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We experimentally and numerically investigate the angular momentum transport in
turbulent Taylor-Couette flow for independently rotating cylinders at a small radius ratio
of η = 0.357 for various shear Reynolds numbers (4.5 × 103 � ReS � 1.2 × 105) and
ratios of angular velocities (−0.5 � μ � 0.2). The momentum transport in terms of the
pseudo-Nusselt number Nuω does not show a pure power law scaling with the forcing
ReS and features nonconstant effective scaling between 1.3 × 104 � ReS � 4 × 104. This
transition lies in the classical turbulent regime and is caused by the curvature-dependent
limited capacity of the outer cylinder to emit small-scale plumes at a sufficient rate to
equalize the angular momentum in the bulk. For counter-rotating cylinders, a maximum in
the torque occurs at μmax = −0.123 ± 0.030. The origin of this maximum can be attributed
to a strengthening of turbulent Taylor vortices, which is revealed by the flow visualization
technique. In addition, different flow states at μmax concerning the wavelength of the
large-scale vortices have been detected. The experimental and numerical results for the
Nusselt number show a very good agreement.
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I. INTRODUCTION

Complex turbulent flows are often investigated in simple geometries to reveal fundamental
mechanisms of transport and structure formation. For rotating shear flows, the Taylor-Couette (TC)
geometry, which consists of coaxial and independently rotating cylinders enclosing the working
fluid in between, is a widely used configuration to study hydrodynamic instabilities [1] as well as
turbulence [2]. Next to the shear forces and rotation forces, curvature effects also play an important
role in Taylor-Couette flow. The influence of curvature can be measured in terms of the curvature
number RC = d/

√
r1r2 (cf. Ref. [3]), which is the reciprocal of the geometrical mean of both

cylinder radii (r1, r2) normalized by the width of the gap d and measures the importance of the
additional coupling between wall-normal (radial) and streamwise (azimuthal) velocities induced
by the curvilinear coordinates. This coupling causes strong modifications in shear flows. Indeed,
Bradshaw [4] noted, “The surprisingly large effect exerted on shear-flow turbulence by curvature of
the streamlines in the plane of the mean shear,” when studying boundary layers over curved surfaces.
The curvature number can also be expressed in terms of the radius ratio η = r1/r2. As η approaches
to 1, RC becomes zero and curvature effects vanish. In this situation, Taylor-Couette flow becomes
rotating plane Couette flow [5]. The TC flow is also in close analogy to the Rayleigh-Bénard
(RB) convection [6,7], the fluid flow in a layer heated from below and cooled from above,
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FIG. 1. (a) Sketch of TC apparatus with visualization setup. (b) Time-averaged image over 2900 images of
the flow for ReS = 3 × 103 and μ = 0 with an acquisition frequency of 60 Hz. Yellow line indicates position
of evaluation of axial light intensity profiles. (c) Yellow line represents light intensity profile along the line of
panel (b). Black line indicates light intensity profile for an laminar flow, taken to correct for inhomogeneous
illumination.

where curvature is absent. As shown by Brauckmann et al. [5], when η < 0.9 curvature effects
become important and result in differences between the inner and outer gap region concerning
their linear stability, intermittency, and fluctuations. This asymmetry inside the gap increases, when
η decreases. It is worth to mention, that such kinds of asymmetry can be established also in a
RB flow between the top and bottom plate, if the adjusted temperature difference is sufficiently
high. In that case the temperature-dependent fluid properties are no longer neglectable and so-called
non-Oberbeck-Boussinesq effects come into play [8]. Thus, the investigation of wide-gap TC flows,
where curvature effects gain more importance are of special interest.

The geometry of a Taylor-Couette setup is defined by the radius ratio η = r1/r2, the gap width
d = r2 − r1, and the aspect ratio � = �/d with the radii of the inner r1 and outer cylinder r2 and
their length � [cf. Fig. 1(a)]. When the angular velocities ω1,2 of both cylinders are normalized
using the geometrical parameters and the kinematic viscosity of the fluid ν, two Reynolds numbers
Re1,2 = (r1,2ω1,2d )/ν can be defined, also known as the inner and outer cylinder Reynolds number.
The shear driving of TC flow is given by the differential rotation of the cylinders, i.e., the difference
in velocities between inner and outer cylinder. This can be nondimensionally represented as a shear
Reynolds number ReS [3]:

ReS = 2

1 + η
|ηRe2 − Re1| = uSd

ν
. (1)

The shear Reynolds number results from nondimensionalizing a characteristic shear velocity us

obtained from examining TC flow in a rotating frame of reference, where the amount of rotation
�r f is chosen such that the speed of cylinders is equal but with opposite sign. A further control
parameter which controls the magnitude of the Coriolis forces in the rotating reference frame is
required to completely characterize the system. This can be either denoted as a rotation number
R� = 2�r f d/US , or, more intuitively, using the ratio of angular velocities μ = ω2/ω1, where a
positive sign denotes corotation and a negative sign counter-rotation. When a flow state is defined
by prescribing the values of ReS and μ, the global system response can be quantified by the transport
of angular momentum Jω [6,7], which is preserved over the radial coordinate r:

Jω = r3(〈urω〉ϕ,z,t − ν∂r〈ω〉ϕ,z,t ). (2)
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The brackets 〈·〉ϕ,z,t denote an average over a cylindrical surface and time and ur and ω denote the
radial and angular velocity, respectively. Jω is directly proportional to the torque T that is necessary
to apply at the cylinders to keep them at a constant speed: Jω = T /(2π�ρ). When the momentum
transport is normalized by its corresponding laminar value J lam

ω = 2νr2
1 r2

2 (ω1 − ω2)/(r2
2 − r2

1 ), we
obtain a pseudo-Nusselt number Nuω, analogous to the Nusselt number which is used to quantify
the heat flux in e.g. the Rayleigh-Bénard flow:

Nuω = Jω

J lam
ω

. (3)

There are three main questions related to the momentum transport in TC flows which have been
typically addressed: (i) what are the effective scaling laws relating momentum transport and driving,
expressed nondimensionally as a Reynolds number (Re1 or ReS), (ii) how does the momentum
transport depend on the rotation ratio μ, and (iii) how do the large-scale structures known as “Taylor
vortices” influence this transport. Typically, the effective scaling of the momentum transport is
analyzed expressed in terms of the dimensionless torque G = T /(2π�ρν2) for pure inner cylinder
rotation (μ = 0) by assuming a power law ansatz of the form G ∼ Reα

1,S , which translates for the
pseudo-Nusselt number to Nuω ∼ Reα−1

1,S . Besides, to emphasize the similarities between the TC
flow and RB convection, also the effective scaling of Nuω with the so-called Taylor number Ta =
σ 2Re2

S is used, where σ = 2−4(1 + η)4η−2 denotes the pseudo-Prandtl number, leading to Nuω ∼
Ta

α
2 − 1

2 . By using marginal stability analysis, King et al. [9] and Marcus [10] predicted effective
scalings for the torque in the spirit of what had been done for Rayleigh-Bénard flow by Malkus and
Veronis [11]. Marginal stability theory is based on a separation of the flow into an inner boundary
layer (BL), a bulk flow and an outer boundary layer. Both BLs are assumed to be laminar and
the bulk flow as well as the BLs are marginally stable according to Rayleigh’s stability criterion.
As consequence, the radial profile of the angular momentum L = ωr2 has to be flat in the bulk
flow, which is in good agreement with the findings of previous studies [5,12,13]. Matching of the
L-profiles at the separation borders and independence of the momentum transport on the radial
coordinate leads to a predicted scaling exponent of α = 5/3 identical to the one for Rayleigh-Bénard
flow and the calculations of Barcilon and Brindley [14]. Another prediction for the effective torque
scaling was derived by Lathrop et al. [15] using a Kolmogorov type argument assuming that the
energy dissipation rate ε is constant in the inertial range and has no length scale dependence. This
condition yields a sort of upper bound for the scaling exponent and is equivalent to the assumption
of an infinite Reynolds number, where viscous effects can be neglected. In contrast to Lathrop,
we use the shear velocity uS as the characteristic velocity difference and the gap width d as the
characteristic length, leading to the relation

ε = 2

r2
2 − r2

1

(ω1 − ω2)ν2G ∼ u3
S

d3
, (4)

G ∼ η

(1 − η)2
Re2

S, (5)

with α = 2. The same exponent was also found by Doering and Constantin [16] directly derived
from the Navier-Stokes equation as an upper bound. Further, Eckhardt et al. [7] deduced a prediction
for the effective torque scaling in analogy to the RB flow by distinguishing the contributions of the
bulk and the BL to the overall transport. For not-too-wide gaps (σ ≈ 1) and laminar boundary
layers, they found a scaling exponent of α = 5/3, when the boundary layers are dominant and
α = 2, when the bulk flow is dominant. Contrary to these predictions, no pure power law scaling
could be detected within numerous numerical and experimental studies. Wendt [17] performed
direct torque measurements for three radius ratios (η = 0.68, 0.85, and 0.935), finding α = 1.5 for
4 × 102 � Re1 � 104 and α = 1.7 for Re1 > 104. Instead of a partially constant exponent, Lathrop
et al. [15] identified a monotonically increasing exponent from α = 1.23 − 1.87 in the range of
8 × 102 � Re1 � 1.2 × 106 and a sharp discontinuity in the α-Re1-curve around Re1 = 1.3 × 104
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for η = 0.724. In addition, Merbold et al. [18] measured the torque for η = 0.5, where α was
increasing up to ReS = 6 × 105, before it settled to a nearly constant value around α = 1.65 ± 0.03.
Again, a transitional behavior of the exponent was found around ReS ≈ 8 × 104–105. Similar results
for a wide range of radius ratios of η = 0.714, 0.769, 0.833, and 0.909 with a universal scaling
exponent of α = 1.78 for Taylor numbers larger than Ta = σ 2Re2

S > 1010 were found by [19].
The only investigation of the momentum transport at very wide-gap TC flows for a radius ratio of
η = 0.35 was performed by Burin et al. [20] finding α = 1.6 ± 0.1 for 2 × 103 � Re1 � 104 and
α = 1.77 ± 0.07 for 2 × 104 � Re1 � 2 × 105. There, Jω was measured only locally and indirect
by laser Doppler velocimetry (LDV). We want to stress that the last mentioned result contradicts
the previous investigations, where a monotonic increase of the transitional Reynolds number with
decreasing η were reported. In the study of Burin et al. [20], however, the bulk dominated regime
(α > 5/3) is reached at Re1 ≈ 2 × 104 much earlier than in the case of η = 0.5. Besides, in all
presented investigations a transitional behavior was found in the scaling exponent, whose origin
was linked by Ostilla-Mónico et al. [21] to a shear instability in the BLs, where laminar BLs would
transition to turbulent ones. This picture unifies the aforementioned scaling predictions. At low
Reynolds numbers, the momentum transport is limited by the laminar boundary layers (α = 5/3),
while at large Reynolds numbers, the featureless turbulent bulk is the limiting factor (α = 2).

When independently rotating cylinders come into play, the torque exhibits an additional
dependency on the rotation ratio μ and it can be shown, that a separation ansatz of the form
G = f1(μ) f2(Re) is valid [3,22]. Furthermore, the torque depicts a maximum in the slight counter-
rotating regime, when the shear Reynolds number is kept constant and only the rotation rate μ is
changed. This maximum location strongly depends on the radius ratio and was found in various
numerical and experimental studies (μmax(η = 0.5) = −0.195 and μmax(η = 0.71) = −0.361 by
Brauckmann and Eckhardt [23], μmax(η = 0.5) = −0.198 by Merbold et al. [18], μmax(η =
0.714, 0.716) = −0.33 by van Gils et al. [24] and μmax(η = 0.724) = −0.33 by Paoletti and
Lathrop [25]). Note, that we excluded studies for radius ratios η > 0.8 due to the fact, that the
flow behavior changes as described by Brauckmann et al. [5]. A first attempt to explain the physical
mechanism behind this maximum was made by van Gils et al. [24] with the so-called angle bisector
hypothesis. van Gils et al. [24] argued that the most unstable point in the parameter space is the
location equally distant from both Rayleigh stability lines μ = η2 and μ = ∞, which defines the
rotation ratio of the torque maximum μb by

μb = −η

tan
[

π
2 − 1

2 arctan(η−1)
] . (6)

While the predicted rotation ratio of the torque maximum for η = 0.716 becomes μb = 0.368
in good agreement with the measurements of van Gils et al. [24] of μmax = −0.33, it deviates
noticeable for η = 0.5, where it becomes μb = −0.309 in contrast to the measurements of Merbold
et al. [18] with μmax = −0.198.

Another prediction, linking the location of the torque maximum to the onset of intermittency
in the gap and a strengthening of large-scale Taylor vortices, was developed by Brauckmann and
Eckhardt [23]. Their theory states that turbulent Taylor vortices in the slight counter-rotating regime
can extend the theoretical neutral line by a factor a(η):

a(η) = (1 − η)

⎡
⎣

√
(1 + η)3

2(1 + 3η)
− η

⎤
⎦−1

. (7)

a(η) is called parameter of vortex extension and depends only slightly on η, reaching values in
the range of 1.4–1.6 [26]. If this extension exactly ends at the outer cylinder wall, the Taylor vortices
are most pronounced leading to a maximum in transport. For even higher counter-rotating rates, the
vortices are restricted to an inner gap region with a laminarized outer region. As the momentum
transport has to be constant over the whole gap, intermittent bursts flushing from the unstable inner

084605-4



ANGULAR MOMENTUM TRANSPORT AND FLOW …

gap region into the stable outer gap region appear. Based on the stability calculations of Esser and
Grossmann [26], the prediction of Brauckmann and Eckhardt [23] can be written as

μp(η) = −η2 (a2(η) − 2a(η) + 1)η + a2(η) − 1

(2a(η) − 1)η + 1
, (8)

with a(η = 0.357) = 1.532. A connection between the torque maximum and the onset of inter-
mittency was also identified via LDV-measurements by van Gils et al. [24] and the strengthening
of TV has been shown by Ostilla-Mónico et al. [21] and Froitzheim et al. [27]. In comparison,
the prediction yields μp(η = 0.5) = −0.191 and μp(η = 0.71) = −0.344 in very good agreement
with the before mentioned findings. This is a clear indication that Taylor vortices play a prominent
role in the momentum transport in the fully turbulent regime for the “broad peak” identified by
Brauckmann et al. [5]. Furthermore, the wavelength or the total number of turbulent Taylor vortices
inside the gap influences the amount of momentum transport [28,29]. In line with these findings,
Huisman et al. [30] and van der Veen et al. [31] showed, that multiple vortex states can exist in the
gap for counter rotation at very high Taylor numbers of Ta = 1013 and that these states are stable
leading to different amounts of momentum transport depending on the actual flow state. Based on
this state of the art, we analyze the scaling of the Nusselt number with the shear Reynolds number
and the location of the torque maximum by means of direct torque measurements and numerical
simulations for the radius ratio of η = 0.357. Furthermore, we perform flow visualizations to
determine the corresponding flow state itself.

II. EXPERIMENTAL SETUP AND MEASUREMENT TECHNIQUE

The experiments have been carried out in the Top view Taylor-Couette Cottbus facility (TvTCC),
which has been already used in Ref. [27]. The apparatus consists of an aluminum anodized inner
cylinder (IC) and a transparent, acrylic glass outer cylinder (OC) with radii r1 = 25 mm and
r2 = 70 mm, respectively. Their length is � = 700 mm, which results in a gap width of d = 45 mm, a
radius ratio of η = 0.357, and an aspect ratio of � = 15.6. Also the top plate is made of transparent
acrylic glass and both end plates rotate together with the OC. The inner cylinder is mounted on
an inner, stainless steel shaft, that is connected to the driving of the IC. In the IC driving train,
a contactless shaft to shaft rotary torque sensor (DR2500/M220-G21) of the company Lorentz
Messtechnik GmbH with a nominal torque of ±2 Nm and an accuracy of ±0.1% is integrated
via torsionally stiff couplings with a transmissible torque of 6.17 Nm. Both cylinders can rotate
independently up to n1 = ±2000 rpm and n2 = ±500 rpm with a standard deviation smaller than
1%. As working fluids, the silicone oils M20, M10, M5, and M3 are used and the temperature
of the fluid is monitored with a thermocouple type K sensor inserted into the bottom end of the
gap, whose measurement accuracy is 0.8%. This temperature is used to calculate the actual fluid
viscosity and density. The temperature dependent fluid data, measured with a Stabinger viscosimeter
with integrated density measurement cell (Anton Paar, SVM 3000/G2, �ν = ±0.35%, �ρ =
±0.0005 g/cm3), are shown in Table I. Note that the temperature can only be measured for an outer
cylinder at rest.

According to the presented setup, the torque is measured over the whole length of the inner
cylinder including end wall effects and the friction of three stainless steel single-row groove ball
bearings. Therefore, the torque is measured twice, once with a fluid-filled gap and once with air.
Afterwards, both torque signals are subtracted to get the torque induced by pure friction force of the
fluid. It is worth to mention, that measurement points have been rejected, where the torque signal
using air exceeds 20% of the value with liquid. The torque sensor setup is validated using a larger
inner cylinder with r1,val = 35 mm, leading to a radius ratio of ηval = 0.5. In this configuration,
the torque has been measured for ReS = 5 × 103 and ReS = 104 in the range of μ ∈ [−0.6; 0] and
compared with direct torque measurements and direct numerical simulations of [18]. We find a very
good agreement with a relative deviation of smaller than 5% [32]. For the torque measurements of
the current study at η = 0.357, a fixed protocol was used. We can distinguish between measurements
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TABLE I. Kinematic viscosity ν and density ρ of the working fluids as function of the temperature T.
Functions are calculated based on a linear regression of the viscosimetry data. Correlation coefficients of
regression are larger than 0.99.

Kinematic viscosity ν [mm2/s]a Density ρ [g/cm3]b

a b @ 25 ◦C c d @ 25 ◦C

M3 −0.046 4.175 3.023 −9.356×10−4 0.913 0.890
M5 −0.088 7.612 5.402 −9.247×10−4 0.939 0.916
M10 −0.189 15.05 10.34 −8.952×10−4 0.958 0.935
M20 −0.385 29.57 19.95 −8.963×10−4 0.972 0.950

aν(T [◦C]) = aT + b.
bρ(T [◦C]) = cT + d .

for μ = 0, where the IC speed is increased sequentially, and measurements at a fixed shear Reynolds
number ReS , where the ratio of angular velocities is changed sequentially. In both cases, the cylinder
speeds of the first measurement point are set in with an subsequent waiting time of approximately
10 min to let the flow evolve. Afterwards, the torque is measured for 90 seconds at 10 Hz before the
cylinder speeds are adapted for the next measurement point. Here, the required change in cylinder
speed is small and the waiting time can be reduced to 120 s. Due to this waiting time, we can
assume the measurements to be quasi-stationary. In the case of pure inner cylinder rotation, the
fluid temperature is measured for each data point directly before the measurement phase. In the case
of differential rotating flow states, the inner cylinder speed is adapted always before the outer one
and for every fourth data point, the outer cylinder speed is set to zero and the fluid temperature is
measured.

For the purpose of flow visualization, two halogen lamps are mounted on the experiment stand
at the height of about the top and bottom plate, respectively and centered to the rotation axis. Both
lamps are tilted into the direction of mid height of the experiment to illuminate an axially middle
segment of the flow. Further, an Optronis CR 3000 × 2 high speed camera with 1690 × 1710 px
sitting on a tripod was positioned in front of the experiment capturing approximately six gap
widths in axial direction and the whole outer cylinder diameter in radial direction centered slightly
above mid height. To make the fluid motion visible the silicone oils are suspended with anisotropic
aluminum flake particles, which have an elliptic shape and an upper diameter of approximately
5 μm. As shown experimentally by Abcha et al. [33] using Kalliroscope flakes in a TC system,
“small anisotropic particles align with the flow streamlines by giving the precision on the velocity
component which bears these alignment.” In their setup, they used a light sheet visualization in
the radial-axial plane, which led to an intensity image of the reflected light that corresponds to
the magnitude of the radial velocity component in good agreement with numerical simulations of
Gauthier et al. [34]. For our setup, where the flow is visualized in the azimuthal-axial plane, the
intensity image should provide information on the azimuthal uϕ or axial velocity component uz,
meaning that bright areas are related to large absolute values of uϕ or uz. Moreover, blue pigments
(BASF, Heliogen blue, K6850) have been added into the fluid to reduce its transparency and focus
on the flow in the outer gap region. This is necessary, as we will visualize fully turbulent flows in a
wide-gap configuration. When the experiment is not running, the aluminum and pigment particles
settle down slowly. After approximately 3 days, all particles have been mixed out and gather at
the bottom plate. However, a uniformity of suspension can be restored within a few minutes by
setting up a fully turbulent flow state. For each visualized flow state, a waiting time of 10 min was
used before images of the flow were taken. Each visualization consists of 2900 images recorded at
a frequency of 60 Hz. From the acquired images, only one central line [yellow line in Fig. 1(b)]
is analyzed over time to reveal the flow organization. Regarding inhomgeneous illumination, the
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intensity distribution I0 for a laminar flow [black line in Fig. 1(c)] is subtracted from the original
image intensity I [yellow line in Fig. 1(c)].

III. NUMERICAL SIMULATIONS

To complement the experiments, direct numerical simulations of Taylor-Couette flow are
performed by solving the incompressible Navier-Stokes equations in cylindrical coordinates in a
rotating reference frame:

∂u
∂t

+ u · ∇u + 2�r f × u = −∇p + ν∇2u, (9)

∇ · u = 0, (10)

where u is the velocity, p the pressure, �r f the angular velocity of the rotating frame, and t is time.
Spatial discretization is achieved by the use of a second-order energy-conserving centered finite
difference scheme, and time-marching is performed with a low-storage third-order Runge-Kutta for
the explicit terms and a second-order Adams-Bashworth scheme for the implicit treatment of the
wall-normal viscous terms. Further details of the algorithm can be found in Refs. [35,36]. This code
has been previously used and validated extensively for Taylor-Couette flow [21].

Unlike the experiments, the numerical simulations use axially periodic boundary conditions with
a periodicity length Lz. This is expressed nondimensionally as an aspect ratio � = Lz/d and is
fixed to � = 2. For this aspect ratio, exactly one vortex pair with wavelength λz/d = 2 fits into
the simulated volume. Due to the periodic boundary conditions, this corresponds to the solution
for infinitely long cylinders as long as periodicity effects are negligible. Indeed, it is known that
one single roll is sufficient to accurately capture most statistics, including torque [28,37]. The
nondimensional radius ratio η is also matched to that of the experiment η = 0.357. Unlike previous
studies, no additional rotational symmetry is imposed, and the full 2π azimuthal extent of the
domain is simulated. Due to the wide-gap, the streamwise extent Lx is already quite small at the
inner cylinder as compared to the gap size: Lx(r = r1)/d ≈ 3.5. From our experience, a minimum of
Lx/d = π is needed to produce accurate decorrelations [38], so we suspect that introducing a degree
of rotational symmetry which further reduces this extent will introduce artifacts. The simulations are
performed in the reference frame of Dubrulle et al. [3] such that both cylinders rotate with opposite
velocities ±U/2. In this frame the two control parameters naturally become the shear Reynolds
number and the rotation parameter defined in the Introduction.

The shear Reynolds number is varied between Res = 5 × 103 and Res = 4 × 104, with resolu-
tions ranging from Nθ × Nr × Nz = 256 × 256 × 512 to 768 × 384 × 768, in the azimuthal, radial,
and axial directions, respectively. The axial and azimuthal grid distributions are homogeneous, but
points are clustered in the radial direction. Due to the asymmetry of the cylinders, higher resolutions
are needed at the inner cylinder to properly resolve the structures. For the radial direction, this
is solved by clustering more points. The azimuthal discretization becomes larger with increasing
radius, which naturally provides for higher resolution in the inner cylinder. The axial direction can
become problematic, as it is discretized in a homogeneous manner. In this direction, the resolution
requirements are set by the structures at the inner cylinder, and thus the outer cylinder wall is
overresolved in this direction. At low Reynolds numbers the resolution is chosen such that dispersive
effects cannot be observed when looking at the flowfield. For higher Reynolds numbers, we measure
the resolution in viscous units, i.e., normalized by δν = ν/uτ , where uτ the frictional velocity
is uτ = √

τW /ρ, with τW = T /(2πr2�) the shear at the wall. We choose the viscous unit at the
inner wall as it is more restrictive due to the higher shear τW . The spatial discretization is then
approximately r�θ+ ≈ 10, �z+ ≈ 4 and �r+ ∈ (0.5, 5) in inner wall units, as in Ref. [37].

The rotation parameter R� is varied between R� ∈ (0.08, 0.84), corresponding to values of μ ∈
(−0.3, 0.075). Table III in the Appendix contains full details of the resolutions used. Temporal
convergence is assessed by measuring the difference in torque between both cylinders and ensuring
that the time-average of both torques coincides within 3%.
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(a)

(b)

(c)

FIG. 2. (a) The dependence of the normalized torque in terms of the Nusselt number Nuω on the shear
Reynolds number ReS for pure inner cylinder rotation μ = 0 in a range of 4.5 × 103 � ReS � 1.2 × 105.
Different filled blue symbols represent experimental data for different working fluids. Yellow open symbols
denote numerical results. (b) Dependence of the Nusselt number compensated by Re−0.65

S as function of the
shear Reynolds number. A change in the dependence appears at approximately ReS,crit,1 ≈ 1.3 × 104, which is
marked as dashed line. (c) Corresponding local scaling exponent α as function of the shear Reynolds number
calculated for a bin size of �10(ReS ) = 0.5. A transitional behavior is visible in the region 1.3 × 104 �
ReS � 4 × 104. The dotted line indicates the end of this transition at ReS,crit,2 ≈ 4 × 104, where α starts to
monotonically increase.

IV. SCALING OF THE NUSSELT NUMBER WITH THE SHEAR REYNOLDS NUMBER
FOR PURE INNER CYLINDER ROTATION

We first start by studying the effective scaling of the torque with Reynolds number. The torque
for pure inner cylinder rotation is measured over a range of 4.5 × 103 � ReS � 1.2 × 105 using
several working fluids. In Fig. 2(a) we show the nondimensionalized torque, i.e., the Nusselt
number as function of the shear Reynolds number for all used working fluids in logarithmic scale.
The experimental data points across working fluids only scatter slightly in a small area without
observable discontinuities at the crossovers. In addition, the numerical data points are in good
agreement with the experimental results. As could be expected, the nondimensional momentum
transport increases with an increasing shear Reynolds number. We first compensate the Nusselt
number by Re−0.65

S . This scaling exponent was found for η = 0.5 by Merbold et al. [18] in the
same Reynolds number range as this study [see Fig. 2(b)]. The compensated Nusselt number is
approximately constant up to ReS � 1.3 × 104 and decreases for higher shear Reynolds numbers.
This behavior suggests that some kind of transition takes place, changing the overall momentum
scaling.

To precisely characterize the transition, we calculate the local exponent α of the power law ansatz
Nuω ∼ Reα−1

S . As described by Lathrop et al. [15], α is defined as

α(ReS ) = ∂ (log10 Nuω )

∂ (log10 ReS )
+ 1. (11)
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FIG. 3. Constant-azimuth cuts of normalized instantaneous angular velocity ω̃ = (ω − ω2)/(ω1 − ω2) for
four different ReS at μ = 0. From left to right: ReS = 5 × 103, ReS = 1 × 104, ReS = 2 × 104, and ReS =
4 × 104. Data are based on numerical simulations.

Instead of directly calculating the derivative of the Nuω-ReS-curve, which may lead to difficulties
due to the mentioned slight scattering of the data points and the existence of more than one
data point at a specific Reynolds number, we compute a linear least-square fit across equidistant
intervals �10(ReS ) in logarithmic scale centered by the individual points. The scaling exponent
obtained by taking an interval of �10(ReS ) = 0.5 is shown in Fig. 2(c). The exponent α has a
slow downwards trend starting at α ≈ 1.65 up to ReS ≈ 1.3 × 104, then strongly decreases to
values around α ≈ 1.47, before it subsequently increases again noticeably. For shear Reynolds
numbers above ReS > 4 × 104, the exponent is monotonically increasing depicting a slight slope.
Apparently, the effective momentum scaling reveals a transition confined by two critical Reynolds
numbers, which are ReS,crit,1 ≈ 1.3 × 104 and ReS,crit,2 ≈ 4 × 104. As the value of α is always
smaller than 5/3, the here observed transition cannot be connected to the transition from the
classical to the ultimate regime, which coincidentally happens at a very similar value for the shear
Reynolds number in the case of η � 0.714 (ReS,crit = 1.04 × 104 or Tacrit = 3 × 108) [21]. It is
further worth mentioning that the values of α calculated within this study are much smaller than the
one found by Burin et al. [20] for nearly the same η. They reported scaling exponents of α > 5/3
for Re1 � 2 × 104 on the basis of local LDV measurements. This discrepancy, and in particular the
question of whether our measurements reach ultimate regime or not, will be discussed in the further
course.

Using the numerical simulations, we can explore the flow field to uncover other ways the flow
changes during the transitions. We first show in Fig. 3 constant-azimuth cuts of the instantaneous
angular velocity for increasing shear Reynolds number. We can see that the structures at the inner
cylinder appear to be smaller than the ones at the outer cylinder, as can be expected by the higher
frictional Reynolds number (Reτ,o = uτ,od/(2ν) = ηReτ,i). Aside from the quiescent zone in the
region of the inner cylinder for ReS = 5 × 103, which disappears at higher ReS , no fundamental
changes are occurring. The structures (plumes) of angular velocity become smaller and more
numerous with increasing ReS as could be expected. We remind the reader that in a similar manner,
no large changes in flow topology were observed for η = 0.5 during the transitions by Ref. [21].

Focusing on the boundary layer, in Table II, we summarize the frictional Reynolds numbers of
our numerical simulations for μ = 0 at the inner and outer cylinder. For comparison purposes, we
also include the values of Reτ for the appearance of the ultimate regime happens for η = 0.5, η =
0.714 and η = 0.909 (taken from Refs. [21,39]). This appearance is triggered by a boundary layer
transition, and we could thus expect similar frictional Reynolds numbers for the transition.

From the table it can be seen that there is a markedly increased value of Reτ for the transition
at η = 0.5. This was previously attributed to the effect of concavity in stabilizing the outer cylinder
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TABLE II. Overview of inner and outer cylinder frictional Reynolds number Reτ,i/o for pure inner cylinder
rotation in the transitional regime of this study and comparison with more narrow-gap investigations in the
region of the classical-ultimate turbulent transition at η = 0.5, 0.909 from Ref. [21] and η = 0.714 from
Ref. [39].

η ReS μ Reτ,i Reτ,o

0.357 5 × 103 0 120 43
0.357 1 × 104 0 209 75
0.357 2 × 104 0 363 130
0.357 4 × 104 0 635 230
0.5 7.9 × 104 0 1112 556
0.714 1.4 × 104 0 252 180
0.909 1.4 × 104 0 240 220

boundary layer [39]. Accordingly, the here observed transition for η = 0.357 in the range of 1.3 ×
104 � ReS � 4 × 104 is unlikely caused by the development of turbulent BLs, especially at the
outer cylinder, due to the too low shear and curvature stabilization. Something to note, however, is
that the inner frictional Reynolds number Reτ,i at ReS,crit,1 ≈ 1.3 × 104 has a similar value as Reτ,o

at ReS,crit,2 ≈ 4 × 104, which can be interpreted as follows. The observed transition takes place at
a frictional Reynolds number of about Reτ,crit ≈ 230. As this value is reached earlier at the inner
than at the outer cylinder, some transition happens in two steps. These results show the pronounced
asymmetry inside such a wide-gap TC flow, which is probably the reason for the strong discrepancy
between our globally measured effective scaling exponent and the locally measured one by Burin
et al. [20].

If the transition we are seeing is not the transition to the ultimate regime, because it is inconsistent
with the scaling law, then what is it? To further investigate the nature of the boundary layers that have
been formed, the profiles of angular velocity are shown in Fig. 4 for the inner and outer boundary

FIG. 4. Azimuthally, axially and temporally averaged normalized angular velocity profiles of (a) ω+
i (r+)

near the inner (r̃ ∈ [0, 0.5]) and (b) ω+
o (r+) near the outer cylinder (r̃ ∈ [0.5, 1]). The angular velocities are

defined as ω+
i = [ω(r1) − ω(r)]/(uτ,i/r1) and ω+

o = [ω(r) − ω(r2)]/(uτ,o/r2), while the radial coordinates are
calculated by r+

i = (r − r1)/δν,i and r+
o = (r2 − r)/δν,o. The subscripts i, o are omitted in the labels. The dashed

line represents the viscous sublayer ω+ = r+ and the dash-dotted line a logarithmic law of the form ω+ =
2.5 ln(r+) + 2 as guides for the eye.
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FIG. 5. Azimuthally, axially and temporally averaged normalized (a) angular velocity 〈ω̃〉ϕ,z,t and (c) an-
gular momentum 〈L̃〉ϕ,z,t for μ = 0 and varying ReS . The corresponding root-mean-squared fluctuations of the
normalized (b) angular velocity ω̃′ and (d) angular momentum L̃′ are depicted on the right-hand side. Data are
based on numerical simulations.

layer in wall units. While the inner cylinder boundary layer could be showing some logarithmic
behavior with deviations due to curvature effects, the outer cylinder boundary is definitely of laminar
type.

The asymmetry between boundary layers is further explored in Fig. 5, where we show the average
and root-mean-squared profiles of angular velocity and angular momentum. The differences of
the angular velocity profiles with increasing shear Reynolds number are not very visible, so we
focus our analysis here on the angular momentum. There, it can be seen that only for the highest
ReS achieved in the simulations the mean angular momentum does become equal to the arithmetic
average 0.5 [Fig. 5(c)]. This provides an indication that the transition seen at ReS,crit,2 is related to
the outer cylinder’s capacity to emit plumes at a rate that achieves marginal stability and equalizes
the angular momentum in the bulk. We note that not only is the shear smaller at the outer cylinder
due to fact that the radius is larger (see Table II), and thus the velocity gradient must be smaller to
achieve the same torque, but that the concave curvature of the outer cylinder stabilizes the emission
of turbulent plumes. Thus the shear required for plume emission becomes higher. Further evidence
of this is seen in Fig. 5(d), where the root-mean-squared fluctuations of angular momentum are
shown. For ReS = 5 × 103, only a flat plateau at the outer cylinder is existing, indicating that there
is no considerable production of fluctuations by the outer cylinder. Once ReS increases, a sharp peak
of fluctuations at the outer cylinder boundary layer appears, probably coinciding with the transition
seen at ReS,crit,1, even if the number is slightly different for the simulations. Even once the sharp
peak arises it appears that the turbulence level is not enough to equalize the angular momentum until
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FIG. 6. Dependence of the Nusselt number Nuω on the rotation ratio μ for different shear Reynolds
numbers. Filled symbols represent experimental data (already discussed in Ref. [32]) and open symbols
numerical data. The dashed line indicates the prediction of the torque maximum according to Brauckmann
and Eckhardt [23], while the dotted line indicates the Rayleigh stability criterium.

ReS,crit,2. Thus, we can suggest that the transitions in the scaling laws are associated to the capacity
of the outer cylinder to emit angular momentum plumes to develop a marginally stable profile.

V. TORQUE MAXIMUM

We now turn to the dependence of the Nusselt number on the rotation ratio μ, when the shear
Reynolds number is kept constant. In Fig. 6, we show the combined numerical and experimental
results in the range 5 × 103 < Res < 2.5 × 104.

The Nusselt number exhibits a maximum in the low counter-rotating regime for all Reynolds
numbers which asymptotically becomes closer to the prediction of Brauckmann and Eckhardt [23].
The maximum location according to the angle bisector hypothesis (μ ≈ −0.25) lies noticeable
far from the peak within the stronger counter-rotating regime. For ReS = 104 and ReS = 2 × 104,
where also simulations have been performed, the experimental and numerical data agree very well.
The increase of the Nusselt number coming from co-rotating cylinders to μmax is much steeper, than
the decline for higher counter rotation. This behavior results probably from the small distance of
μmax from the Rayleigh stability line at μ = η2 = 0.128 and will be revisited later. In the Rayleigh
stability region, the flow should be laminar and the Nusselt number has to be 1. In our case, we find
for the lowest investigated Reynolds number of ReS = 5 × 103 a nearly constant value of Nuω ≈ 1.3
in the Rayleigh stable regime. This value, which is slightly higher than expected, may be the result
of end wall effects causing a large-scale circulation, the so-called Ekman vortices. Such a secondary
flow can grow, especially in laminar flows, and fill the whole gap [40].

At higher shear Reynolds numbers, investigated only experimentally, the overall shape of the
Nuω curve stays the same with a torque maximum close to μp, see Fig. 7(a). To determine the exact
location of the torque maximum, we fit a quadratic curve of the form Nuω = p1μ

2 + p2μ + p3 to
the measured profiles in the range of −0.16 � μ � −0.06. This way the location of the torque
maximum is given by μmax = −p2/(2p1) and its uncertainty is defined according to Ref. [23] as

�μmax =
√

�T
p1T

(Nuω )max. (12)

The location of μmax shifts with increasing Reynolds number to more negative values and appears
to settle down to a nearly fixed value for ReS � 5.6 × 104, reaching μmax = −0.123 ± 0.030 at
ReS = 105 [see Fig. 7(b)]. The prediction of Brauckmann and Eckhardt [23] is within the uncertainty
range of our maximum location.
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FIG. 7. (a) Dependence of the experimentally determined compensated Nusselt number Nuω × Re−0.67
S on

the rotation ratio μ for three shear Reynolds numbers. (b) Evolution of the torque maximum location as function
of the shear Reynolds number, calculated by a quadratic fit to the measured profiles in the range of −0.16 �
μ � −0.06. The dashed line represents the predictions of the torque maximum according to Brauckmann and
Eckhardt [23].

To finalize this section, we show the compensated torque in terms of R� versus Nuω × Re−0.64
S .

Dubrulle et al. [3] had already noted that the nondimensional torque depends very little on the radius
ratio η, and Brauckmann et al. [5] further developed this by showing a wide collapse of Nuω(R�)
for R� > 0.25 for radius ratios higher than η = 0.5, and for R� > 0.1 for radius ratios higher than
0.8. Brauckmann et al. [5] noted that the region where the large-gap Nusselt number collapses is
where it is not affected by the radial flow partitioning. The appearance of radial flow partitioning
introduces a strong dependence on the radius ratio of the Nusselt numbers. Further proof of this for
the wide-gap considered here can be seen in Fig. 8. The curves for the compensated torque at three

FIG. 8. Nondimensional torque Nuω compensated by Re−0.64
S for three ReS and two wide-gap curvatures

η = 0.357 (experiments from this study) and η = 0.5 (taken from Ref. [18]) in terms of the rotation parameter
R�. A collapse for the torques can be seen in the region between the Rayleigh stability line (R� = 1) up to the
appearance of radial partitioning, which happens at a lower R� for η = 0.357.
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FIG. 9. Space-time diagrams of the intensity distribution along an axial, central line over time for the shear
Reynolds number ReS = 2.5 × 104 and different μ. The time coordinate is normalized by the viscous time
scale τvis = d2/ν and the axial coordinate by the gap width d . All videos have been acquired at 60 Hz.

different ReS and two radius ratios η = 0.357 (experiments from this study) and η = 0.5 (taken
from Ref. [18]) collapse in the interval between R�,opt(η = 0.357) and R� = 1. This corresponds
to TC flow between slight counter rotation, and co-rotation up to the Rayleigh stability line. For
smaller values of R�, radial partitioning arises and the η dependence of Nuω is no longer absent.
The statements by Dubrulle et al. [3] and Brauckmann et al. [5] hold true even for large values
of RC .

VI. FLOW TOPOLOGY

The excellent agreement between our results for the location of the maximum transport of angular
momentum and the prediction of Brauckmann and Eckhardt [23] suggests that the torque maximum
is caused by strengthened large-scale Taylor rolls. To verify this explanation, we performed flow
visualizations as described in Sec. II. The intensity distribution Ĩ = I − I0 of an axial central line
for the observed flow as function of time t at the shear Reynolds number ReS = 2.5 × 104 and
different μ is depicted in Fig. 9. For corotation in the Rayleigh stable regime at μ = 0.2, the flow is
laminar indicated by a homogeneous light intensity over time. However, slightly bright and inclined
lines are visible especially below midheight, which are crossing and may be fingerprints of endwall-
induced Ekman vortices. This would explain the measured Nusselt number of Nuω ≈ 1.3 in that
regime. When the rotation ratio is decreased into the linearly unstable regime at μ = 0.1, the flow
becomes fully turbulent resulting in a strong fluctuation of the light intensity in the axial as well
as in the temporal coordinate direction. The flow appears as black background with bright spots
randomly distributed in the whole field of view. In the case of pure inner cylinder rotation (μ = 0),
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FIG. 10. Space-time diagrams of the intensity distribution along an axial, central line over time for the shear
Reynolds numbers of ReS = 5 × 104 and ReS = 7.5 × 104 for μ = −0.1. The time coordinate is normalized
by the viscous timescale τvis = d2/ν and the axial coordinate by the gap width d . All videos have been acquired
at 60 Hz.

the intensity distribution appears similar to the previous one with small differences for the bright
spots. Here, these spots are smeared into the direction of the temporal coordinate direction. When
a rotation rate of μ = −0.1 close to μmax is adjusted, prominent large-scale vortices are formed
inside the flow conforming with the theory of Brauckmann and Eckhardt [23]. Across the axial
length of approximately six gap widths, three vortex pairs can be identified, which are stationary in
time concerning their axial position. At even higher counter rotation rates, the intensity distributions
become again brighter, more homogeneous and the large-scale rolls disappear. This evolution is due
to the stabilization of the flow in the outer gap region induced by a stronger rotation of the outer
cylinder. As these videos only visualize a small region close to the outer cylinder wall, a probably
further existence of the turbulent Taylor vortices in the inner gap cannot be shown.

We also investigated two additional flow states in the region of the torque maximum at μ = −0.1
for higher shear Reynolds numbers, depicted in Fig. 10. Again, we find prominent large-scale rolls
in the flow, which are stable in time. In contrast to the flow at ReS = 2.5 × 104, both cases exhibit
four Taylor roll pairs over an axial length of approximately six gap widths. We would like to note,
that we have not used a fixed acceleration rate for the cylinders, whose variation can cause different
flow states [29]. Also, we did not observe a swap from three to four roll pairs or back at a constant
shear Reynolds number. Nevertheless, our finding suggests that multiple flow states defined by the
overall number of Taylor vortices filling the gap are possible also in this very wide-gap TC geometry.
To quantitatively specify the importance of turbulence and large-scale rolls in the flow, we calculate
the two following quantities:

Iturb = 〈(Ĩ − 〈Ĩ〉t )
2〉t,z,

ILSC = σz
(〈Ĩ〉2

t

)
. (13)

Iturb is a measure for the fluctuations of the light intensity and therefore for the turbulence inside
the flow. Beside, ILSC quantifies the amplitude of the temporal averaged axial intensity variation
and therefore increases, when large-scale rolls are formed in the gap. Both quantities are depicted
in Fig. 11(a) as function of the rotation ratio μ.

The intensity fluctuation Iturb strongly increase, when the rotation ratio is reduced starting at
μ = 0.2 in the Rayleigh stable regime into the unstable regime at μ = 0.1. For a further decrease
of μ, Iturb continuously decreases up to μ = −0.4. However, ILSC increases from μ = 0.2 to
μ = −0.1. For smaller μ, a rapid breakdown of the amplitude is seen. Accordingly, the results
of visual inspection of the space-time diagrams depicted in Fig. 9 are supported quantitatively by
the parameters Iturb and ILSC. Moreover, in Fig. 11(b), the axial autocorrelation function Rz of
the temporally averaged axial intensity profile is depicted for the three flow cases at μ = −0.1
in the region of the torque maximum. The correlation coefficients depict a prominent oscillation
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FIG. 11. (a) Fluctuation of the light intensity Iturb and amplitude of the temporal averaged axial intensity
variation ILSC for ReS = 2.5 × 104 as function of μ. (b) Axial autocorrelation coefficient of the temporal
averaged axial intensity profile for μ = −0.1.

in the axial coordinate direction due to the large-scale Taylor rolls and the first minimum is a
measure for the axial wavelength λ. We find λ(ReS = 2.5 × 104) = 1.02d, λ(ReS = 5.0 × 104) =
0.73d and λ(ReS = 7.5 × 104) = 0.74d . For the lowest shear Reynolds number, the Taylor vortices
capture nearly one gap width in the axial direction, but become axially compressed at higher ReS .
The effect of changes in the vortex wavelength on the angular momentum transport has been
investigated in more detail for example by Martínez-Arias et al. [29] and Ostilla-Mónico et al. [21].

In simulations, as we have fixed the axial periodicity to a relatively low number (� = 2), so we
cannot expect to see switching between roll wavelengths. Due to the very demanding requirements
in the axial direction, confirmation of these findings in numerics requires a large amount of

FIG. 12. Numerically determined azimuthally and temporally averaged angular velocity for ReS = 2 × 104

and μ = 0 (left), μ = −0.08 (middle) and μ = −0.3 (right). Arrows representing the average radial and axial
velocities are superimposed. Right next to it, the contribution of the large-scale circulation to the overall Nusselt
number as function of μ is shown for the same driving.
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Brauckmann & Eckhardt, 2013b

Paoletti & Lathrop, 2011

FIG. 13. Location of the torque maximum rotation rate μmax of our study in comparison to different results
for smaller gap TC flows, restricted to medium gaps with η � 0.8. The dashed and dotted lines represent
the predictions of the torque maximum according to Brauckmann and Eckhardt [23] and van Gils et al. [24],
respectively.

computational resources. However, we can visualize the footprint of the rolls in the mean angular
velocity fields and narrow down more precisely the μ-range, where Taylor vortices exist. The results
are shown in Fig. 12 for ReS = 2 × 104 and different rotation ratios μ. For pure inner cylinder
rotation, while there is a structure which can be seen in the average radial and axial velocities, no
footprint is observed in the average angular velocity. For μ = −0.08, we see the roll, but now also
see a footprint on the average angular velocity, confirming the experimental findings. Finally, for
μ = −0.3, the stabilization coming from the outer cylinder is enough to distort the rolls, similar to
what was seen in Ref. [19] for η = 0.714. To determine the μ-range, where Taylor vortices exist,
we calculate the fraction of the large-scale circulation NuLSC

ω on the total momentum transport as it
was done in Ref. [23] based on the flow field decomposition u = ū + u′ with ū = 〈u〉ϕ,t :

NuLSC
ω = 〈r3〈ūrω̄〉ϕ,z,t 〉r/J lam

ω︸ ︷︷ ︸
NuLSC

ω,stress

−〈r3ν∂r〈ω̄〉ϕ,z,t 〉r/J lam
ω︸ ︷︷ ︸

NuLSC
ω,grad

. (14)

The gradient fraction of NuLSC
ω is larger than zero independent of the existence of the large-

scale rolls (see Fig. 12), which is why we focus here on the stress fraction NuLSC
ω,stress. This

quantity clarifies that Taylor vortices contribute considerably to the angular momentum transport
in the range of −0.3 < μ < 0, and in the region of the torque maximum their contribution is
around 60%.

VII. CONCLUSION

We have investigated experimentally and numerically the angular momentum transport and the
corresponding flow structure in a fully turbulent Taylor-Couette flow at a radius ratio of η = 0.357.
For an outer cylinder at rest, no pure power-law scaling is found across the Res range explored
and the effective scaling exponent α varies noticeably in the region of 1.3 × 104 � ReS � 4 × 104.
Interestingly, the frictional Reynolds number at the inner cylinder at the lower end of this region is
nearly identical to the outer frictional Reynolds number at the upper end: both are approximately
Reτ,crit ≈ 230. At first glance, this points towards a boundary layer transition that triggers the
ultimate regime. However, this is ruled out by two facts: (i) The calculated effective scaling
exponent throughout this region is smaller than the predicted lower limit of αmarg = 5/3 according
to King et al. [9] and Marcus [10], and (ii) nonlogarithmic boundary layer profiles at the outer
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wall. Instead, our investigations should be assigned to the classical-turbulent regime. By exploring
the bulk properties, we found that the transition itself is associated with the capacity of the outer
cylinder to emit small-scale plumes. It ends as the angular momentum profile in the bulk reaches
the condition of marginal stability, i.e., a flat profile at approximately the arithmetic mean L̃ = 0.5
of both cylinders.

In the case of independently rotating cylinders, a maximum in torque was found at μmax(η =
0.357) = −0.123 ± 0.030, which is induced by the formation and strenghtening of large-scale
vortices. This value of μmax and the mechanism are in line with Ref. [23]. The state-of-the-art
results of the torque maximum locations for medium and wide gaps are summarized in Fig. 13
together with our results. The good agreement with the prediction of Brauckmann and Eckhardt
[23] demonstrates, that the physical mechanism for μmax does not change in that η-regime. Indeed,
we found that as long as radial partitioning does not appear, the Nusselt number for η = 0.357
was in good agreement to those found for η � 0.5, as proposed by Ref. [41]. Finally, two
different wavelengths of large-scale vortices have been discovered for ReS > ReS,crit,1 at different
forcings. To explore the characteristics of such multiple flow states in wide-gap TC flows in more
detail, further investigations in the spirit of those of Refs. [30,31] carried out at smaller gaps are
needed.
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APPENDIX: NUMERICAL DETAILS

TABLE III. Full details of the numerical resolutions used and the pseudo-Nusselt number Nuω and inner
cylinder frictional Reynolds number Reτ,i obtained from each of them.

Res μ R� Nθ Nr Nz Nuω Reτ,i

5 × 103 0 0.643 256 256 512 4.55 120
7.07 × 103 0 0.643 256 256 512 5.49 158
1 × 104 0.075 0.841 256 256 512 3.76 154
1 × 104 0 0.643 256 256 512 6.7 209
1 × 104 −0.05 0.527 256 256 512 8.45 236
1 × 104 −0.075 0.472 256 256 512 8.67 238
1 × 104 −0.1 0.408 256 256 512 8.45 235
1 × 104 −0.15 0.324 256 256 512 8.15 232
1 × 104 −0.2 0.236 256 256 512 7.91 229
1 × 104 −0.3 0.079 256 256 512 6.99 214
1.41 × 104 0 0.643 256 256 512 8.16 276
2 × 104 0.075 0.841 384 256 512 5.54 264
2 × 104 0 0.643 384 256 512 10.1 363
2 × 104 −0.05 0.527 384 256 512 12.6 410
2 × 104 −0.075 0.472 384 256 512 13.5 421
2 × 104 −0.1 0.408 384 256 512 13.4 417
2 × 104 −0.15 0.324 384 256 512 13.1 413
2 × 104 −0.2 0.236 384 256 512 12.5 404
2 × 104 −0.3 0.079 384 256 512 11.1 378
4 × 104 0 0.643 768 384 768 15.4 635
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