
vertical advection term in the horizontal momentum equation is of the same order as the horizontal
advection terms, and thus the leading dynamics are three dimensional but strongly anisotropic.

On the other hand, when the large-scale motions are strongly affected by viscosity [34], the
vertical length scale �v would adjust in a way such that

�v

�h
∼ Re−1/2

h , (7)

which is instead a viscous scaling that is reminiscent of a laminar boundary layer (see, e.g.,
Sec. 10 of [35]). This viscous scaling applies to flows with R values much smaller than order unity,
i.e., the viscosity-affected stratified flow (or viscous) regime (the triangular region in the upper left
of the diagram shown in Fig. 1). The two distinct scalings for �v , i.e., Eqs. (6) and (7), respectively,
provide an informative tool to distinguish between the strongly stratified regime and the viscous
regime for a given flow. Both scalings will be applied in Sec. V A towards interpreting our stratified
wake data.

As scaling arguments only predict that the SST dynamics are operative in the asymptotic
limit of R � 1, there objectively exists some degree of uncertainty in the threshold value Rc

above which the flow regime can indeed be interpreted as SST. In the context of homogeneous
decaying turbulence, Maffioli and Davidson [33] argued that the transition between the SST and
the viscous regimes exists for R of order unity, i.e., Rc ∼ O(1), which is consistent with the
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empirical observation of Rc ≈ 4 from numerical simulation of the secondary instabilities of the
zigzag instability [36]. More recently, de Bruyn Kops and Riley [37] observed that the value of
Rc ≈ 15 in order to sustain shear instability within the buoyancy-driven shear layers.

In order to stay focused on our primary objective in this paper, i.e., to understand the effect
of wake Reynolds number on the regime progression of stratified wake turbulence, and avoid
the potential confusion caused by the ambiguity in the threshold Rc associated with the strictly
defined SST terminology, we will instead pursue a more broadly oriented discussion, namely, one
considering the regime where R > 1 and Frh 	 1, which will be referred to as the strongly stratified
regime. Note that for the Re = 4 × 105 cases examined here, at earlier times, after the establishment
of a buoyancy-dominated flow, R can assume values as high as approximately 40. As such, viscosity
does not significantly impact the dynamics of the vertical integral scale, at least until R drops to
values closer to unity in these simulations.

In the context of the broader discussion proposed above, the strongly stratified regime is
interpreted as a dynamical state in which the stratification effects are strong as experienced by the
horizontal integral scale (Frh 	 1) and the viscous effects have started to influence but not yet to
dominate the dynamics of the anisotropic flow layers (R > 1); the latter requirement is in contrast
to the strictly defined SST which requires R � 1, i.e., viscous effects are completely negligible at
the vertical scale U/N characteristic of the layered structure. As indicated above, the Re = 4 × 105

wakes considered here may potentially reside in the SST regime, a question which nevertheless
is outside the scope of this paper. Additionally, as will be shown, some vigorous turbulence can
still exist in stratified wakes when R ∼ O(1), albeit in a spatially intermittent fashion, even though
aforementioned scaling arguments suggest that viscosity may have some leading-order effects on
the dynamics at the vertical integral scale.

B. Regime transitions in stratified turbulence

As will be shown, as the wake evolves in time, the stratified flow within the wake may or may
not decay through the strongly stratified regime, depending on the externally specified body-based
Reynolds and Froude numbers of the wake. To elucidate the flow regime progression in different
wakes and examine the Reynolds-number dependence, we are to first define these regime transitions
quantitatively, i.e., the entrance into the strongly stratified regime, as well as the exit from it, both
in the specific context of stratified wakes. In the remainder of the paper, a superscript † will be used
for quantities associated with the entrance to strongly stratified regime and ‡ for the exit from this
regime.

(i) Transition †. As first proposed in Ref. [23], the perhaps most significant feature of a flow
within the strongly stratified regime is the self-selection of a vertical length scale according to
Eq. (6), i.e., when the vertical turbulent Froude number

Frv ≡ U
N�v

(8)

becomes order unity (see, e.g., Sec. 14.2 of Ref. [30]). The simulations of decaying homogeneous
stratified turbulence by Maffioli and Davidson [33], for instance, observe that the value of Frv
asymptotes at approximately 0.34–0.37, and it is argued that Frv ∼ O(1) can be interpreted as a
balance between baroclinic generation and advection terms in the budget for horizontal vorticity
(analogous to ωy in the context of stratified wakes visualized in Fig. 5). The exact value of
Frv characteristic of the strongly stratified regime, however, should be dependent on the specific
definition of quantities such as �v and U . For example, in a flow where mean velocity components
are present, whether to include the mean flows in the calculation of U could obviously affect the
numerical values of Frv (and, for that matter, Reh or R).

An alternative interpretation of the vertical Froude number can be made [21,38,39] in terms
of competing timescales, i.e., the advective timescale of horizontal vortices �h/U and an internal
gravity wave timescale (i.e., period) �h/N��v for a flow structure of characteristic horizontal and
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vertical length scales �h and �v , respectively. The latter timescale �h/N��v can be deduced from the
linear dispersion relation of internal waves, and it is perhaps more appropriate to use the cyclical
frequency N∗ ≡ N/2π instead of the radial frequency N in defining such a wave period. Motivated
by the above timescale arguments, we will define the entrance to the strongly stratified regime as
the time at which the cyclical vertical Froude number Fr�v ≡ U/N��v = 2πFrv assumes the value of
unity, i.e.,

Fr�,†v ≡ 1 = 2πFr†
v. (9)

At this particular time, the advective timescale equals the internal wave period, implying a strong
influence of buoyancy on the large-scale motions. Similar definitions of turbulent Froude number
which include a factor 2π can be found in several studies of homogeneous stratified turbulence
[21,26,37].

(ii) Transition ‡. When no form of forcing is applied to reenergize the flow, as is the case
for stratified wakes, turbulence will inevitably decay due to viscous dissipation, unlike forced
simulations where the turbulent kinetic energy is maintained at an approximately constant level
(see, e.g., [40–42]). As is discussed in Sec. II B, we will define the exit time from the strongly
stratified regime to be when the buoyancy Reynolds number R ≡ RehFr2

h assumes the value of
unity, i.e.,

R‡ ≡ 1. (10)

At this particular time, viscous effects start to have significant impact on the layered structure,
marking an end to the strongly stratified regime as there is insufficient dynamic range to support
any sufficiently energetic turbulence over the entire volume of the flow. Nevertheless, as shown in
Fig. 4(c) and discussed in Sec. IV, the time when R ≈ 1 in a stratified wake flow does not signify the
time when all turbulent motions across the entire wake core are completely controlled by viscosity,
as spatially intermittent turbulent events might still be present within the wake. The latter transition
into a viscously controlled flow, with full suppression of any turbulent fine structure, occurs later in
the wake evolution when (�v/�h)Re1/2

h ≈ 1, as indicated by Eq. (7), in the limit of R 	 1.
In the remainder of the paper, the above definitions will be used to approximate the points

at which the regime transitions occur. Due to the nature of scaling arguments upon which these
regimes are defined, the cutoff values for the regime transitions given in Eqs. (9) and (10)
are chosen, inevitably, on a somewhat ad hoc basis. Readers are thus advised to focus on how
these transitions vary with the control parameters (Re and Fr) across different wakes rather than
on the exact points at which the transitions occur; the latter delineation may simply depend on the
specific definitions of these transitions.

III. SUMMARY OF NUMERICAL SIMULATIONS

In this paper we investigate stably stratified towed-sphere wakes (Fig. 2) which are characterized
by the body-based Reynolds number Re ≡ UD/ν and Froude number Fr ≡ 2U/ND. The angular
buoyancy frequency N is expressed in terms of radians per unit time, a convention that is followed
in this paper. The Prandtl number considered in our simulations is equal to unity, i.e., the molecular
diffusivity of the active scalar equals the kinematic viscosity.

The numerical data set analyzed in this paper is generated through implicit large-eddy simu-
lations (ILESs) using an incompressible Navier-Stokes solver based on a spectral multidomain
penalty method developed by Diamessis et al. [9] invoking the Boussinesq approximation. This
solver employs Fourier discretizations in both horizontal directions x (streamwise) and y (spanwise)
and a Legendre-polynomial-based spectral multidomain scheme in the vertical direction z. Spectral
filtering and a penalty scheme ensure the numerical stability of the simulations without resolving
the full spectrum of turbulent motions. Details on the configuration of the numerical scheme can be
found in Ref. [10]. These towed-sphere wake simulations do not explicitly compute the flow around
the sphere. Instead, the temporally evolving wakes are initialized using a nontrivial scheme of two
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FIG. 2. Computational domain for implicit large-eddy simulation of a temporally evolving, stratified
towed-sphere wake [9,10,16,18,19]. The centerline of the wake is at (y, z) = (0, 0). The effect of the towed
sphere is not computed explicitly by the Navier-Stokes solver but rather introduced as a complex two-stage
turbulent wake initialization procedure [10]. The sphere is assumed to be towed along the x axis, which is the
only statistically homogeneous direction in these simulations. The dimensions of the computational domain in
this schematic are not drawn to scale.

stages of auxiliary simulations (see [10] for a full discussion) to obtain a self-similar approximation
of the near-wake flow field at a downstream distance of 2D from the sphere. Readers can also find a
summary of the initialization scheme in Sec. 2.3 of Ref. [18].

Full information regarding the wake data set is documented in detail by Zhou [20]. Three values
of Re are considered here: 5 × 103, 105, and 4 × 105. For the two lower Re values, simulations are
conducted for Fr = 4, 16, and 64; these simulations have been reported by Zhou and Diamessis [18]
with a focus on the far-field evolution of turbulence-generated internal gravity waves. For the largest
Re considered by Zhou [20], i.e., Re = 4 × 105, the same set of Fr values was initially used to carry
out the simulations. It was unfortunately discovered later that an input error in configuring the wave-
absorbing sponge layer was committed at the initialization stage of the simulation for (Re, Fr) =
(4 × 105, 64), a simulation that is thus excluded from the discussion in this paper. Specifications
of the remaining eight simulations are summarized in Table I. Hereinafter, each simulation will be
labeled as RaFb, where a = Re/103 and b = Fr.

As tabulated in Table I, which summarizes the ILESs performed, the R5 and R100 simulations
are performed in wider and taller domains than the R400 simulations to allow for an investigation
of wake-emitted internal waves in the wake’s far field [18]. The domains for R400 simulations are
made narrower (in y) and shorter (in z) to curb computational cost, as our focus is primarily on the
localized wake turbulence near the wake centerline at (y, z) = (0, 0) (Fig. 2). To facilitate a direct
comparison in terms of the grid resolution across Reynolds numbers, we report in Table I the number
of vertical grid points (N̂z) allocated, in each simulation, within an interval of z/D ∈ [−6, 6], which
corresponds to the full vertical extent of the computational domain for the R400 simulations. The Ly

values reported are the initial domain widths in the spanwise direction at the beginning of each wake
simulation. In response to the growing wake width in time, the y direction is subject to regridding
to provide adequate domain width for the wake to evolve freely without significant interference
with the wake’s periodic images (see implementation details in [10]). The vertical subdomain
distributions (Fig. 3) are adjusted according to Re to ensure adequate resolution of relevant length
scales in the vertical direction. Specifically, the vertical resolution of the R100 and R400 simulations
is comparable to the direct numerical simulations (DNSs) reported by Watanabe et al. [19], who
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TABLE I. Summary of implicit large-eddy simulations at various wake Reynolds and Froude numbers.
Here Lx , Ly, and Lz are the domain dimensions and Nx × Ny × N̂z is the number of grid points; N̂z corresponds
to the number of grid points allocated to the interval z/D ∈ [−6, 6], which corresponds to the full vertical
extent of the computational domain for the R400 simulations.

Index Re Fr Lx × Ly × Lz Nx × Ny × N̂z

R5F4 5 × 103 4 80
3 D × 40D × 15D 256 × 384 × 248

R5F16 5 × 103 16 80
3 D × 40D × 15D 256 × 384 × 248

R5F64 5 × 103 64 80
3 D × 160

3 D × 17D 256 × 512 × 248

R100F4 105 4 80
3 D × 40D × 15D 512 × 768 × 695

R100F16 105 16 80
3 D × 40D × 15D 512 × 768 × 695

R100F64 105 64 80
3 D × 160

3 D × 17D 512 × 1024 × 695

R400F4 4 × 105 4 80
3 D × 40

3 D × 12D 1024 × 512 × 1106

R400F16 4 × 105 16 80
3 D × 40

3 D × 12D 1024 × 512 × 1106

obtained fully resolved flow fields by initializing their simulations by select flow fields taken from
the ILES data set reported here; according to the same DNS data set [19], the horizontal grid spacing
in our ILES is no more than 20 times the Kolmogorov scale. Readers are referred to Appendix A
for further details regarding a detailed description of the numerical configuration with regard to
the adequacy of resolution as the Reynolds number is varied in these simulations. Herein a stratified
towed-sphere wake is investigated numerically at a Re value up to 4 × 105 to examine the wake’s full
life cycle. The computational costs (in terms of CPU hours) associated with these simulations are
O(103) for each R5 simulation, O(104–105) for each R100 simulation, approximately 2.0 × 106 for
R400F4, and 5.0 × 106 for R400F16. Due to the considerably large computational costs, simulation
at even higher Re is presently beyond our capacity.
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FIG. 3. Subdomain distributions for all three Reynolds numbers on the z/D ∈ [−6, 6] interval. The black
horizontal lines delineate subdomain interfaces with the local Gauss-Lobatto-Legendre grid points omitted for
clarity. The total number of grid points for z/D ∈ [−6, 6] is given by N̂z = M(N̂ + 1) + 1, i.e., as reported in
Table I. Here M is the number of subdomains, and N̂ is the order of polynomial approximation.
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FIG. 4. Colormaps of (a)–(c) vertical vorticity ωz(x, y) fields at Nt = 120 sampled at the Oxy horizontal
midplane (z = 0) for simulations R5F4, R100F4, and R400F4, respectively (from left to right) and (d)–(f)
spanwise vorticity ωy(x, z) fields for the same instances sampled at the Oxz vertical midplane (y = 0). The
sphere travels from left to right. The length of the visualization window is (a)–(c) 80

3 D in x and 20D and
(d)–(f) 40

3 D in x and 4D in z. The colorbar limits are (a)–(c) ±0.09(U/D), (d) ±0.15(U/D), and (e) and (f)
±0.6(U/D).

IV. BASIC PHENOMENOLOGY

Initial appreciation of the qualitative effects of varying Re on the characteristics of wake
turbulence can be obtained by examining the vortical structures shown in Fig. 4 at the same time
(Nt = 120) for the same Froude number (Fr = 4) but varying Reynolds number from Re = 5 × 103

to 4 × 105. At this time instant shown, turbulence in all three cases has self-adjusted under the
effects of buoyancy into a highly anisotropic state, i.e., the horizontal turbulence length scale �h

is much larger than its vertical counterpart �v (quantitative information on these length scales is
reported in Sec. V C). As can be seen from the vertical vorticity ωz field shown in Fig. 4(a), the R5F4
wake has progressed well into the quasi-two-dimensional regime [5], where the highly coherent,
quasihorizontal pancake vortices dominate the flow and presumably grow in size through vortex
pairing and viscous diffusion [6]. The vertical transect of ωy for R5F4 in Fig. 4(d) shows rather
diffuse layers of spanwise vorticity ωy (dominated by the vertical gradient of u velocity) without
visible disturbances.

In contrast, for the two higher-Re wakes [Figs. 4(e) and 4(f)], the thickness of the shear layers is
markedly reduced and the magnitude of the vertical shear is enhanced [note that the colorbar limits
are quadrupled in Figs. 4(e) and 4(f) compared to those in Fig. 4(a) to avoid oversaturation of colors].
What appear to be local shear instabilities within the vorticity layers are clearly visible in Figs. 4(e)
and 4(f), in the form of localized patches of disturbances strongly reminiscent of the observations by
Riley and de Bruyn Kops [26] and Diamessis et al. [10]. These secondary disturbances within shear
layers appear to be more space filling for the R400F4 case [Fig. 4(f)] than for R100F4 [Fig. 4(e)].
Consistent with the observations drawn from the ωy field, the degree of coherence and smoothness
exhibited by the ωz field [Figs. 4(a)–4(c)] is significantly reduced as Re increases, to a degree such
that only a hint of the coherent pancake vortices are discernible in the R400F4 wake [Fig. 4(c)].
Instead, the vortical structures are dominated by small-scale turbulent patches that are presumably
driven by the local shear instabilities between the highly anisotropic vorticity layers [Fig. 4(f)]. Note
that these intermittently distributed turbulent patches occur at a time when R ∼ O(1), as discussed
in the next section.

Figure 5 shows representative vertical transects of spanwise vorticity ωy at Fr = 16 for all three
Re values, highlighting the evolution of such structures in time. Similar to the visualizations for
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FIG. 5. Colormaps of spanwise vorticity ωy(x, z) fields at Nt = 40, 80, and 120, respectively (from left to
right) sampled at the Oxz vertical midplane (y = 0) for simulations (a) R5F16, (b) R100F16, and (c) R400F16,
respectively. The length of the visualization window is 40

3 D in x and 4D in z. The colorbar limits are
(a) ±0.09(U/D) and (b) and (c) ±0.36(U/D). The median value of the local gradient Richardson number
Rig,loc at each time instance is marked in the bottom right corner of each panel.

Fr = 4 (see Fig. 4), the vorticity layers in the R5F16 wake [Fig. 5(a)] are free from secondary
disturbances and the magnitude of shear is reduced significantly with time (presumably due to
viscous diffusion), as can be seen from the fading of color contrast with time (same colorbar
limits are used for all times shown in the same panel). The R100F16 and R400F16 wakes exhibit
larger values of local shear than R5F16 [again, the colorbar limits in Figs. 5(b) and 5(c) are
quadrupled with respect to that in Fig. 5(a)]. The magnitude of spanwise vorticity has been reduced
by Nt = 120 for all Re values, but not as significantly for R100F16 and R400F16 as for R5F16.
The secondary disturbances become increasingly sparse for later times, a trend that is accompanied
by increasing values of local gradient Richardson number Rig,loc (see the quantitative discussion
in Sec. V). Here Rig,loc can be interpreted as an indicator of the tendency for shear instabilities to
form within the buoyancy-driven vorticity layers (e.g., as used by Riley and de Bruyn Kops [26]).
The secondary disturbances are still visible in the R400F16 wake at a time as late as Nt = 120, i.e.,
approximately 20 buoyancy periods since the passage of the sphere, whereas the disturbances have
almost completely vanished in the R100F16 wake at the same time. (Readers are referred to Sec.
7.2 of Ref. [20] where more details on the evolution of the vortical structures are reported).

V. STRATIFIED TURBULENCE CHARACTERISTICS

A. Turbulent integral length scales

We first discuss the time evolution of the turbulent length scales since they follow distinct scalings
as the wake turbulence progresses through various flow regimes (see the review in Sec. II). Figure 6
shows the time series of the integral length scales in the vertical and horizontal directions, i.e., �v and
�h, respectively, both normalized by the sphere diameter D. These length scales can be interpreted
as an integral scale characteristic of the energy-containing motions, and the estimation procedure
for these length scales from the turbulence spectra is described in Appendix C. The lengths �v and
�h are not to be confused with the wake’s half-height and half-width, computed through the mean
flow profiles and denoted by LV and LH , respectively (see Appendix C), which are not the focus of
the present discussion.

In examining Fig. 6, it is first to note that the vertical length scale �v is typically much smaller
than the horizontal length scale �h, corresponding to turbulent structures of very small aspect ratio
�v/�h. The vertical length scale �v plotted in Figs. 6(a) and 6(c) varies very weakly with time, a key
observation for our further analysis. The wakes of larger Fr values typically correspond to larger
values of �v/D. As the wake’s Reynolds number Re is increased from 5 × 103 (R5) to 105 (R100),
the �v/D values decrease significantly [as can be seen by comparing Figs. 6(a) and 6(c)], whereas
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FIG. 6. Time evolution of (a) and (c) vertical turbulence length scale �v and (b) and (d) horizontal
turbulence length scale �h, both normalized by the sphere diameter D. Results are shown for (a) and
(b) Re = 5 × 103 (R5) and (c) and (d) Re = 105 and 4 × 105 (R100 and R400, respectively). The line legends
are shown in (a) and (c). The line types and colors distinguish various Fr values, and increasing thickness of
lines corresponds to a larger value of Re, a scheme that is followed throughout this paper.

when Re is increased from 105 (R100) to 4 × 105 (R400), the reduction in �v is not as significant
[Fig. 6(c)]. As will be shown, the R100 and R400 wakes do access the strongly stratified regime
after residing in the weakly stratified turbulence regime (Fig. 1), whereas the R5 wakes progresses
from weakly stratified turbulence regime directly into the viscous regime.

Figure 6(d) shows that the �h/D values are relatively insensitive to Re or Fr for the R100 and
R400 wakes, in contrast to Fig. 6(b) where some dependence on Fr is observed for the R5 wakes.
As shown in Fig. 6(d), the �h/D values for the R100 and R400 wakes, remain constant at early
times, potentially in response to the wake initialization procedure. Similar early-time behavior
of horizontal length scales, i.e., �h ∝ t0, is observed in DNS of decaying stratified homogeneous
turbulence and could be interpreted as an initialization-linked transient [43]. The �h/D values
for the R100 and R400 wakes start to grow after Nt � 10. For these wakes [Fig. 6(d)], the
power-law growth rate is close to the theoretical prediction of t0.5, i.e., Eq. (B7), which is detailed
in Appendix B. The curve corresponding to R100F64 notably deviates from the prediction. This
is perhaps due to the fact that the R100F64 wake enters the viscous regime at an early time, i.e.,
Nt � 15, and the length scales are influenced by vortex merging events (similar to those in the
later-times of R5 wakes; see also [5]) which are not the focus of this study. Perhaps for the same
reason, the R5 wakes [Fig. 6(b)], for which the viscous dynamics dominate after Nt � 10 [see
Fig. 7(b)], do not appear to match the t0.5 growth very closely.

Figure 7 examines the competing buoyancy and viscous scalings of the vertical length scale, i.e.,
Eqs. (6) and (7) respectively. In Figs. 7(a) and 7(c), the inverse cyclical vertical Froude number,
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FIG. 7. (a) and (c) Inverse cyclical vertical Froude number Fr�−1
v ≡ �vN�/U as a function of time. (b) and

(d) Test of the viscous scaling for length scales �v/�h ∼ Re−1/2
h . The circles in (a) and (c) mark the unity

crossing time of Fr∗v and the crosses in (b) and (d) mark the unity crossing time of buoyancy Reynolds number
R (Fig. 11). The lightly shaded region in (c) corresponds to 1 < Fr�−1

v < 2, a characteristic dynamical signature
of the strongly stratified regime.

Fr�−1
v , is plotted against the dimensionless time, Nt . On each of the curves (except for R5F4), the

instance at which the value of Fr�v crosses unity is marked with a circle. As discussed in Sec. II B,
Fr�v = 1 marks what we define as the entrance into the strongly stratified regime. The R100 and
R400 curves [Fig. 7(c)] cross unity within a narrow range of Nt from 6 to 16, and the Fr�−1

v values
are observed to grow weakly with time within the shaded range of 1 < Fr�−1

v < 2. Within this
shaded region, the value of Fr�v is O(1), which is a dynamical signature of the strongly stratified
regime where the inviscid buoyancy scaling of vertical length scale, i.e., Eq. (6), is expected to
prevail. Indeed, for these wakes of Fr�v values of O(1), buoyancy-driven shear layers are observed
to dominate the flow (see the R100 and R400 visualizations shown in Figs. 4 and 5). The slow
growth of Fr�−1

v suggests a possible early stage of the strongly stratified regime, i.e., 10 � Nt � 40,
where the flow gradually adapts to the strongly stratified dynamics. Moreover, particularly for the
Fr = 4 wakes, Fr�v remains within the considerably narrow range of 0.61–0.79 during the interval
10 � Nt � 40. The R5 wakes [Fig. 7(a)], on the contrary, continue to grow in Fr�−1

v beyond the
unity crossing points (the R5F4 values stay above unity for all times), suggesting a different type of
dynamics in the R5 wakes from the R100 and R400 wakes.

In Figs. 7(b) and 7(d), the viscous scaling Eq. (7) for the aspect ratio �v/�h ∼ Re−1/2
h is examined.

Consistent with the viscous scaling, (�v/�h)Re1/2
h in the R5 wakes [Fig. 7(b)] quickly attains O(1)

values by the time Nt ∼ O(10); the smooth and diffused vortical structures dominate the flow
thereafter (see the R5 visualizations shown in Figs. 4 and 5). It, however, takes a significantly longer
time for the larger-Re wakes [Fig. 7(d)] to approach the viscous regime, i.e., the cross marks (R = 1)
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appear at larger values of Nt in Fig. 7(d) than in Fig. 7(b) for a given value of Fr. This is due to the
fact that for the R100 and R400 wakes, (�v/�h)Re1/2

h decreases from much larger initial values in
early wakes. The time evolution of the length scales is suggestive of a gradual transition between
two distinct (inviscid vs. viscous) scalings (for the R100 and R400 wakes specifically) for �v and a
strong dependence on the wake’s Reynolds number, a recurring theme in the remainder of the paper
as we analyze various other turbulence diagnostics. No circles or crosses could be drawn for the
R5F4 case, because Fr∗v < 1 [Fig. 9(a)] and R < 1 (Fig. 11) for the entire period of time simulated
for this particular wake.

Finally, as discussed in Sec. II B, in Fig. 7(d), (�v/�h)Re1/2
h ≈ 1 is not yet attained over the

times shown for all higher-Re (R100 and R400) simulations, suggesting that the flows are still
transitioning into, and have not fully entered, the viscously dominated regime at these late times.
As such, despite values of R ≈ 1, one still observes the presence of patchy turbulent fine structure
in Fig. 4(c). The full relaminarization of the flow is thus expected at a later time than when R ≈ 1.

B. Turbulent velocities

The characteristic turbulent velocities in the stratified wakes are examined in Fig. 8. The
velocity scale U represents the root-mean-square horizontal fluctuation velocity

√
〈u′2 + v′2〉2

V ,
where 〈.〉V denotes a volume average within the wake’s turbulent core as defined by Eq. (C3), and
W ≡

√
〈w′2〉2

V is the vertical fluctuation velocity. In Fig. 8(a), U is normalized by the tow-speed U
and shown as a function of Nt . Wakes of larger Fr typically correspond to a larger value of U/U at
a given value of Nt and Re. For a fixed Fr, the differences between R100F4 and R400F4 are barely
visible. Again, similar to previous figures, the circle on each curve marks the unity crossing time of
Fr∗v , i.e., the entrance time into the strongly stratified for R100 and R400 wakes, and the cross marks
the unity crossing time of R, i.e., the entrance into the viscous regime. The time interval of each
curve between the circle and the cross for the R100 and R400 wakes corresponds, approximately, to
the expected time of residence of the flow in the strongly stratified regime.

The dashed line in Fig. 8(a) represents the theoretical prediction Eq. (B7), i.e., U ∝ t−0.5, which
is described in Appendix B. The R100 and R400 wakes at Fr = 4 and 16 do not assume the
theoretical prediction immediately after the wakes enter the strongly stratified regime. The U/U
values rather decay at a significantly slower rate than t−0.5 during this regime, i.e., Nt � 40, which is
responsible for the slow growth of Fr�−1

v during the same time interval, as observed in Fig. 7(c). Per
the associated discussion in Sec. V A, for this subset of simulations (R100 and R400 specifically),
it is not unreasonable to regard U/U as actually assuming a constant value within the window
10 � Nt � 40. Such temporal evolution of U/U is perhaps not entirely surprising. As discussed in
Appendix B, the theoretical analysis underlying the predictive scalings used in this study assumes
only the viscous dissipation as the only driver of the kinetic energy budget, i.e., Eq. (B2). In contrast,
wakes at such earlier times are expected to have non-negligible shear production [15], which may
cause the turbulence to decay at a slower rate. Moreover, power lost to internal wave radiation [17],
particularly at Re higher than those considered here, is likely to also play an important role in this
context.

As the wakes continue to evolve in the strongly stratified regime, the vertical shear weakens (see
Sec. V C) and the decay rate of U seems to approach the predicted decay rate t−0.5 for Nt � 40
in these wakes (R100 and R400). Incidentally, the decay rate of the R100F64 wake (largest Fr
simulated in the present study) in the period of 1 � Nt � 20 is close to the scaling law (dotted
line) of U ∝ t−2/3 proposed by Spedding et al. [7] based on arguments for nonstratified (Fr = ∞)
axisymmetric wakes.

As an aside, it is worth comparing the wake results shown in Fig. 8(a) to the equivalent ones
for decaying stratified homogeneous turbulence, a flow configuration that has attracted extensive
research effort (e.g., [33,38,44–49]). For instance, the grid-turbulence experiments of Praud et al.
[47] reported a decay rate of t−1.3 for the turbulent kinetic energy (dominated by horizontal
velocities) which is equivalent to U ∝ t−0.65. The numerical simulation of Staquet and Godeferd
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FIG. 8. Time series of (a) U/U and (b) W/U , where U and W are the horizontal and vertical fluctuation
velocities, respectively, and U is the tow speed. (c) Plot of the ratio W/U against the length-scale ratio �v/�h.
Again, the circle on each curve marks the unity crossing time of Fr∗v and the cross marks the unity crossing time
of buoyancy Reynolds number R, a convention that is followed in all subsequent figures. The lines in (a) are
identical to those defined in the legends of the other panels.

[49] did observe a decay rate U ∝ t−0.5 after the initial flow adjustment to buoyancy (see their
Fig. 7), which is identical to the dashed line shown in Fig. 8(a). Very recent simulations of decaying
stratified homogeneous turbulence at very high buoyancy Reynolds numbers [37] report decay rates
of U of approximately t−0.56.

Figures 8(bi)–8(biii) examine the ratio between W and U , a first measure of the anisotropy of
the turbulence. As is expected for a stably stratified flow, the ratio W/U in general decreases with
time, indicating a faster decay rate for W than for U . As the R100 and R400 wakes enter the strongly
stratified regime, i.e., for Nt � 10, wakes of larger Re typically correspond to a larger value of W/U
at a given value of Nt , similar to the evolution of U/U shown in Fig. 8(a). The strongly stratified
turbulence theory (see, e.g., [30,50]) postulates that by scaling the continuity equation, one is to
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FIG. 9. Time series of (a) the cyclical vertical Froude number Fr�v and (b) the median local gradient
Richardson number Rig,loc.

expect

W
U ∼ �v

�h
. (11)

This suggests that the anisotropy of the flow is determined by the aspect ratio of turbulent flow
structure, i.e., �v/�h, in order to maintain continuity. The scaling in Eq. (11) for �v/�h relies on the
continuity argument for the integral scales, which is distinct from the viscous scaling according to
Eq. (7). The R100 and R400 wake data appear to be consistent with the above scaling in Eq. (11)
when the flow indeed resides in the strongly stratified regime, i.e., the W/U values between the
circles and crosses [Fig. 8(cii)] vary approximately linearly with the aspect ratio �v/�h. In contrast,
the values of W/U drop off much more quickly beyond the crosses on these curves, indicating a
faster decay rate for W in the viscous regime.

C. Local vertical shear

Central to the dynamics of strongly stratified turbulence is the decoupling of the coherent
horizontal motions in the vertical direction causing vertical shearing between layers to trigger shear
instabilities that lead to small-scale turbulence, e.g., as first discussed by Lilly [22]. To characterize
the tendency of forming local shear instabilities, we examine the local gradient Richardson number
Rig,loc as defined by

Rig,loc ≡
− g

ρ0

∂ρT

∂z(
∂u
∂z

)2 + (
∂v
∂z

)2 , (12)

where the total density ρT (x, y, z, t ) = ρ(z) + ρ ′(x, y, z, t ). Such a local Richardson number is
commonly used in the stratified turbulence literature (e.g., [26,51]). In the context of stratified
wakes, the Rig,loc values are first sampled locally within the turbulent wake core, i.e., as defined
by Eq. (C3), and the median value of all local samples at each time is examined in Fig. 9. The
squared local vertical shear in Eq. (12) is expected to scale as

S2 ≡
(

∂u

∂z

)2

+
(

∂v

∂z

)2

∼
( U

�v

)2

(13)
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and the total buoyancy gradient in Eq. (12) is expected to scale as N2. Therefore,

Rig,loc ∼
(

�vN

U

)2

= Fr−2
v . (14)

It should be noted that the above scaling is a generic one that is expected to hold for a wide range of
stratified flows, not limited to the strongly stratified regime. Noting that U ∝ t−0.5 and �v ∝ t0 (see
Appendix B), one expects the following time dependence for Frv and Rig,loc, respectively:

Frv ∝ t−0.5, Rig,loc ∝ t . (15)

The latter scaling implies that the buoyancy-driven shear layers are expected to become stabilized in
time as the local gradient Richardson number increases. This stabilization is due to the fact that the
turbulent velocity U decays in time while the vertical length scale �v stays approximately constant,
which together cause the local vertical shear S to weaken.

The time series of Fr�v ≡ 2πFrv and the median Rig,loc values are shown, respectively, in Figs. 9(a)
and 9(b) for all wakes simulated. Apart from the potential existence, earlier in the strongly stratified
regime, of the transitional, short-duration interval of slowly decaying Fr�v ≈ O(1), discussed in
Sec. V A, the time series do approach the expected power-law slopes in Eq. (15) by Nt � 50 for
the R100 and R400 wakes. We reiterate here that any power-law scaling involving time discussed in
this paper is not rooted within the fundamental underlying assumptions associated with strongly
stratified turbulence but rather in the theory of decaying homogeneous stratified turbulence as
reviewed in Appendix B. The applicability of these power laws is strictly for the wake flow under
consideration only, not for any stratified turbulence in general. The F16 wakes start to follow the
predicted scaling at an earlier time, which is likely an artifact of the wake initialization scheme
(see [10]). The median value of Rig,loc lies between 0.30 and 0.65 as the wakes enter the strongly
stratified regime, and exit values (marked by crosses) vary with the wake Reynolds number, i.e.,
higher-Re wakes leave the strongly stratified regime at a larger median Rig,loc than the lower-Re
wakes. The R5 wakes do exhibit significantly larger values of Rig,loc than those in the R100 and
R400 wakes throughout the wake’s life cycle, which is consistent with the absence of disturbances
within the shear layers in R5 wakes [Fig. 5(a)].

Such a difference in the stability of the shear layers is fundamentally linked to the selection
mechanism for the vertical scale �v in the strongly stratified regime and in the viscous regime,
respectively, as discussed in Sec. II and in Sec. V A: Within the wakes (R100 and R400) which
enter the strongly stratified regime after the initial adjustment to buoyancy, �v spontaneously adjusts
to match the U/N scaling such that Fr∗v ∼ O(1), and hence Rig,loc remains O(1) as well, continuing
to support instabilities to develop within the shear layers [Figs. 5(b) and 4(c)]; for the wakes (R5)
transitioning directly into the viscous regime, �v adjusts to match the viscous scaling instead, i.e.,
(�h/�v )Re1/2

h ∼ O(1) [Fig. 7(b)], resulting in larger �v/D [Fig. 6(a)], smaller Fr∗v [Fig. 9(a)], and
larger Rig,loc [Fig. 9(b)], as compared to their R100 and R400 counterparts. In these R5 wakes
which do not access the strongly stratified regime, stable shear layers dominate the flow by Nt � 10
and quickly laminarize [see, e.g., Fig. 5(a)]. The particular scaling that Fr∗v ∼ O(1), which holds for
a prolonged period of time in the R100 and R400 wakes and allows for shear instability to occur
within the layered flow structure, is a defining feature of the strongly stratified regime (see, e.g.,
[24,30,33,50]).

VI. STRATIFIED FLOW REGIMES AND TRANSITIONS

A. Turbulent Reynolds- and Froude-number phase space

With the evolution of individual turbulence quantities now examined in Sec. V, we move forward
in this section with investigating some relevant dimensionless parameters and the trajectories these
parameters form in the corresponding phase spaces. In Fig. 10, the time series of the horizontal
turbulent Reynolds and Froude numbers Reh and Frh, respectively, defined in Eq. (1), are shown.
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FIG. 10. Variation of horizontal turbulence Reynolds and Froude numbers Reh and Frh, respectively, with
the dimensionless time Nt . The shaded region is (b) corresponds to 0.021 < Frh < 0.035, the range of Frh

values at which the wakes enter the strongly stratified regime.

The time series of Reh in Fig. 10(a) show an initial decrease with time in early wakes up to Nt � 10.
For the R5 wakes which do not access the strongly stratified regime (with R > 1 and Frh 	 1), the
decreasing trend appears to carry on. However, for the R100 and R400 wakes which indeed access
the strongly stratified regime, Reh becomes relatively constant in time during the strongly stratified
regime (between the circles and crosses on each curve), an observation that motivates our scaling
predictions in Eq. (B7). That the wakes accessing the strongly stratified regime appear to maintain
a constant (or at least same order of magnitude) value of Reh is a result of the decay of fluctuation
velocity U [Fig. 8(a)] being compensated by the growth of length scale �h [Fig. 6(d)]. The R100F64
wake exhibits some significant fluctuations in Reh upon exiting from the strongly stratified regime,
which is likely associated with vortex merging events during the viscous regime which are not the
focus of this study.

As an aside, Spedding et al. [52] reported a scaling of t−1/3 for a local Reynolds number
computed for laboratory stratified wakes of Re up to 104. A direct comparison of this Reynolds
number with the data reported in Fig. 11(a) is perhaps not informative, because the mean-flow
component was included in calculating the velocity scale considered by Spedding et al. [7], while the
velocity scale U considered here only includes the fluctuation turbulent velocities, so the resulting
Reh and Frh estimates are analogous to their counterparts defined for homogeneous turbulence
without mean flows.

Figure 10(b) shows the evolution of Frh in time. The initial values of Frh in early wakes are
strongly dependent on the body-based Froude number Fr, but such a dependence largely vanishes
by Nt ∼ O(10). The Frh values at which the R100 and F400 wakes enter the strongly stratified
regime (marked by circles) fall in a considerably narrow range of 0.021–0.035 (highlighted in
gray). The power-law decay rate of Frh approaches t−1 (gray dashed line) as the wakes evolve into
the strongly stratified regime (Nt � 40), consistent with the prediction of Eq. (B6). This suggests
that the assumptions behind this particular scaling, i.e., Taylor’s estimate as in Eq. (B1) and the
dominance of viscous dissipation in the turbulent kinetic energy budget as in Eq. (B2), might indeed
be valid in stratified wakes for Nt � 40 (see the discussion in Appendix B). That Frh decays as t−1

is also consistent with the evolution of local Froude number in experiments of Spedding et al. [7],
even though their definition of velocity scale is different from that of the present study.

Figure 11 shows the trajectories followed by each of the eight wake simulations in the parameter
space formed by Reh and Fr−1

h [24]. The five simulations for the two larger Re values do access the
strongly stratified regime. The transition boundary from the weakly stratified to strongly stratified
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FIG. 11. Trajectories followed by stratified wakes in the parameter space formed by Reh and Fr−1
h [24].

Circles mark the times at which the vertical Froude number Fr�v becomes unity, i.e., Fr�†
v ≡ 1, and crosses

mark when the buoyancy Reynolds number R becomes unity, i.e., R‡ ≡ 1. The shaded region corresponds to
29 < Fr−1

h < 48, the range of Fr−1
h values at which the wakes enter the strongly stratified regime.

regime is represented by the horizontal dashed line corresponding to Frh = 0.02, the threshold value
predicted by Lindborg [25]. The entrance into the strongly stratified regime for wakes, based on
the very definition of Eq. (9), occurs at Frh values fairly close to (slightly larger than) 0.02 [see the
shaded region in Fig. 10(b) or in Fig. 11] as indicated above. However, this resemblance may simply
be fortuitous as the numerical values of Frh could change considerably depending on the specific
definitions of length scales and velocity scales, and the threshold value may well be dependent on
the chosen definition of this transition, i.e., Eq. (9).

As shown in Fig. 11, the R5 wakes transition directly from the weakly stratified turbulence regime
to the viscous regime, i.e., the Frh value is never sufficiently small before the flow becomes viscously
dominated. For R100 and R400 wakes which do access the strongly stratified regime, the trajectory
shifts to the right (along the Reh axis) with either larger Re or smaller Fr. As it shifts to the right,
a longer fraction of the trajectory resides within the strongly stratified regime (the portion between
the circle and the cross), accessing smaller value of Frh before leaving the strongly stratified regime
to enter the viscous regime. Such quantitative effects of Re and Fr on these trajectories are discussed
further in Sec. VI B.

B. Dependence on stratified wake parameters

The strongly stratified regime requires R ≡ RehFr2
h > 1 and Frh 	 1 concurrently. Here we

attempt to develop a predictive capability for whether the wake turbulence can access the strongly
stratified regime, given the wake’s externally specified body-based parameters Re and Fr. As is
shown in Fig. 11, Re and Fr have a significant impact on the Reh value at which a stratified wake
enters the strongly stratified regime, i.e., Re†

h. On the other hand, the initial values of the horizontal
Froude number upon the entry into the strongly stratified regime fall within the relatively narrow
range of 0.021 < Fr†

h < 0.035. We will further assume that the value of Fr†
h is a generic property of

stratified turbulence and does not vary with body-based Re and Fr; specifically, we will set

Fr†
h = const � 0.02, (16)

following the estimate of Lindborg [25] [see his Eq. (21)], which seems to provide a lower (more
conservative) bound for the observed Fr†

h values shown in Fig. 11. For a wake to access the strongly
stratified regime, the requirement is that the value of R is still above order unity at the point when
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FIG. 12. Transitional horizontal turbulent Reynolds number Re†
h as the flow enters the strongly stratified

regime and its dependence on the wake’s body-based parameters Re and Fr. The horizontal line corresponds to
the lower bound of Re†

h in order for the wake to access the strongly stratified regime, according to Eq. (17). The
vertical line corresponds to the threshold value of Re Fr−2/3 for wakes accessing the strongly stratified regime,
according to Eq. (22).

Frh becomes small enough, i.e., R† > 1 when Frh = Fr†
h, or equivalently

Re†
h >

1

Fr†2
h

� 2.5 × 103, (17)

which provides a threshold value for Re†
h in order for a wake to enter the strongly stratified regime.

In order to express Re†
h as a function of Re and Fr, we employ the mean-flow-based wake scalings

reported by Spedding [5]. The Re†
h can be rewritten as

Re†
h ≡ U†�

†
h

ν
= U†

U

�
†
h

D
Re, (18)

where U† ≡ U (t = t†) and �
†
h ≡ �h(t = t†). It is observed in our simulations that Nt† falls in a

relatively narrow range 6 < Nt† < 16 (see, e.g., Fig. 10), a subwindow within the NEQ regime
(2 < Nt < 50) where the wake’s centerline velocity U0 varies relatively slowly with t [see, e.g.,
Fig. 7(a) of [10]]. In order to proceed, we further approximate Nt† to be a constant across all values
of Re and Fr. Given that the turbulent velocity U follows the same Fr scaling as U0 (see, e.g., [5,7]),
we obtain

U†

U
∼ U0(t = t†)

U
∝ Fr−2/3, (19)

where the latter proportionality between U0/U and Fr has been reported by numerous experimental
(e.g., [1]) and numerical (e.g., [10,20]) studies. It is also observed that the �

†
h/D value has little de-

pendence on Re or Fr, as shown in Fig. 6(d). Therefore, one can deduce from Eqs. (18) and (19) that

Re†
h ∝ Re Fr−2/3. (20)

In Fig. 12 we test the scaling of Eq. (20) between Re†
h and Re Fr−2/3. Our numerical data match this

scaling prediction reasonably well for larger values of Re Fr−2/3. In particular, we find empirically
(via a least-squares fit) that

Re†
h � (0.49)(Re Fr−2/3) (21)
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for simulations which actually access the strongly stratified regime (see Fig. 12). Substituting
Eq. (21) into Eq. (17), one can find a (minimum) threshold value for Re Fr−2/3 which is required
for a wake to access the strongly stratified regime, i.e.,

Re Fr−2/3 � 5 × 103. (22)

This effectively provides a quantitative tool to predict the relevance of the strongly stratified regime
for a geophysical or naval wake [1] of given Re and Fr.

VII. CONCLUSION

We have examined the structural and dynamical characteristics of the turbulence in stratified
towed-sphere wakes, a canonical turbulent free-shear flow, using the framework of the strongly
stratified turbulence theory (as reviewed in Sec. II) and a recent large-eddy simulation data set
(Sec. III). With further theoretical considerations made in the context of wakes (Sec. II B and
Appendix B) and the basic phenomenology presented (Sec. IV), we examine the large-scale
turbulence characteristics, such as length and velocity scales and the associated nondimensional
parameters (Sec. V), focusing on their time evolution as the wake progresses through various
regimes (Fig. 11). Our simulations have revealed significant effects of the wake’s body-based
Reynolds number Re on the evolution of wake turbulence. In particular, we have gained the
capability of predicting whether a wake at a particular value of body-based Re and Fr could access
the strongly stratified regime (Sec. VI B) in which the dynamics are dominated by anisotropic
layerwise structures in the vertical which are prone to shear instability (Sec. V C). Specifically,
for a given wake, the value of Re Fr−2/3 is required to exceed a threshold value of approximately
5 × 103 (Fig. 12) in order for the wake turbulence to access the strongly stratified regime. This result
provides a criterion for assessing the relevance of the strongly stratified dynamics for geophysical
and naval wakes (see, e.g., [1]) which typically have large Reynolds numbers Re ∼ O(108)–
O(109) and a wide range of large Froude numbers Fr ∼ O(10−1)–O(103). The effects of Re were
quantitatively and systematically discussed in the context of the towed-sphere stratified wake, an
inhomogeneous, freely evolving (i.e., unforced), localized turbulent shear flow, with a focus on the
associated dynamics of strongly stratified turbulence.

This study constitutes a systematic examination of stratified wake turbulence at three distinct Re
values sufficiently separated in magnitude. As shown in Fig. 11, the wakes of Re = 5 × 103 (lowest
value examined here) never access the strongly stratified regime, rapidly entering the viscously
dominated flow regime from the weakly stratified regime. Wakes at Re = 105 and 4 × 105 do
access the strongly stratified regime, e.g., as evidenced in Fig. 11. While it is observed that the
R100 and R400 wakes may exhibit similar statistics, e.g., the R100 and R400 curves seem to
collapse for the vertical integral scale �v in Fig. 6(c) and for horizontal fluctuation velocity U in
Fig. 8(a), it might still be premature to claim that an asymptote in Re has been reached in terms of
those statistics, given the perhaps still limited quadruple increase in Re from R100 to R400 that is
computationally feasible in the present study. Simulations at even higher Re, which effectively allow
one to access higher R and lower Frh simultaneously, are needed to further assess the sensitivity
of strongly stratified dynamics to Reynolds number in the geophysically relevant range [1,29].
In terms of the turbulent energetics, we observe an early-stage transitional period of the strongly
stratified regime, i.e., 10 � Nt � 40, for which we anticipate that shear production and internal
wave radiation are also relevant contributors to the energy budget, other than viscous dissipation
which indeed dominates the budget for Nt � 40. These additional dynamics, such as internal wave
radiation, have been found to be sensitive to Re [17–19]. Consequently, potential adaptations to the
energetics considerations (Appendix B) to account for additional energy sources and sinks could
be relevant at even higher Re values, which are currently limited by computational resources to
investigate.

Another intriguing aspect of even higher Re is its potential modification to the turbulent flow
structures, which is critically linked to the competing selection mechanisms for the vertical integral
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scale �v (Sec. V A) and the implications for the stability properties of the buoyancy-driven shear
layers (Sec. V C). The results presented here (Figs. 4 and 5) have revealed some qualitative effects
of Re on the spatial density and the longevity of shear instabilities between buoyancy-driven layered
structures [23]. Per the scaling in terms of Re developed in Sec. VI B for stratified wakes and recent
observations in DNSs of stratified homogeneous turbulence (e.g., [37]) at sufficiently low values of
Frh and higher values of buoyancy Reynolds number than those attained for wakes in the present
study, it is reasonable to expect that in higher-Re stratified wakes, highly anisotropic energetic
turbulence can be present in an even larger spatial fraction of wake core, at a time that is well into
a further prolonged strongly stratified regime, i.e., Nt ∼ O(100) or even higher. Spatially localized
and temporally intermittent turbulent bursts, originating from buoyancy-driven shear instabilities,
are expected to continue at even later times.

Several other avenues for future research arise from the present study. From the turbulence
modeling perspective, it is imperative to incorporate high-Re strongly stratified dynamics into
the self-similarity modeling paradigm for stratified wakes established by Spedding [5]. In the
analysis presented in this paper, we have focused on volume-averaged statistics within the wake
core assuming that the statistics are almost quasihomogeneous; the inhomogeneous aspects of the
wake flow await further study. For instance, given the degree of inhomogeneity (see, e.g., [19])
of turbulence within the wake, the uniform-eddy-diffusivity assumption made in the self-similarity
model of Meunier et al. [53] might not be appropriate for geophysically relevant parameter ranges
and thus needs to be adapted accordingly. Moreover, particularly for Re values higher than those
considered here, this eddy diffusivity is likely to have a non-negligible vertical component well
into the strongly stratified regime, in contrast to the assumption made in Ref. [53] that all vertical
momentum transport ceases after Nt ≈ 2.

From a dynamical perspective, it is intriguing to explore how the coherent pancake vortices
(Fig. 4) are modified by further increasing Re: Do these structures ever form and remain robust
at geophysically relevant values of Re, at least over timescales of practical interest? What is the
exact dynamical pathway (see, e.g., [54]) for the turbulence to evolve, spatially or temporally, from
the near-wake three-dimensional turbulent state within the weakly stratified turbulence regime to
the highly anisotropic layered state within the strongly stratified regime? Is the zigzag instability
mechanism associated with vortex pairs and/or horizontal shear [6,51,55–59] operative in wakes
of larger Re where the horizontal motions are becoming much less coherent (Fig. 4)? From
an oceanographic perspective, it is interesting to examine the irreversible mixing characteristics
in strongly stratified turbulence, taking into account the potential effects of the formation of
layered density structures which requires large values of buoyancy Reynolds number and gradient
Richardson number concurrently [60,61]. Finally, the numerical data set used in this paper has
also served as a platform to explore the energetics of turbulence-driven internal wave radiation by
high-Re wakes, the subject of a separate study [17].
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APPENDIX A: ADDITIONAL INFORMATION ON NUMERICAL CONFIGURATION

In this Appendix we review some numerical aspects of the stratified wake simulations reported in
this paper. In particular, we examine the specific choices of grid resolution and spectral filters aimed
to ensure adequate resolution of the flow physics while maintaining numerical stability. As discussed
in Sec. III of this paper and Sec. 2.5 of [10], the ILES solver [9] does not explicitly implement a
particular subgrid-scale model. Instead, spectral filtering is applied directly to the flow field to drive
the downscaled energy flux in the unresolved scales and prevent spectral blockage at the smallest
resolved scales. Spectral filtering is applied to both Fourier-discretized horizontal directions and to
the Legendre-multidomain-discretized vertical direction. For ease of discussion, we will focus on
the horizontal directions, as the relation between a Fourier mode and the corresponding length scale
can be more directly established. Moreover, the discussion will be restricted to a one-dimensional
filter in the periodic x direction. The main conclusions of this discussion may then be translated to
the actual isotropic two-dimensional filter used on the Fourier-discretized horizontal plane in this
study (see Sec. 2.4 of [10]).

The particular filter function used in this study consists of a transfer function Ĝ [62] of an
exponential form. In the case of the periodic x direction, where Nx grid points correspond to Nx/2
complex Fourier modes, the spectral filter may be written as

Ĝ(k) = exp

[
−α

(
k̃

Ñ

)p
]
, (A1)

where k̃ = 0, 1, . . . , Ñ is the mode number or modal index and Ñ = Nx/2 is the largest modal index
corresponding to the grid resolution. In addition, α = − ln εM (εM is the machine epsilon) and p is
the filter order (typically an even integer). It is of interest to define a cutoff wave number kc, e.g.,
after (13.14) of Ref. [62],

kc ≡ π

�
, (A2)

a wave number above which the transfer function drops below 0.99, i.e.,

Ĝ(k � kc) � 0.99. (A3)

In other words, � is the cutoff (or transitional) length scale between scales that are not significantly
impacted by the filter (Ĝ > 0.99) and scales that are under stronger impact of the filter (Ĝ < 0.99);
� is also referred to as the turbulence-resolution length scale [63].

Two additional length scales may then be defined: L, the characteristic length of the flow
geometry (for this particular study, L ∼ D, where D is the sphere diameter), and h, the grid spacing.
The selection of an appropriate cutoff length scale � requires that one optimize two length-scale
ratios �/D and �/h. According to Sec. 13 of Ref. [62], it is desirable to minimize �/D to retain
most of the energy within the nonfiltered component of the resolved scales in the flow field. At the
same time, one aims to maximize �/h such that the subfilter component of the flow field, i.e., the
filtered component of the resolved scales, is adequately resolved to ensure a numerically accurate
and stable simulation. Specifically, a sufficiently large value of �/h is required for the solution to
be independent of the choice of h (see, e.g., [63]).

The aforementioned guidelines are taken into account when the spectral filter functions are
prescribed for the simulations of Re ∈ {5 × 103, 105, 4 × 105}. The spectral transfer functions Ĝ
used at each of these three Re are plotted as a function of kxD in Fig. 13(a) and as a function of
kxh in Fig. 13(b). By adjusting, as needed, the values of Ñ and p in Eq. (A1), one sets the cutoff
wave number kc and consequently sets the ratios �/D and �/h. On the one hand, added resolution
(larger Ñ and smaller h) for increasing Re (Table I) ensures a sufficiently small �/D ratio value,
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FIG. 13. Transfer function Ĝ as a function of (a) kxD and (b) kxh for simulations at Re ∈ {5 × 103, 105, 4 ×
105}. The dimensionless cutoff wave number kcD (as measured by the wave number at which Ĝ drops to 0.99)
is 19.8, 26.2, and 53.0 for the three Re values, respectively, corresponding to �/D ratios of 0.16, 0.12, and
0.059. The value of kch is 2.06, 1.38, and 1.38 for the three Re values, corresponding to �/h ratios of 1.5, 2.3,
and 2.3.

i.e., {0.16, 0.12, 0.059} for R5, R100, and R400, respectively. As a result, a significant fraction of
the inertial subrange lies above the filter scale (Fig. 14) with this subrange supported by increasing
wave number coverage as Re is increased, particularly when moving from R100 to R400. On the
other hand, for the purpose of securing a sufficiently large �/h ratio for numerical accuracy and
stability, a stronger filter, corresponding to lower values of p in Eq. (A1), is used for the two larger
values of Re (Fig. 14); in both of these runs the degree of underresolution is expected to be higher
than the lowest Re considered in this study. It was recommended by Pope [63] that �/h � 4 for
a scheme with second-order spatial accuracy and �/h � 2 for a sixth-order scheme, in order to
remove the dependence of the solution on h [64,65]. For the wake simulations considered here, a
�/h ratio of 1.5 is used for R5, and 2.3 is used for both R100 and R400 [Fig. 13(b)]. These values

10 -1 10 0 10 1
10 -8

10 -7

10 -6

10 -5

10 -4

10 -3

10 -2

10 -1

10 0

Time

FIG. 14. Sample compensated energy spectrum of the streamwise velocity u for various Nt values from
the R400F4 wake. The vertical dashed line indicates the cutoff wave number kcD � 53 beyond which the
numerical solutions are directly affected by the Fourier filter (Fig. 13). The spectrum is first sampled pointwise
for (y, z) locations within the wake core defined by Eq. (C3) and then averaged over all (y, z) locations sampled
to yield the wake-averaged spectrum.
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are expected to be sufficient, given the spectral accuracy brought to the specific numerical scheme
by the Fourier and Legendre discretizations [9].

Spectral filtering is also applied to the Legendre modal expansions of order N̂ within each
subdomain in the vertical direction. Two measures are taken to ensure adequate resolution in the
vertical. First, smaller subdomains are allocated around the wake centerline at z = 0 (see Fig. 3),
leveraging the flexibility brought by the multidomain approach. Second, the number of grid points
is adjusted through the number of subdomains M and the order of polynomial approximation N̂ (see
Fig. 3) to provide better resolution at increasing values of Re. For Re ∈ {5 × 103, 105}, no fewer
grid points in the vertical are used in the present study than in the simulations of [10] for the same
wake parameters. For Re = 4 × 105, the vertical resolution is doubled from the Re = 105 case, after
the anticipated Re−1/2 scaling of the vertical scale of turbulence proposed by Riley and de Bruyn
Kops [26]. This increase in vertical resolution is adhered to even if simulation results suggest that
the vertical turbulence length scale �v becomes rather insensitive to Re for Re � 105, as shown in
Fig. 6(c).

In configuring these simulations, particular effort is made to ensure that sufficient numerical
resolution is provided to adequately capture the dependence of wake physics on Re. The vertical
resolution of the wake core is comparable to that used in the DNSs of Watanabe et al. [19] (from
[43]). Specifically, at Fr = 4 where buoyancy most strongly focuses the shear layers acting as
the primary drivers of turbulence in the strongly stratified regime, 26, 60, and 140 points are
used for resolution across a vertical integral scale �v at R5, R100, and R400 respectively. In the
horizontal direction, limitations of computational resources and the uniform grid associated with
a Fourier discretization prevent attaining DNS-like resolution, i.e., capturing scales comparable
to the Kolmogorov scale. Nevertheless, a significant fraction of the turbulent scales of motion is
captured, particularly during the strongly stratified regime (if it exists). As shown in the analysis
of Diamessis et al. [66] and summarized in Sec. 2.5 of [10], over the resolved scales not directly
impacted by the spectral filter, the molecular viscosity ν is considerably larger than the numerical
viscosity associated with spectral filtering. The numerical viscosity gradually becomes the dominant
source of damping only over scales where the spectral filter function drops to values less than unity
(Fig. 13).

Further support towards the negligible role of the numerical viscosity over the majority of the
resolved scales of the ILES is provided by the comparison of ILES spectra with the corresponding
DNS spectra of Watanabe et al. [19] at specific times in the strongly stratified regime for the R400F4
case (see Appendix D of Ref. [20]): Up to the wave number where the filter transfer function drops
below unity, DNSs and ILESs are in excellent agreement, and it is indeed over these unfiltered scales
that the relevant large-scale characteristics reported in this paper are based. In summary, as Re is
increased in the simulations, vertical resolution is adjusted to be comparable to that of an equivalent
DNS, and horizontal resolution and spectral filter are adjusted to allow for a broader dynamic range
of the turbulence over the resolved scales. Consequently, one has confidence in reliably capturing,
as a function of Re, the transition into the strongly stratified regime and the subsequent evolution of
the large scales of the turbulence therein.

APPENDIX B: TIME DEPENDENCE OF TURBULENCE CHARACTERISTICS

In the investigation of the wake turbulence, it is of interest to understand how various turbulent
diagnostics, such as length scales and turbulent kinetic energy, evolve with time. In this Appendix
we first review the theory of decaying homogeneous stratified turbulence and then perform the
necessary adaptations in the context of stratified wakes. It is important to note that the end results of
the analysis are used as only a reference when interpreting the numerical results presented in Sec. V
concerning stratified wakes; these results are by no means to be interpreted as generic results which
are universal across all stratified flow configurations.

The theory for decaying homogeneous stratified turbulence [21,28,44,50] typically involves the
following assumptions.
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(i) Taylor’s estimate for dissipation, i.e., Eq. (5), is valid, which leads to

�h ∼ U3

ε
. (B1)

While this relation is largely acceptable as a scaling argument, caution should be exercised when
Taylor’s estimate is used as an equality, i.e., ε = AkU3/�h, for stratified flows. Recent investigations
[33,37] have revealed that the dimensionless number Ak may in fact vary as a function of time (e.g.,
Fig. 8 of Ref. [33] and Fig. 12 of Ref. [37]) when homogeneous turbulence decays from an initially
energetic state.

(ii) Viscous dissipation dominates the turbulent kinetic energy (which is dominated by horizontal
velocity U ) budget, i.e.,

1

2

dU2

dt
∼ −ε. (B2)

(iii) The time dependence of turbulent quantities, such as U , �h, and ε, can be expressed in terms
of power laws, e.g.,

U ∝ t−n, (B3)

where n is a positive (as the turbulence is decaying) constant which needs to be determined. Squaring
Eq. (B3) and substituting into Eq. (B2), one obtains

ε ∝ t−2n−1. (B4)

Combining Eqs. (B1), (B3), and (B4), we obtain the time dependence of �h,

�h ∝ t−n+1. (B5)

While the value of n is still yet to be determined, one can already predict the time dependence of
Frh following Eqs. (B3) and (B5):

Frh ≡ U
N�h

∝ t−1. (B6)

Such a scaling for Frh is a direct consequence of Taylor’s estimate, i.e., Eq. (B1), and the assumption
that viscous dissipation dominates the energy budget, i.e., Eq. (B2).

Further scaling predictions would require additional assumptions about the dynamics of turbu-
lence. In order to proceed with making predictions for the time evolution of various quantities for
wakes, we are motivated by the directly computed results shown in Fig. 10(a) to set the horizontal
turbulent Reynolds number Reh ≡ U�h/ν to be a constant with time, i.e., U�h ∝ t0. It is then
straightforward to deduce from Eqs. (B3)–(B5) that n = 0.5, and thus

U ∝ t−0.5, �h ∝ t0.5 (B7)

under our stated assumptions. As shown in Sec. V, these scalings agree reasonably well with
numerical data for a subset of the wakes simulated.

At this juncture, it is worth reiterating that the power laws of Eq. (B7) are founded on requiring (i)
Taylor’s estimate to hold, (ii) the viscous dissipation to be the dominant mechanism in the turbulent
kinetic energy budget, and (iii) the horizontal turbulent Reynolds number Reh to be constant in
time (which itself is based on our observation). As such, these three requirements on which the
predictions of Eq. (B7) rely do not necessarily coincide with the set of assumptions defining the
strongly stratified regime, i.e., Eqs. (3), (4), and (6). Therefore, it is not expected that the validity of
Eq. (B7) would be limited to the strongly stratified regime or that any flow in the strongly stratified
regime would automatically follow Eq. (B7).

In the context of the evolution of a stratified wake past the initially active turbulent regime,
the second requirement discussed previously, i.e., Eq. (B2), is most likely to hold in late wakes
where shear production and internal wave radiation are expected to be weak. Recent studies [15,19],
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however, have shown that both shear production and internal wave radiation could be comparable in
magnitude to the viscous dissipation as the wake turbulence undergoes or completes the adjustment
to buoyancy. For example, internal wave radiation has been independently found to be a leading-
order term in the energy budget in the R400F4 case during the interval 10 � Nt � 40 [17]. These
additional considerations are addressed whenever relevant in the main text.

APPENDIX C: ESTIMATION OF STRATIFIED TURBULENCE CHARACTERISTICS

The stratified wake is a flow configuration that is geometrically distinct from triply periodic,
box-filling turbulence in the sense that wake turbulence is localized in both y and z directions.
Nevertheless, various diagnostics of stratified turbulence are computed for the wake under the
assumption that the turbulent wake core may be approximated as homogeneous over a sufficiently
large window in the wake cross section. Care should be taken in regard to the implications of such
as assumption for the averaging procedures and vertical Fourier transforms used to compute spectra,
both of which are essential for the estimation of the diagnostics of interest. This Appendix provides
further details on the calculation of turbulent diagnostics from the spectra.

A first step towards computing the diagnostics of interest is to define the wake’s turbulent core
region (whose width and height may vary with time) over which turbulence statistics are first
sampled locally and then averaged. We first apply the Reynolds decomposition to the velocity field,
e.g., the streamwise velocity u can be decomposed into the mean and the fluctuating components

u(x, y, z, t ) = 〈u〉x(y, z, t ) + u′(x, y, z, t ), (C1)

where 〈·〉x denotes an average in the statistically homogeneous x direction. The 〈u〉x(y, z) profile for
a given time becomes immediately useful for defining the dimensions of the wake core. Specifically,
one assumes a self-similar two-dimensional Gaussian profile for 〈u〉x(y, z) as commonly used in
experimental (e.g., [5]) and numerical (e.g., [10]) studies of stratified wakes, i.e.,

〈u〉x(y, z, t ) = U0(t ) exp

[
−1

2

(
y

LH (t )

)2

− 1

2

(
z

LV (t )

)2
]

(C2)

for a wake centered at (y, z) = (0, 0). For each snapshot of a simulation, a nonlinear least-squares fit
is applied to the 〈u〉x(y, z) profile to determine the mean centerline velocity U0 and the mean (half)
wake width LH and height LV (for more details on their time evolution see Fig. 7.12 of Ref. [20]).
The turbulence statistics reported in the main text are averaged over a volume encompassed by an
elliptic cylinder, as defined by

y2

(2LH )2
+ z2

(2LV )2
� 1, (C3)

a region which is regarded as the turbulent wake core. This relatively simplistic definition of
the wake core is adopted in this study for the ease of implementation, and we refer readers to
Ref. [19] (whose focus was on the dynamics at the turbulent-nonturbulent interface) for a more
sophisticated criterion for separating the turbulent and nonturbulent regions by thresholding local
potential enstrophy values.

Making the assumption of homogeneity in a sufficiently large subarea of the cross section of the
wake core, we employ turbulence spectra as a platform which drives estimates of turbulence length
scales. In this paper the horizontal and vertical turbulence length scales �h and �v are estimated
through the wake-averaged turbulence spectra, such as those shown in Fig. 14. Earlier analysis of the
stratified wake data considered in this study [20,67] relied on alternative approaches which produced
significant noise in the time series of these length scales, Instead, motivated by the approach used
to analyze stratified homogeneous turbulence data [43], the horizontal turbulence length scale �h is
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estimated via a weight-averaged inverse wave number, i.e.,

�h ≡
∫ kx,Nyq

kx,min

2πk−1
x Eu(kx )dkx

/ ∫ kx,Nyq

kx,min

Eu(kx )dkx, (C4)

where Eu(kx ) is the one-dimensional longitudinal spectrum of u velocity, which is spatially averaged
over the wake core as defined by Eq. (C3); kx,min is the minimum wave number 2π/Lx; and kx,Nyq is
the Nyquist frequency given the available degrees of freedom in x. By not including kx = 0, mean
streamwise velocity effects are effectively ignored. Length scales so computed compare closely with
those determined by the zero crossing of longitudinal autocorrelation functions [33], although the
latter length scale estimate still exhibits some spurious fluctuations in time for the wake data and is
thus not examined in detail.

Vertical spectra are also sampled for locations within the wake core, i.e., Eq. (C3). One-
dimensional vertical profiles of the fluctuation component u′ [as defined in Eq. (C1)] of the
streamwise velocity are obtained for (x, y) locations with y ∈ [−2LH , 2LH ] and x ∈ [0, Lx]. They
are then interpolated (using cubic splines) onto a uniform grid spanning the vertical window of
z ∈ [−2LV , 2LV ], i.e., inside the wake core. Such an interval in z is chosen so that at the end
points of the window, i.e., z = ±2LV , the signal u′ is sufficiently small such that the nonperiodicity
introduced by the discontinuity of u′ at the end points has a minimal impact on the spectra when
periodicity is imposed by a Fourier transform. The vertical profiles of u′ within the subwindow are
Fourier transformed and then averaged for all (x, y) locations sampled to obtain the wake-averaged
spectrum, i.e., Eu′ (kz ). Such a spectrum is then used to obtain an estimate for the vertical turbulence
length scale �v , i.e.,

�v ≡
∫ kz,Nyq

kz,min

2πk−1
z Eu′ (kz )dkz

/ ∫ kz,Nyq

kz,min

Eu′ (kz )dkz, (C5)

where kz,min is the minimum wave number 2π/4LV and kz,Nyq is the Nyquist frequency. It is perhaps
worth noting that the above definition of �v is based on the vertical spectrum of the fluctuation
velocity u′ as defined in Eq. (C1). Including the mean component 〈u〉x, which is strongly sheared
in the vertical direction z, would bias the estimate of �v in Eq. (C5) towards small wave numbers
(larger scales) that are comparable to kz,min rather than robustly describing the scale representative of
the smaller-scale buoyancy-driven shear layers (see Fig. 5 for an example). Our use of the calculated
vertical spectra is mainly to derive a characteristic integral length �v , and a detailed investigation of
the vertical spectra (see, e.g., [68]) is outside the scope of this paper.
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