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A numerically efficient configuration to simulate turbulent flows is to use triply periodic
domains, with numerical forcing techniques to sustain turbulence. Previous homogeneous
shear turbulence simulations considered only idealized homogeneous shear flows and
not the statistically stationary shear turbulence observed in practical free shear flows. In
contrast, the current study mathematically derives the complete forcing technique from
the large scales of the turbulent free shear flows. Different statistically stationary free
shear flows are considered in this study, namely, a nearly homogeneous shear turbulent
flow, turbulent mixing layer, a turbulent planar jet, and a turbulent round jet. The
simulations are performed on triply periodic, statistically homogeneous cubic domains in
the vicinity of the shear layer in the self-similar region. An a priori analysis is performed
to calculate the effects of the different forcing terms and to predict the expected turbulence
quantities. The forcing technique is then used to perform direct numerical simulations at
different Reynolds numbers. Numerical results for the different cases are discussed and
compared with results from experiments and other simulations of free shear turbulent
flows. Anisotropy is observed both in the components of velocity and vorticity, with
stronger Reynolds number dependence in the anisotropy of vorticity. Energy spectra
obtained from the present homogeneous shear turbulence agree well with the spectra from
temporally evolving shear layers. The results also highlight the effects of the additional
forcing terms that were neglected in previous studies and the role of shear convection
and the associated splitting errors in the unbounded evolution of previous numerical
simulations.

DOLI: 10.1103/PhysRevFluids.4.084606

I. INTRODUCTION

Turbulent free shear flows are found in a multitude of industrial applications and in nature, and
their analysis gives a lot of insight into turbulence and its structure. However, owing to the range
of scales and the stochastic and unsteady nature of turbulence, simulating such flows has proven
to be quite challenging. Various configurations have been used to simulate turbulent flows using
direct numerical simulations (DNS), which are resolved down to the smallest turbulent lengths
scales.

The most obvious configuration is to use the entire domain to solve the spatially evolving flow
[1-3]. In this configuration, the turbulence statistics reach a stationary state after a transient period,
and hence the results are ultimately independent from the initial conditions. Unfortunately, the
overall flow field depends strongly on the boundary conditions. These simulations typically include
a near-field region where the turbulence is not fully developed, and so this configuration is not
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computationally efficient. Since the entire flow field needs to be solved, these simulations are usually
performed at lower Reynolds numbers to reduce the computational costs.

Another configuration is to consider temporally evolving turbulent flows. A perfect example
is the mixing layer simulation by Rogers and Moser [4], which introduces homogeneity in the
streamwise direction. The extra periodic direction increases the computational efficiency, but
at the expense of physics. It also aids in calculating the energy spectra, which can be used to observe
the different scales of turbulence. Unfortunately, the statistics never reach a stationary state, and
hence the results still depend heavily on the initial conditions.

The third configuration is that of a triply periodic domain where the turbulence statistics are
homogeneous and there are no boundary conditions to implement because of the triple periodicity.
A good example is the numerical simulation of isotropic turbulence by Orszag and Patterson [5].
The computational efficiency is much higher as the flow is fully turbulent throughout. However,
in the absence of mean shear, the turbulent kinetic energy in the domain decays over time due to
viscous dissipation [6]. Hence, to keep the turbulent kinetic energy stationary over time, the missing
mean shear needs to be emulated through a method of forcing the turbulence. Turbulence in the
past has been forced by different techniques, including spectral forcing [7-10] and linear forcing
[11-13]. While these techniques are required to generate turbulence in the domain, these numerical
forcing techniques have been mostly arbitrary, and do not capture the physics of the large scale flows
accurately.

Recently, Rah et al. [14] combined the numerical tractability of the third configuration with
the physical accuracy of the first configuration. They used a triply periodic computational domain,
with the forcing calculated from the flow physics at a small region at the centerline of a turbulent
round jet, and forcing turbulence in a mathematically consistent way. The current study extends this
work by considering a small region in the self-similar shear layer of multiple statistically stationary
free-shear flows and using a triply periodic computational domain to simulate this shear-dominated
flow.

Several homogeneous shear turbulence (HST) simulations have been performed in the literature
using similar techniques [15-21]. While a shear production term was included in each study,
considering an idealized homogeneous shear flow, the forcing terms were not derived for practical
turbulent flows, and ultimately lacked the mathematical background to be compared to realistic
turbulent flows. Most of these simulations use shear periodic boundary conditions, but simulate
idealized homogeneous shear flow and the turbulence statistics are not stationary [16-20]. Some
simulations include a wall boundary in the cross-stream direction, and are not homogeneous [21].

By simulating only the velocity fluctuations, the simulations of the current study aim to obtain
the elusive combination of homogeneity and statistical stationarity in homogeneous shear turbulence
calculations.

In Sec. II, the forcing technique will be mathematically derived, and then calculated, from
locations in the shear layers of four different turbulent flows shown in Fig. 1. An a priori analysis
will be performed for the forcing technique in Sec. III to observe the effects of the different forcing
terms. Section IV describes the simulations, and contains a discussion of the numerical results and
comparison with experiments and other simulations. Section V includes additional simulations
including linear diagonal terms, nonlinear terms, and mean advection terms. Section VI makes
concluding remarks about the observations from the study.

II. MATHEMATICAL DERIVATION

We start by reviewing Lundgren’s mathematical approach, which uses a Reynolds decomposition
to identify the effects of the large turbulent scales on the small scales. Then, four canonical flows are
considered (see Fig. 1), and the forcing matrix is calculated for each of them. A forcing technique,
common to the self-similar shear layer of these four flows, is discussed after.
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FIG. 1. Different turbulent free shear flows considered for the current study with the computational domain
chosen (red cube): (a) nearly homogeneous shear turbulence (NHST), (b) mixing layer (ML), (c) planar jet (PJ),
(d) round jet (RJ).

A. Methodology: Review of Lundgren’s approach

First, we consider the Navier-Stokes (NS) equations for the velocity field u for a fluid flow with

constant density p, where p is the pressure and v is the kinematic viscosity,

ou 1 2

—+u-Vu=——Vp+vV-u. (D

ot P
For any turbulent flow phenomenon, the instantaneous velocity field can be decomposed into mean
and fluctuating velocity fields (i.e., Reynolds decomposition), u = u + u’, where ~ represents the
ensemble average. Transport equations for the fluctuations are obtained by calculating the difference
between the NS equations for the full velocity field and the transport equations for the mean velocity
field, namely,

NS@+u')—NS@+u). )
This leads to

au/ — / / 1 / 2.7 e / 7
a—t—i—(u—i—u)-Vu:—;Vp+vVu+V~uu—u-Vu. 3)
The extra terms in the transport equations for the fluctuating velocity, when compared with
Eq. (1), are the mean-flow advection term (u - Vu'), the divergence of the Reynolds stress term
(V -wu'), and the production term (—u’ - V). Lundgren focused on the production term as the
only contributor to turbulent kinetic energy production [11], but this is not the case as will be seen
later in section C. The major contribution to the turbulent kinetic energy comes from the production
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term, which is rewritten as a forcing term A - o/,

ou’ , , 1_, 2 ,
—+4+u -Vu =——Vp +vWVu +A-u, 4)
ot Jo

where A is the forcing matrix, given by A = —Vu. The source term is linear in #’, forces velocity

along all scales, and keeps the turbulent kinetic energy from decaying due to viscous dissipation.
Lundgren [11] further assumed that the forcing matrix, A is a diagonal matrix that generates
isotropic turbulence,

(&)

ALundgren =

SO
oo
>0 0

This isotropic forcing term was implemented as Au’, where A is an arbitrary forcing constant,
calculated based on the required turbulent Reynolds number [13]. In practice, the forcing matrix
depends on the gradients of the mean velocity.

B. Mean velocity gradients

Different free shear flows are considered in this study, namely a nearly homogeneous shear
turbulence (NHST) flow, a turbulent mixing layer (ML), a turbulent planar jet (PJ), and a turbulent
round jet (RJ). The mean velocity gradients can be calculated from the mean velocity profiles
obtained from experiments, for each free shear flow. Once again, the intent is to perform simulations
on triply periodic, statistically homogeneous cubic domains in the vicinity of the shear layer in their
respective self-similar region as shown in Fig. 1.

1. Nearly homogeneous shear turbulence

For a homogeneous shear turbulence flow, the mean flow is in the streamwise direction (x). The
freestream velocity is constant along x and varies linearly in y, away from the walls located at
y = —h/2 and y = h/2. The mean streamwise velocity at the center of the wind tunnel, y = 0 is Uc.
Far downstream, the quantities are self-similar and are homogeneous in the y direction away from
the walls. However, the integral length scale ¢ increases linearly with x [22], and consequently, the
Reynolds stresses and the velocity fluctuation magnitudes increase with x, hence the name “nearly”
homogeneous shear turbulence. Equation (3) for the HST flow in the center of the wind tunnel
becomes

ou’ l / 1 / 2. 8ﬁx ’ — ou’ 8@ 814;1/{;
E+u -Vu _—;Vp +vVu — 3 uyex—uxa+ ™ e+ ™

ey. 6)

Most simulations of homogeneous shear turbulence use periodic boundary conditions in the
x direction without rescaling the velocity, and choose to neglect the divergence of the Reynolds
stress terms. The forcing matrix for NHST aty = 0 is

0 G 0 0 1 0
Axust=—|g o o] =Bnust|0O O O )
0O 0 0 0 0 O

The only element of the forcing matrix is due to the shear strain rate
by that quantity.

a”y* , and the matrix is normalized

2. Mixing layer

For a spatial mixing layer, the mean flow is primarily in the streamwise direction (x). The
freestream velocity is constant along x, and is O for y — 400 and Us for y — —o0. The center of the
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shear layer is at y; o, where the mean streamwise velocity is Ug/2. Far downstream, the mixing layer
quantities are self-similar and are only a function of the similarity variable, n = [y — y1,2(x)1/8(x).
The mixing layer thickness 8 increases linearly with x, and yj, is linear in x [23]. There is no mean

flow in the spanwise direction (#; = 0) and the flow is statistically homogeneous in the spanwise
direction (adi =0and 3;4 =0).
Equation (3) at the center of the mixing layer becomes,

ou’' 1 ou ou ou. duy
o T u - vu = —;Vp/ + vV — 8; u.ey — a—yxu;ex — a—xyu;ey - B_y)u;ey
ou ou'  duu ouu,
- Uy— + —e, + —e,. (8)

= a =
*ox Y oy ox
The forcing matrix for the spatial mixing layer aty =y, is

dJm  Juy

aj‘ a;" —0.035 1 0
0 0 0
0 0 0

calculated from the mean velocity profile given by Lumley [24]. The largest element of the forcing

matrix is due to the shear strain rate a";, and the matrix is normalized by By = — ‘?; 012) =
1.022%.

3. Planar jet

In a planar jet, the mean flow is primarily in the streamwise direction (x), and the centerline mean
velocity at the jet axis, U,(x), decays along x as 1/4/x [1,25-27]. The mean velocities are self-similar
far from the jet exit, and when normalized by the centerline velocity, are only functions of the
similarity variable, n = y/y;,2(x), where y;; is the half-width of the jet defined by u,[x, y1,2(x)] =
U,(x)/2.

The jet has no mean flow in the spanwise coordinate (z), and no mean gradients along z. The
forcing matrix for the planar jet in the middle of the shear layer at y = y;; is calculated from mean
velocity profiles given by Bradbury [25],

e Juy

f’j 33‘ —0.071 1 0
Apy = — % % 0| =Bp| —0.007 0.071 0], (10)
: 0 0 0
0 0 0

where Bp; = 0.730%. Once again, the largest contribution to the forcing matrix comes from the

off-diagonal shear strain term. The forcing matrix is comparable to the mixing layer forcing matrix
in Eq. (9).

4. Round jet

For a round jet, Eq. (3) is rewritten in cylindrical coordinates for simplicity. The mean flow
is primarily in the streamwise direction (x), and the mean centerline velocity U,(x) has a 1/x
dependence [2,28-31]. We recall the flow is self-similar and the jet quantities, when normalized
by the centerline velocity, are only functions of the similarity variable n = r/r,2(x), where ry; is
the half-width of the jet.

There is no mean flow in the azimuthal direction (6), and no mean gradients along 6. Hence, the
forcing matrix for the round jet in the middle of the shear layer at » = ry/, as shown in Fig. 1(d) is

084606-5



DHANDAPANI, RAH, AND BLANQUART

calculated from mean velocity profiles taken from Schlichting [32],

o, om,
w0 —0014 1 0

Ag=—| % 2 0| =Bg|—-0.001 0.037 0 , (11)
o o & 0 0  —0.023

where Bgy = 0.586;’,—”. Once again, the largest element in the matrix is the off-diagonal shear strain
172

%. The matrix is comparable to the velocity gradient matrix for planar jets from Eq. (10).

C. Additional source terms

In addition to the mean velocity gradients, there are source terms that arise from enforcing
periodic boundary conditions in the simulation domain [14]. The velocity fluctuations are appropri-
ately normalized to ensure that their second order statistics are homogeneous, so periodic boundary
conditions can be used, and these normalizations result in additional source terms. Although these
source terms can be calculated for any of the canonical flows mentioned before, the turbulent round
jet case is considered for the following calculations, as it has been researched in literature in greater
detail.

1. Periodicity in x

As mentioned earlier, in a round jet, the centerline velocity U,(x) decreases with x as 1/x. Since
the velocity fluctuations are proportional to the centerline velocity, they also decay along x as 1/x.
Under these conditions, the flow is not statistically homogeneous in the x direction, and it would
be inappropriate to assume periodic boundaries. To lift this limitation, the velocity fluctuations are
rescaled by the 1/x dependence as
(x) &, o @) Xo (12)

=uZ N

Xo
o =u = u =u .
x x

X Y y
where u™ is the velocity fluctuation that is statistically homogeneous along x in the vicinity of
X = x,. This rescaling produces extra elements in the forcing matrix from the u - Vu' term. At
X = X,, the forcing matrix due to the periodicity correction in x is given by

=0 0
A, =10 l (13)
0o 0 =

2. Periodicity inr

The simulation assumes periodicity along r as well, but the velocity fluctuations depend on the
radial distance. To maintain statistical homogeneity along r, the velocity fluctuations are rescaled
by their individual r dependencies,

W =ul fo. ul =ul g, u® =u h(y), (14)

where u is the velocity fluctuation that is statistically homogeneous along r in the vicinity of
r =r{,, = r12(x,). The forcing matrix due to % - Vu' applied on Eq. (14) is then

i —sa & 0 0

A=—"="10 G 0], (15)
"2 0 0 G
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where § = dry,/dx is the spreading rate, C; = —Z—’:](l), G, = —j—f}(l), and C; = —%(1). From the
velocity fluctuations profiles from Hussein et al. [31], we have at r = ry2,

u, = 0.5U,, u, =0.014U,, S =0.0935,

(16)
C, =0517, C,=0.398, C;3=0.345.
3. Continuity
The original continuity equation for u’ is
du, 19(ru 1 du,
u, 41 (ru,) | 1 duy _o a7

0x r or r 060

After the normalization in x and r for periodicity [Eqgs. (12) and (14)], the continuity equation for
u™ becomes

u” 1a(ru”) 19u’ U )
X - L - =(1-C)= C——. 18
0x + r or r 00 ( 2 X, + 2r1/2 (18)

The continuity equation for ") has two extra terms. While it is possible to solve the NS equations
with additional terms in the continuity equation, it is preferable to have no source terms. That is why
u") is rewritten in terms of #”, under the conditions that #” = u'" at {x,, r1 2} and u” is divergence
free:

U =uexp [(1 — C)(x/x, — D], u” =uexp [Cg(r/rj’/2 — 1)], ug) =uj. (19)
The forcing matrix due to the continuity correction is
- l (1-C) 0 0
Ac = 0 5“—/—’c2 0. (20)
0 0 0

The complete transformation from the original velocity fluctuation u’ to the statistically homo-
geneous, divergence-free velocity fluctuation u” is given by

%=%§ﬂmmma—ammﬁnL

2n
X, X
= uf = g(n) exp [Co(r/rip = 1)]. uy = u= hm),
and the transport equation for u” at {x,, r| 2} is calculated as
ou” 1 _
Py +u-Vu' = ——Vp + vV +Agy-u’ —u-Vu' +V -u'u’
P
et C — ™ 1 S
A ] R R T ]
| ) X, X,
[, (1 — C 1-C -
+ x . 3)14;’ + x 3(u;/u’9’ — uluy :|eg
L o 0
[ % C E—
| S+ g — W) |eq + visc, (22)
| 712 T2

with the gradients of the normal stress in V - u”u” being exactly zero, as u” is homogeneous in
magnitude. Theoretically, the gradient of the Reynolds shear stress would still exist. However, at
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. . — = =172 . .
r = 1,2, the correlation coeffecient, p,, = w,u, /(. v, u.u.) % is near constant [33], and its gradient

is near zero. The additional viscous terms are negligibly small for highly turbulent flows.
The final forcing matrix is calculated as a sum of all of the contributions from Eqgs. (11), (13),
(15), and (20), and is given by

—0.039 1 0
0 0 0.038

It is clear that the final forcing matrix is very close to the matrix from Eq. (11), with less than 6%
difference compared to the largest element. The periodicity in x and r, and the continuity correction
do not have significant contributions in the shear layer of a round jet, whereas it had significant
effects at the jet axis [14].

4. Nonlinear terms

All the source terms in Eq. (23) are linear in u”; but the transformation from ' to the statistically
homogeneous and divergence-free u” in Eq. (21) gives rise to some nonlinear source terms owing
to the term u’ - V', as seen in Eq. (22). These nonlinear source terms can be written as Ay - u” —
AnL - u”, where Ay is given by

Sy 0 0
po T
Au=| 0 L&y 0 24
NL = o Wk . (24)
1-C5 ., 1 G
0 0 U+ g Ur

These terms have similar magnitudes to the linear source terms from Eqgs. (13) and (15), as

V2 /i ~ 0.48 and Vu2 /i, ~ 0.36.

D. Summary

The simulation considers the forcing matrix calculated at {x, r, 6} = {x,, r{ 120 0}, and hence the
r-6 direction in the jet coordinates can be replaced by y and z in the cartesian coordinate system of
the DNS. The velocity solved for in the simulation correspond to values at the half-width of the jet,
{1, )., up}(xo, 19 125 0) = {ul, ufv’ , u}. For simplicity, u” would be represented as u’ henceforth.

Some key aspects of this derived forcing must be emphasized. First, the forcing is a direct result
of the physics of the free shear turbulent flows considered; the forcing term is not arbitrary, and is
derived mathematically from the large scales of the mean flow. Second, the forcing is not isotropic,
which is consistent with results from experiments of free shear flows, where (u;z) > (u’vz) [25,31].
Third, the forcing in this case is not purely from the diagonal terms as suggested by Lundgren’s
isotropic turbulence, but rather dominated by an off-diagonal shear term.

Comparing with other Homogeneous Shear Turbulence (HST) simulations, where the only
production term is Bu,é,, there are additional linear forcing terms on the diagonal due to mean
velocity gradients, renormalizations to maintain periodicity in the x and y/r directions, and
continuity corrections. In addition to the linear diagonal forcing terms, there are also additional
forcing terms that are nonlinear in #’. Finally, the mean advection term is calculated as —u - Vu' =
By%—';/, which has been included in past simulations. To avoid confusion with the shear strain (i.e.,

energy production) term, this term is referred to as shear convection.

III. A PRIORI ANALYSIS

Multiple source terms have been computed in the previous section. Their effect on the turbulence
quantities can be estimated using an a priori analysis. Once the most dominant source terms have
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been selected, the relationship between the source terms and other turbulence quantities can be
established.

A. Contribution of source terms

The effect of all the source terms on the turbulence can be observed from the effects on the
turbulent kinetic energy, k = %(uf + u’vz + uf) ((-) represents ensemble average). The transport
equation for the turbulent kinetic energy can be obtained from the velocity fluctuations transport

equation as
dk ,ou
— ={u;—). 25

dr < ot (25)
The turbulent kinetic energy equation for the simulation including all the additional linear and
nonlinear terms and mean advection terms is given by

dk
E =—c+P+ Pdiag + Pni + Peonys (26)

where ¢ = 2v(s;;s;;) is the energy dissipation rate. All other terms vanish under statistical ho-
mogeneity. The contribution by each of the terms to turbulent kinetic energy production can be
calculated and compared with the most dominant shear term P = B(u;u;). The contribution from
the diagonal terms is calculated as

Pang  —0-039B(uu,) + 0.089B () + 0.038B (uu)
P B(u,u!) '

27)

Using Reynolds stress values from the round jet results from Hussein et al. [31], % = 0.117. The
contribution from the nonlinear terms can also be calculated as
Pae 0.82B(uuuy) + 0.10B(uwuuy)  0.10B(uuu’) + 0.59B (ujuu;)

xhxty xUyty ¥z
= + . 28
P Bluu,)U, Bluu;)U, (28)

Using velocity triple correlation values from the round jet results from Hussein et al. [31], % =
0.209. The contribution from the shear convection term is computed as

du, duy du, ok
Peow  ByGott, +ygru, +ygiul) By

P Bluu)) - B(uu)

: (29)

Because of statistical homogeneity in the x direction, = 0. In other words, the advection by the
mean term does not contribute to kinetic energy production, as mentioned earlier. Hence, the shear
convection terms are not included in the current simulation. Further analyses and justifications are
provided in Secs. III C and V B.

In summary, the shear strain is the most dominant term, contributing to 75% of the production of
turbulent kinetic energy. The linear terms in the diagonal of the forcing matrix and the nonlinear
terms contribute to 9% and 16% of the production, respectively. Similar results are obtained
for mixing layers and planar jets. The off-diagonal shear strain element is at least one order of
magnitude larger than the other elements in the matrix and is the major driving force for turbulence
production in these aptly named free shear flows, accounting for at least 75% of the turbulent kinetic
energy production.

In the current study, for a triply periodic simulation of HST, it is a good approximation to use the
off-diagonal shear strain, B, as the only forcing term, with the forcing matrix given by

73CO“V
P

0 B O
Apst= [0 0 O, (30)
0 0 O
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where B can be chosen based on the simulation parameters and the desired turbulent Reynolds
number. While this term does not inject any external energy, it represents the injection of energy
into the velocity fluctuations by the mean flow, hence it is an “effective forcing term” in the spirit of
Lundgren’s approach, and is henceforth referred to as a forcing term for simplicity. This is similar to
conventional simulations of HST, where the off-diagonal shear strain term is the only mechanism for
turbulence production [18,20]. Those studies do not include any of the linear diagonal and nonlinear
forcing terms, but they include the shear convection term that does not contribute to turbulent kinetic
energy.

B. Stationary-state analysis

The entire mathematical framework presented in the previous section relies on the assumption
that the velocity field can be decomposed into mean and fluctuating quantities. Then, the simulations
in the current study solve for the velocity fluctuations. By construction, these velocity fluctuations
represent the fluctuations of the flow field in a small region of a statistically stationary turbulent
flow. Hence, the fluctuating quantities and their related statistics must reach a statistically stationary
state. This applies to turbulent kinetic energy, dissipation rate, Reynolds stress, and so on.

Before performing the HST simulations, the target Reynolds number of the simulation needs
to be decided, so that the required grid resolution can be evaluated to fully resolve down to the
smallest turbulent scales. The relationship between the forcing constant B and the Reynolds number
needs to be established, to calculate the required shear strain, B. The expected eddy turnover time
is also calculated from the turbulent kinetic energy and the energy dissipation rate, to determine the
total simulation time. These expected turbulence quantities are estimated from the stationary state
of these simulations.

The turbulent kinetic energy equation for this HST forcing, assuming spatial homogeneity, is

k Y
i —& + Bu,uy). 3D
At statistically stationary state, the energy dissipation rate is
e=BWUu). (32)

%y
This should be compared to the stationary state with the isotropic forcing [13],

e = 2Ak. (33)

The cross correlation in Eq. (32) can be written in terms of the turbulent kinetic energy, (u;u;) =
Bk, where B is a nondimensional parameter.
The integral length scale, ¢, is defined as

U 2 34)
" & 3BB’
where rms is root-mean square and
2k _3 BBL (35)
Urms = -5 — A .
3 2

The Taylor microscale, A, is calculated as

A= /15514““5. (36)

The expected Taylor microscale Reynolds number for HST is calculated as

458B¢2
Reg =/ 2000 (37)
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FIG. 2. (a) Integral length scale normalized by the domain width, (b) Reynolds shear stress (u u,)
normalized by turbulent kinetic energy, for the four DNS, and (c) comparison of Reynolds number dependence
of Reynolds shear stress (u,u) with other studies. Dashed lines corresponds to the averaged value obtained
from all simulations in the current study.

For isotropic turbulence simulations, it was given by Carroll and Blanquart [13],

. [45A2  [oAL?
Rej = /==~ /=~ (38)

as ¢/L ~ 0.2 for isotropic turbulence in a triply periodic box domain [12,13], where L is the domain
width. As will be shown from numerical results in Figs. 2(a) and 2(b), 8 ~ 0.4 and ¢/L =~ 0.28 for
HST. So, given the same domain width and viscosity, DNS of HST can be performed with the
same Reynolds number as DNS of homogeneous isotropic turbulence, using the forcing constant
B ~ 3.2A.

The expected values for turbulent kinetic energy, k,, and energy dissipation rate, &,, can be
calculated as

ko = 3up, = BB (39)
and
u 27
go= " = §ﬁ3B3£2. (40)
The expected eddy turnover time 7, is given by
ko 1 25
T, = , 41

¢ BB 324

which is slightly higher than for the isotropic case, where 7, = ﬁ [13].

C. Shear convection

The proposed HST simulation has a key difference from most simulations of shear turbulence
[17-20]; it does not include the shear convection term By%—‘)‘;. The shear convection term requires
either a remeshing scheme after every few iterations [34] or implementing shear periodicity along
the y direction to avoid boundary discontinuities [18-20]. It is often accomplished by using operator
splitting [16,20], which may introduce further errors in the computational solution.

As mentioned earlier, the shear convection term does not contribute to turbulent kinetic energy
production (see Sec. III A), as Peopny = (By"j,)—';’ -u') = 0 due to spatial homogeneity. That being said,
it may still impact the turbulent flow. To quantify this impact, we evaluate the shear strain produced
by the advection term and compare it to the existing shear strain due to the turbulence. The shear

strain due to the convection term can be calculated as aau; = B and compared against the existing
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TABLE I. Simulation parameters of the different cases.

No Rel N? L v B Forcing matrix Re; U,/ Urms u; [Uems W/ Urms (u;u}) /k
1 36 643 2 0.159 7.33 Anst 3246 1.26 0.90 0.77 0.42
2 54 128 2w 0.159 16.5 Agyst 5249 1.23 0.93 0.78 0.41
3 80 192° 2x 0.159 37.1 Anst 8013 1.23 0.92 0.78 0.39
3a 80 192° 2x¢ 0.159 37.1 Ar 80+15 1.21 0.94 0.79 0.39
3b 80 192° 2x 0.159 37.1 Ar + AnL 80+13 1.20 0.95 0.80 0.38
; (1) 0.159
3¢ 80 192 2 2) —0.0159 37.1 Anst 121 £20 1.23 0.93 0.79 0.37
3d 80 192° 2x 0.1431 37.1 Agyst 85+10 1.23 0.94 0.78 0.39
4 128 384% 0.126 1.5e-5 2.77 Anst 135+£23 1.22 0.93 0.80 0.38
shear strain due to the turbulence, a;é . Since (ZL;,‘) = 0, the second-order statistics are compared as

B2 Ly g2 15vB? 50
_ 2 ~ = 42)
GY) G > R
Bu;z

with the isotropic assumption that & ~ %"(( 5 ) ). For Re; = 100, the ratio is 0.031. Hence, the
impact of the shear convection term is small, and decreases with increasing Reynolds number.
Thus, the shear convection term is omitted for true spatial homogeneity and numerical efficiency.
Its impact will be discussed in Sec. V B.

IV. NUMERICAL RESULTS
A. Simulation

Direct numerical simulations of homogeneous shear turbulence are performed in a triply periodic
box domain that is statistically homogeneous in all three directions. Simulations are performed with
a domain width of L = 2, and various Reynolds numbers Re; .

The simulations are performed using NGA [35], a semi-implicit velocity solver with an energy-
conserving finite difference scheme on a standard staggered grid. The code solves the Navier-Stokes
equations with the derived source term from Eq. (30) for constant density, temperature, and
viscosity.

The initial velocity fields are generated randomly, using the method suggested by Eswaran and
Pope [7]. These velocity fields conform to a specified Passot-Pouquet energy spectrum [36] and are
divergence free, as is required for constant density flows.

Multiple simulations are performed at different expected values of Re,. The simulation pa-
rameters for the four different cases are tabulated in Table I. Cases 1 and 2 were performed to
investigate low Reynolds number effects, if any. Cases 3 and 4 are chosen so the Reynolds number
is comparable to simulations and experiments, published in literature (see Table II for a full list of
experimental and full domain DNS studies). More precisely, case 3 has a similar Reynolds number
to cases 1 [4], 4 [1], and 8 [2] from Table II; case 4 has a Reynolds number close to cases 5 [26] and
9 [3] in Table II.

The simulations were performed for a total of 50 eddy turnover times, during which the
simulations were stable. The average values for the numerical results were calculated in the range,
107, to 507,.
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TABLE II. Anisotropy results from various experiments and simulations of different free shear turbulent
flows. Average values of u;/ums and (u,u;)/k in the middle of shear layers of ML, PJ, and RJ.

No. Case Authors Re,  u) /s U /Uims U,/ Uims (u,ia,) /K
1 Mixing layer simulations Rogers and Moser [4] 60-69 1.10 0.88 1.01 0.33
2 Mixing layer experiments Oster and Wygnanski [37] 155 1.15 093 0091 0.32
3 Mixing layer experiments ~ Wygnanski and Fiedler [38] 186 .13 0.88 097 0.25
4 Planar jet simulations Stanley et al. [1] 8§9-92  1.05 1.02 092 0.26
5 Planar jet experiments Gutmark and Wygnanski [26] 122 1.33 0.75 0.81 0.28
6 Planar jet experiments Bradbury [25] 148-154 1.15 093 0.90 0.34
7 Planar jet calculations Pope [27] -2 128 0.85 0.81 0.42
8 Round jet simulations Boersma et al. [2] 80 1.21 0.84 0.92 0.29
9 Round jet simulations Wang et al. [3] 113 121 090 0.85 0.27
10 Round jet experiments Panchapakesan and Lumley [29] 172 123 0.86 0.86 0.33
11 Round jet experiments Falchi and Romano [39] 232 1.21 0.88 0.88 —
12 Round jet experiments Burattini et al. [40] 309 129 082 0.82 0.33
13 Round jet experiments Hussein et al. [31] LDA 508 1.17 0.88 0.92 0.28
Hussein et al. [31] HWA 120 0.84 092 0.37

14 Round jet experiments Wygnanski and Fiedler [41] 520 122 086 0.88 0.23

“Planar jet calculations were performed by Pope using a Monte Carlo method to solve the joint probability
density function equation. These results correspond to the high Reynolds number limit and are plotted at
Re; = 1000 in Figs. 2(c) and 4(b). These values agree very well with results from the current study.

B. Temporal evolution

Since the configuration is periodic in all three directions, and spatially homogeneous, ensemble
averaged mean quantities are calculated as spatial averages ({-)). These spatial averages are plotted
as a function of time.

The time evolution of the integral length scale is plotted in Fig. 2(a), and after an initial transient
period of at most 107, gives a mean value of about 0.28L, which is slightly higher than the 0.2L for
isotropic turbulence observed by Rosales and Meneveau [12]. The integral length scale reaching a
statistically stationary value of the order of the domain width is consistent with past simulations of
statistically stationary homogeneous shear turbulence [42].

Since the largest gradient of the mean flow is the shear strain % the only significant Reynolds

stress term is (u,u). This is reflected by the simulation, as the forcing term is in the equation for the
axial velocity (u,), proportional to the cross-stream velocity (u;). So, it is expected that u; and u;
have a significant positive correlation. This is one of the major differences between HIT and HST, as
there is no correlation among the velocities in different directions for the isotropic case. Figure 2(b)
shows the (u;u’y) values normalized by k at different Re;,. It can be seen that after 57,, the values
fluctuate around 0.4 for all cases, in good agreement with each other.

The average value of Reynolds shear stress from all simulations of the current study is also
plotted in Fig. 2(c) and compared with values from various simulations and experiments plotted as
a function of Reynolds number. The current study overpredicts the Reynolds shear stress, by about
1.5 ¢ compared to values from other studies, and there seems to be no clear dependence on Re;.

The turbulent kinetic energy and energy dissipation rate, normalized by their respective expected
values calculated from Egs. (39) and (40), are plotted versus time for the different cases in Fig. 3.
The values fluctuate around the expected values, so the estimation of k, and ¢, are accurate. The
fluctuations increase in magnitude with increasing Reynolds number. This is expected, as linear
forcing becomes more unstable with higher Reynolds number, as observed by Carroll and Blanquart
[13], who used a modification to the linear forcing term to improve stability. In contrast, the current
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FIG. 3. (a) Turbulent kinetic energy normalized by its expected value [Eq. (39)]. (b) Energy dissipation rate
normalized by its expected value [Eq. (40)]. (c) Taylor microscale Reynolds number, Re;, for DNS 3. Dashed
line corresponds to Re{ = 80.

forcing term uses constant mean shear, as opposed to the constant production forcing used by Carroll
and Blanquart [13].

Figure 3(c) shows the Reynolds number, based on Taylor microscale, versus time for case 3, and
it can be observed that Re; fluctuates around the expected value (80, in this case) after a transient
period of about 57,,.

C. Anisotropy

Second-order statistics can be analyzed to gather information about the velocity fluctuations
and consequently about the turbulence. The magnitudes of the velocity fluctuation components
(||, |uy], and [ul]) are calculated from the rms of the fluctuating velocity components (e.g.,

lu}| =/ <u;2>). Because of the anisotropic nature of free shear flows, it is expected that the velocity
fluctuations will be larger in magnitude along the axial direction. This is corroborated by other
simulations and experiments in Table II, and is reflected in the forcing. Although the forcing is only
along the axial direction, turbulence redistributes some of the fluctuations to the other directions,
while maintaining higher fluctuations in the axial direction.

Figure 4(a) plots the velocity fluctuation components along the x, y, and z directions normalized
by ums for Rej = 80. For isotropic turbulence, velocity fluctuations are expected to be similar along
all directions, and hence |u}|/ums 2 1. For HST, as expected, the axial direction has the largest
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FIG. 4. (a) Root-mean-square velocity components along x, y, and z, normalized by iy, for DNS 3
(Rej = 80). (b) Mean values for velocity fluctuations normalized by ums from other studies plotted versus
Re;. Dashed lines correspond to the averaged values from the current simulations (1.24, 0.92, and 0.78,
respectively). (c) Average values of rms vorticity components along different directions normalized by @y
plotted versus Re;. Dashed line corresponds to isotropic turbulence. (a) Anisotropy in velocity, (b) Re;
dependence of anisotropy, and (c) Anisotropy in vorticity.

084606-14



EFFECTIVE FORCING FOR DIRECT NUMERICAL ...

fluctuations, and the cross-stream direction and spanwise direction have smaller fluctuations. The
results follow the same trend for all Reynolds numbers considered. The average values from the
four cases of our current study are i |/umms =~ 1.25, |u;|/urms >~ 0.91 and [u] | /ttrms > 0.78.

The average values of rms velocity components are plotted in Fig. 4(b), along with data from
multiple simulations and experiments of mixing layers, planar jets, and round jets, plotted versus
Reynolds number. The current simulation solves for #”, and from Eq. (21), #’ = u’ at x,, r{’/z.
Therefore, the spatially averaged results of the current study can be compared against temporally-
averaged values in the middle of shear layers. All of the free shear flows seem to agree well with
each other. The results from the current study agree reasonably well with the values from literature
within 1 o, except for [u, | /ums, where the current study underpredicts the values, by 2 0. Also, there
seem to be no Reynolds number effects on the velocity fluctuation magnitudes, as the values remain
constant across a large range of Re; .

The anisotropy in the smallest turbulent length scales can be observed using the root-mean
square of the vorticity components (|w,| = /{w2), etc.), normalized by the rms vorticity, wgms =
J{w - ®) /3. Kolmogorov suggested that at very high Reynolds number, the turbulence is isotropic
at the smallest turbulent length scales and hence, the vorticity would be statistically isotropic
with |w;| > wms. As shown in Fig. 4(c) and as expected, the averaged vorticity magnitudes reach
isotropic values with increasing Reynolds numbers.

D. Energy spectrum

The one-dimensional energy spectra for the velocity are calculated from the simulation results of
DNS 1-4. Leveraging the flow homogeneity, energy spectra are calculated using one-dimensional
Fourier transforms in the x direction, [F;(#)] in space at different times during the simulations,
E (k1) = Fi(u) - [Fi(u)]* versus the wave number in the x direction, k;, where -* represents the
complex conjugate. The final spectrum plotted in Fig. 6(a) is calculated as the mean of the spectra
from all data files from 107, to 507,, at time intervals of 0.57, for data independence. Figure 6(a)
shows the energy spectra of all the four simulations. The spectra are normalized by the Kolmogorov
length and velocity scales and show a collapse at all wave numbers. The four spectra follow well
the 373 spectrum expected from turbulence simulations.

As mentioned earlier, the conditions of DNS 4 were selected to match the DNS of Rogers and
Moser [4]. Rogers and Moser performed a simulation of a temporally evolving mixing layer using
a Galerkin spectral method with 512 x 210 x 192 Fourier modes. They reported one-dimensional
energy spectra in x; (streamwise) and x3 (spanwise) calculated at a Reynolds number of Re,, ~
2000. The one-dimensional spectra, E (k) and E (k3), are calculated for DNS 4 and plotted in Fig. 5,
where E(k3) = F3(u) - [F3(u)]*, where F3(u) is the one-dimensional Fourier transform of the
velocity in the z direction. The one-dimensional spectra, E (x1) and E (k3), follow that f E(k})dk; =
(u? + uf + u?) =2k, i=1,3 and are plotted versus wave number in the two directions «; and
k3. It is seen that E (k1) and E (k3) are nearly indistinguishable, and these plots agree well with the
spectra from Rogers and Moser [4]. Note that the ranges of wave numbers are different between
the two simulations, because of different domain sizes and resolutions. This spectral analysis shows
that the simulations reproduce shear-driven turbulence in the spectral sense as well.

E. Production spectrum

Finally, the one-dimensional spectra for the turbulent kinetic energy production are calculated
from the shear stress spectra. The shear stress spectrum, E; (k) is calculated from the same data
files as the energy spectrum, as Ejp(«;) = 0.5{F (uy) - [F1(uy)]* + Fi(uy) - [Fi(ue)]"} such that
[ En(k)dry = (u)’cu;). The production spectra are plotted versus wave number in Fig. 6(b). The
wave number and the spectra are normalized with B and Kolmogorov length and velocity scales,
u, = (ve)!/*, and the spectra show a collapse at all wave numbers.

It is seen that the production spectra scale as x| 53 as suggested by Lumley [24]. The production
spectra decay faster than the energy spectra, which scale like k| 33 Hence, the production to energy
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FIG. 5. Comparison of one-dimensional energy spectra along x and z directions. R & M refers to the energy
spectra published by Rogers and Moser [4].

ratio is higher in the large scales, and gets smaller approaching the small scales. In contrast, linear
isotropic turbulence forces velocity proportional to the energy among all scales [11,13] and most
spectral techniques only force velocity over a low wave-number bandwidth [7-10].

V. ADDITIONAL CONSIDERATIONS

As mentioned earlier, all of these simulations were performed with a single off-diagonal
forcing term. However, the additional diagonal terms from the velocity gradients and the diagonal
and nonlinear terms from the periodicity and continuity corrections can also be included in the

simulation as forcing terms. The impact of these additional forcing terms are analyzed by comparing
the simulations with and without them.
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FIG. 6. (a) Energy spectra normalized by ¢ and v. (b) Shear stress spectra normalized by ¢ and v. The
dashed line corresponds to turbulence scaling from literature,  =>/3 in (a) and ¥ ~7/3 in (b).
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FIG. 7. Normalized turbulent kinetic energy budget. The lines correspond to experimental results from
Panchapakesan and Lumley [29]. Symbols correspond to different simulations: DNS3, circles; DNS 3a,
triangles; DNS 3b, squares.

A. Linear diagonal and nonlinear source terms

Simulation 3 was repeated as DNS 3a with all the linear diagonal terms from Eq. (23) and as
DNS 3b with all linear and nonlinear terms from Eq. (24). This second simulation is the closest
representation to the half-width of the turbulent round jet.

1. Anisotropy and energy production

DNS 3a gives an average value of (u,u;) = 0.39 and DNS 3b gives an average value of (1 u}) =
0.38, which are both very close to the results from DNS 3. The diagonal terms only contribute to
about 7% of the turbulent kinetic energy production, and the nonlinear terms are responsible for
12% of it in DNS 3b. These results are slightly less than our a priori estimate of the contributions
(see Sec. IIT A). The off-diagonal term is the major contributor to the production, accounting for
93% and 81% of the kinetic energy production in DNS 3a and 3b, respectively.

2. Turbulent kinetic energy budget

The various terms in the budget of the turbulent kinetic energy, namely the production, advection,
turbulent diffusion, and the dissipation, are calculated and compared against the turbulent kinetic
energy budget for the turbulent round jet. The current simulations correspond to the location of the
half-width of the round jet, and should be compared against the experimental values at r = 7y ;.

The budget values are plotted in Fig. 7 and compared with the experiment results of Pan-
chapakesan and Lumley [29]. The forcing matrix from the velocity gradients corresponds to
production, Prod = (u’ - Vu - u') = (u’ - A¢ - u'); the diagonal elements of the forcing matrix from
the renormalization matrices A, and A, correspond to advection, Adv =u-Vk = -A,-u') +
(W' - A, -u'); and the turbulent diffusion can be calculated from the triple correlation, Diff = V -
(u'k) = (ku;) /r12 + 3{ku})/x,. The dissipation rate is calculated as Diss = —e. These quantities
are calculated from the three simulations, regardless of what the forcing matrix is. All the values
are normalized by U03 /112, where U, is calculated as U, = 4/k/0.062 [31] and ry, is calculated as
ri2 = 0.586U,/B [32].

As expected, the major contributions to the budget are from production and dissipation, and the
advection and diffusion are closer to zero. The advection by the mean is accurately represented
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FIG. 8. Ratio of production to dissipation of kinetic energy. The blue line corresponds to simulations in
the current study and the three lines correspond to three simulations by Kasbaoui et al., with different initial
conditions.

by the simulation, whereas the production and dissipation are slightly over-predicted. This result
is consistent with the over-prediction of the shear Reynolds stress (u;u;) [see Fig. 2(c)], and the
dissipation increasing to match the turbulent kinetic energy production. The diffusion value of case
3b matches fairly well with the experimental results, as they include nonlinear source terms which
appear as diffusion terms (triple correlations) in the kinetic energy budget, while case 3 and 3a show
zero diffusion. Apart from this, there are very small differences between the simulations without the
diagonal terms (case 3), with the diagonal terms (case 3a), and with the nonlinear terms (case 3b).
In fact, the dissipation values from DNS 3 are closer to the experimental results. Hence, adding the
additional source terms do not make any improvement in the turbulent kinetic energy budget, except
in the turbulent diffusion.

The simulations involve a balance between the two major contributors, production and dissipa-
tion. As seen in Fig. 8, the ratio of production to dissipation of kinetic energy fluctuates around a
value of 1.0 (for our DNS), after an initial increase. The current simulation method focuses only on
the velocity fluctuations and by definition has to be statistically stationary in the long term. This is in
fact true as the simulation is stable in the long term, and reaches a stationary state where production
and dissipation balance each other. The simulations by Kasbaoui et al., however, had to be stopped
at Br = 20, because of the exponential growth of the kinetic energy, where P/¢ ratio is much higher
than 1 for all the simulations [20]. While being higher than 1, the ratio of P/¢ in all three cases have
the general same evolution and seem to tend toward unity.

3. Velocity correlations

The velocity correlation between u) and u; is analyzed by plotting their joint probability density
function (pdf). Contour plots of the probability density function at different velocity fluctuation
values are shown in Fig. 9. High probability is found near small values of the velocity fluctuations,
and a positive correlation is observed from the positive tilt of the contours. There seems to be few
discernible differences between the simulations with only the off-diagonal term (case 3), and with
additional diagonal and nonlinear terms (case 3b). The key difference is in the skewness of the
velocity component toward the negative values, and the maximum being away from the origin for
case 3b.
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FIG. 9. Joint pdf of the normalized velocity fluctuations in the x and y directions from simulation with
(a) just the off-diagonal term and (b) linear and nonlinear terms.

The marginal pdf of the velocity fluctuations in the x and y directions are plotted in Fig. 10. It
was verified that the mean of the velocity fluctuations are zero, despite the high skewness observed
in the results of DNS 3b. The velocity fluctuations in the x direction (u,) show larger differences
between the two simulations. The normalized skewness and flatness for DNS 3 are (1) / WS =
—0.03 and (u"*)/(u"*)? = 2.83, respectively, while for DNS 3b gives 0.41 and 3.06, respectively.
The differences are less prominent in velocity fluctuations in the y direction (u;). The skewness
and flatness values are —0.01 and 3.02 for DNS 3 and 0.26 and 3.14 for DNS 3b, respectively.
The skewness values from DNS 3b are comparable to those calculated from the experiments of
Hussein et al. [31], 0.37 for /, and 0.45 for u;, and Panchapakesan and Lumley [29], 0.44 for «/ and
0.39 for u; The flatness values for both simulations are near 3.0, which is the flatness for normal
distributions.

B. Advection by the mean

As mentioned in Sec. III, homogeneous shear turbulence has been simulated in the past using the
off-diagonal production term (Bu;), and the advection by the mean term (By%). The production
term has been included in all the simulations in the current study. The mean advection is represented
by the renormalization matrices, A, and A, as forcing terms, and captured correctly in the turbulent
kinetic energy budget (see Sec. V A 2). The only effect missing is the straining induced by the mean
flow [17-20].

Multiple studies have performed sheared turbulence simulations by including the shear convec-
tion term, but do not reach long term stability and as a result, usually run only until Bf = 28 or lower
[17-20,43]. Kasbaouiet al.’s [20] study represents one of the best cases of the past studies, reaching
Bt = 20, which corresponds to /7, = 8 in our case. Their simulations of sheared turbulence also
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FIG. 10. Marginal pdf of the normalized velocity fluctuations in the (a) x and (b) y directions from
simulation with just the off-diagonal term, and linear and nonlinear terms.
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TABLE III. Turbulence quantities before and after shear remapping.

" 2 Drop
Ref k/k, (u;u;)/k e/, k/k, (u;u;)/k e/e, in &
36 0.842 0.430 1.018 0.842 0.432 0.876 13.9%
54 0.972 0.415 1.139 0.972 0.415 0.984 13.5%
80 0.918 0.394 0.955 0.918 0.394 0.865 9.4%
128 1.019 0.381 0.997 1.019 0.381 0.910 8.7%

include the shear convection term, which was implemented using operator splitting. Only a brief
description of the multi-step procedure is given here. The reader is referred to Ref. [20] for more
details. Step 1 starts with the velocity vector #”, and the momentum equation is solved with the
production term included, resulting in u, referred to as u; henceforth. Then, step 2 is to apply the
shear-remapping, by #(x) = u;(x — ByAt) and apply a pressure correction, to get #"*! which is
divergence free, referred to as u,. The boundary conditions in the y direction are shear periodic,
such that f(x, Ly, z) = f(x — BtL,, 0, 2).

The simulations in our current study solve for the momentum equation with the production term,
hence the velocity field corresponds to u;. To quantify the effect of step 2, the shear convection term
is applied a posteriori. Specifically, the velocity field is convected in the x direction proportional to
the distance in the y direction from the bottom of the domain. The time step AT is chosen such that
the difference in displacement at y = 0 and y = L, is exactly one grid point, that is BL,AT = Ax.
This time step was of similar magnitude and slightly higher than the time step per iteration, At,
in the current study. The pressure correction is then applied to obtain the divergence-free velocity
ﬁeld, uj.

The turbulence quantities are calculated from the original data files (corresponding to the velocity
field after step 1, ;) and from the shifted data files (corresponding to the velocity field after step 2,
u; using appropriate boundary conditions). The average quantities are summarized in Table III. As
expected (see Sec. IIT A), the turbulent kinetic energy and the Reynolds shear stress are not affected
at all. The only change observed is a reduction in the viscous dissipation rate, &, by about 8—14%.
The drop in & decreases with increase in Reynolds number, which is consistent with the a priori
analysis of shear convection (see Sec. III C).

The effect of shear convection on the turbulent kinetic energy can be emulated by decreasing
the viscous dissipation rate in two different ways. First and to be consistent with the splitting
procedure of Kasbaoui et al. [20], a new simulation DNS 3c is performed, where step 1 is to solve
the momentum equation with the production term (v; = v) and step 2 is to solve the equation,

"
v, 43)
ot
with v, = —0.10v. This emulates the shear convection term with the operator splitting aspect, where

solving the momentum equation and the shear convection are executed as different steps. While
these methods likely do not capture all the physical effects of the shear convection, it aims to emulate
the biggest effect of shear convection on the turbulence statistics.

Alternatively, if there were no operator splitting and all the operations were to be performed
in one step, it would correspond to solving the momentum equation with the production term,
and an effective viscosity, Vet = v; + v = 0.90v. DNS 3d is performed under these conditions,
which correspond to the same parameters as DNS 3 with v = 0.1431 instead of 0.159. Figure 11
shows the evolution of kinetic energy from the three simulations, DNS 3, DNS 3c, and DNS
3d. Unsurprisingly, DNS 3 and 3d are very similar. Effectively, DNS 3d is a simulation with the
pure shear and only a different viscosity, i.e., a different Reynolds number. However, when shear
convection is emulated with operator splitting, the evolution of the turbulent kinetic energy is
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FIG. 11. Evolution of turbulent kinetic energy normalized by the expected value [Eq. (39)] for different
treatment of the shear convection term.

completely different. It is striking that such a small reduction in ¢ (about 10%) has such a large
effect on k (about 500%). From this comparison, proper care must be taken while using operator
splitting, considering the numerical implications and errors associated with it.

In the current simulations, the time step per iteration, At is approximately equal to AT, the time
taken for a shift by one grid point. As the actual time step, At is reduced, the shear convection
term would be applied only every Ny = AT /At iterations, and its contribution would decrease
linearly with decrease in At. This first-order error (in At) is consistent with Godunov-style splitting
schemes.

VI. CONCLUSION

To provide a physical and mathematical foundation to realistic turbulent flows, the turbulence
forcing technique for shear flows is directly computed from the large scales of these flows. Different
statistically stationary free shear flows were considered for the calculations of the forcing matrix.
The forcing terms did not just arise from the shear strain or the velocity gradients, but also
from periodicity corrections in x, y/r, and continuity corrections, which generated both linear
and nonlinear forcing terms. The additional source terms were calculated by leveraging the self-
similarity of velocity fluctuations and their moments.

An a priori analysis was performed to estimate the effect of the multiple source terms to the
turbulence, including the linear diagonal forcing terms, nonlinear forcing terms, and the mean
advection term. The relation between the forcing constant and the Taylor microscale Reynolds
number was established, so that turbulence quantities can be predicted prior to selecting the grid
resolution for any simulation.

The turbulence generated is anisotropic in nature, consistent with that observed in the middle
of shear layers. The Reynolds shear stress values are over predicted within statistical uncertainty,
compared to experimental and simulation results. For the same Reynolds number, the anisotropic
turbulence has higher integral length scale, lower turbulent kinetic energy and dissipation rate, and
higher eddy turnover time than isotropic turbulence.

Anisotropy is observed both in the components of velocity and vorticity. The anisotropy in the
fluctuating velocity agrees reasonably well with results from simulations and experiments of free
shear flows. The anisotropy in the fluctuating velocity shows no clear Re; dependence, while the
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vorticity components become more isotropic with increasing Reynolds number. The spectra for the
energy and production agree with the scalings suggested by turbulence theory and past simulations.

Simulations were performed with the additional linear and nonlinear source terms, and compared
with the pure shear simulations, with a special attention to Reynolds shear stress, turbulent kinetic
energy budget, and velocity correlations. There was no significant difference between the two
simulations with linear source terms. The simulation with all the linear and nonlinear terms showed
nonzero turbulent diffusion and skewness in velocity fluctuation distributions, which were not
present in the simulation with just the linear terms. In either case, the additional forcing terms
did not significantly improve upon the simulation results.

The shear convection due to the mean advection term was applied a posteriori, and simulations
were performed emulating its effect. It was observed that the effect of this term is not significant and
would be negligible especially at high Reynolds number. The results also pointed out the potential
role of splitting errors in previously published unbounded numerical simulations.
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