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Recently, it was observed that in nonequilibrium turbulent flows the normalized dis-
sipation rate depends in a fairly universal way on the Reynolds number of the flow. To
assess theoretical explanations of this observation, we consider here the nonequilibrium
properties of freely decaying turbulence from initial conditions where the velocity field
is reversed in every point in space. This test-case allows us to manipulate a turbulent
flow differently from the usual way, where nonequilibrium is induced by modification
of large-scale forcing mechanisms. It is shown that it is possible to obtain a different
Reynolds-dependent scaling of the dissipation rate, which can be derived directly as a
perturbation around the equilibrium state.
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I. INTRODUCTION

Three-dimensional turbulent flows are generally far from statistical equilibrium [1,2]. Indeed,
if turbulence is considered as a high-dimensional dynamical system, then statistical equilibrium
would correspond to an equipartition of kinetic energy over Fourier-modes [3]. However, viscous
dissipation rapidly removes energy from the modes with large wave number, such that turbulent
systems are kept away from this equilibrium state. Consequently, to approach equilibrium, large-
scale energy is transferred toward these smaller scales [4]. In the case of a slowly evolving large-
scale flow structure, the small scales of a turbulent flow rapidly adapt to the energy input, and
for a steady input, a statistical steady state will emerge, where dissipation is equal to production.
It is this equilibrium transfer between large and small scales, a direct consequence of the inherent
nonequilibrium of turbulence, which is an essential ingredient of a large number of statistical models
and theories.

In such a steady state, small-scale dissipation ε is directly determined by the large scales, char-
acterized by the integral length L and velocity U scales. This interdependence can be quantitatively
represented by the expression

ε = Cε

U 3

L
. (1)

The proportionality constant, also called normalized dissipation rate, is then supposed to be
independent of the Reynolds number, for a given flow at large Reynolds number.
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Obviously, numerous situations can be thought of where the energy input is not steady, so that the
equilibrium has not had a change to establish. Such nonequilibrium flows are the rule rather than an
exception, and the inherent nonequilibrium of unsteady flows has recently received a considerable
amount of attention, in particular the case of decaying grid-generated wind-tunnel turbulence
[5–7]. Indeed, this case is the simplest experimental realization of nearly isotropic turbulence and is
inherently unsteady, since in the reference frame moving with the mean velocity, the external energy
input is zero.

In the studies on grid-generated turbulence some universality was observed in the nonequilibrium
properties of the flow, not too far behind the grid [6,7]. The dissipation coefficient Cε was there
shown to be characterized by a functional dependence of the Reynolds number of the form

Cε ∼ ReI
m
/

ReL
n , (2)

where ReI and ReL are a global Reynolds number (characterizing the initial conditions) and
a local Reynolds number, respectively. The values of m and n were observed to be close to
unity. A theoretical explanation was proposed recently [8] where it was shown that the value
m = n ≈ 15/14 can be derived analytically, using a first-order perturbation analysis of the energy
flux around its equilibrium value ε0. This derivation does not only concord with the experimental
observations but also explains the observations in direct numerical simulations (DNSs) with a
strongly fluctuating energy input [9]. A rival explanation exists, which links the nonequilibrium
scaling to the coexistence of strong coherent structures with a less coherent background turbulence
[10,11]. An attempt to represent this interplay between coherent structures and a background flow
in the framework of a statistical closure was presented in Ref. [12]. A more complete description,
modeling explicitly the interaction between the wakes behind the grid-bars and the turbulence
[13], shows that the nonequilibrium scaling persists in the region where the kinetic energy of the
grid-bar-wakes is comparable to the kinetic energy of the turbulent fluctuations.

In the DNSs and in grid-generated turbulence the production mechanism is a typical large-scale
phenomenon. In the present investigation, to lend further support to the nonequilibrium explanation
[8], we consider a case in which we can induce strong nonequilibrium in the small scales and where
this nonequilibrium persists for some time. This case is time-reversed turbulence, where the sign of
the velocity is reversed in every point in space.

II. THE NORMALIZED DISSIPATION IN NONEQUILIBRIUM TURBULENCE

We recall first rapidly the main ingredients in the derivation of the nonequilibrium scaling [8].
An important insight is the fact that, for slowly evolving large-scale flow, the imbalance is mainly
reflected in the large scales of the flow, the small scales reacting, and adapting, rapidly to the
changing energy input. The dynamic quantities k, L, ε are then all divided into an equilibrium value
k0, L0, ε0, corresponding to their values in a constant flux state, and the deviations from this state,
k̃, L̃, ε̃. It was shown that when the energy input in a flow changes, it is L and k which deviate from
their equilibrium values. Furthermore, it was shown that L̃/L0 ≈ 3

7 k̃/k0, and ε̃/ε0 ≈ 0. Thereby, it
was derived that

Cε = Cε0

(
1 − 15

14

k̃

k0

)
(3)

and

Reλ = Reλ0

(
1 + k̃

k0

)
, (4)

with the definitions

Cε0 =
(

3

2

)3/2
ε0L0

k3/2
0

(5)
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and

Reλ0 =
√

20

3

k0√
νε0

. (6)

Therefore, since for small x, (1 + αx) ≈ (1 + x)α , Eqs. (3) and (4) yield a Reynolds number
dependence of the normalized dissipation rate close to the power law observed in the experiments
and simulations,

Cε

Cε0
≈

(
Reλ

Reλ0

)− 15
14

. (7)

Indeed, this power law is observed in the experiments or DNS for a change in Reynolds number of
less than an octave, so that the linearization of the power law does not lead to an error of more than
several percents. For instance, in Fig. 3 of the DNS study of Ref. [9] fluctuations around equilibrium
states are shown for different Reynolds numbers. For each case individually, the ratio of maximum
to minimum Reynolds number is of order two at most. Further implications of this analysis are that
the Taylor-scale, defined by

λ =
√

20

3

kν

ε
, (8)

compared to the integral scale will scale as [8]

L

λ

λ0

L0
≈

(
Reλ

Reλ0

)−1/14

, (9)

with λ0 the Taylor scale in the equilibrium state. This expression is substantially different from
equilibrium scaling,

L

λ
∼ Re1

λ. (10)

We stress again that it is the large-scale quantities L and k which are affected by nonequilibrium.
But what happens if we do not act dominantly on the large scales, but directly and strongly
alter the dissipation rate, without too much affecting the large scales? This seems experimentally
very difficult to achieve. In simulations this is, however, easier, and for this we reconsider a
test-case which we investigated in an earlier investigation [14], time-reversed turbulence. The
thought-experiment in which the velocity is reversed in every point in space was already proposed
by Orszag in his turbulence lectures [15], and since then it was considered by several authors in the
context of large eddy simulation [16,17].

To explain the dynamics of time-reversed turbulence in some more detail, we write the equation
for the kinetic energy spectrum. The energy spectrum E (κ, t ) is defined such that its integral over
all wave numbers κ equals the kinetic energy,∫

E (κ, t )dκ = k(t ). (11)

As a function of time, the spectrum evolves as

∂t E (κ, t ) = T (κ, t ) − 2νκ2E (κ, t ). (12)

The quantity T (κ, t ) is the energy transfer. This transfer is associated to a triple-velocity correlation
and represents the transfer between different scales or wave numbers κ . The dynamics of the Euler
equations are invariant under the simultaneous transformation u to −u, t to −t . Indeed, the term
∂t E (κ, t ) changes sign when t is replaced by −t and triple velocity correlations change sign when u
is replaced by −u. This means that if all velocities are reversed, then the flow will evolve backwards
in time until the initial condition is reached. Indeed, the dissipation term 2νκ2E (κ, t ) is not affected
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by the reversal of u, so that viscous effects will break the exact time-reversal. However, at the large
scales where viscous effects are less important, the reversal of the velocity will lead to approximate
time-reversed dynamics for some time. What we investigated previously, is how the dynamics
change if either the whole flow, or a part is reversed, for Navier-Stokes turbulence. The relevance of
this investigation was to investigate how a subgrid model should behave in the presence of strong
and weak backscatter [14].

Other cases could be considered, for instance a low-pass filtered initial condition, or an initial
field where only the dissipation scale is reversed. We have investigated several of these cases,
but find the most interesting results for the reversed initial conditions. Indeed, in addition to a
radical change in the dissipation rate dynamics, this case corresponds to a situation of very strong
backscatter, affecting the energy-transfer of all the different scales of the turbulent flow. That this
case leads to the most important change of the dynamics is due to the fact that in addition to changing
the small scales, the large scales do not directly drain their energy toward the small scales, since the
transfer is reversed. Therefore, the time-interval over which the flow is affected is longer than for a
case where only the small scales are reversed or where their energy is set to zero. In the remainder
of this work we will therefore focus on the case of reversed conditions for all scales and assess the
nonequilibrium properties of such a flow.

III. NUMERICAL RESULTS

A. Numerical setup and parameters

DNS cases are performed by using a standard pseudospectral solver and a fourth-order Runge-
Kutta time integration scheme, with a semi-implicit treatment of the viscous term. The compu-
tational domain has 5123 grid points. All cases start from a freely decaying isotropic turbulence
with the same random initial field in a (4π )3 periodic cube [18], with a spectral energy distribution
similar to the measured spectrum in the experimental work of Comte-Bellot and Corrsin [19].

Two distinct cases are considered: ’normal’ freely decaying isotropic turbulence, indicated
by “NN” using the same nomenclature as in Ref. [14] and a reversed case denominated “RR”
corresponding to the same flow where the sign of the velocity in every point in space is reversed at
a given time (denoted as t = 0. At this moment Reλ ≈ 110.9, and kmaxη = 1.12). Numerical details
are the same as Ref. [14], except that the cases here are recalculated with higher resolutions (5123

instead of 2563). The time values are normalized by using the turn-over time at the moment of
reversal T = √

3/2(k/ε), where k is the kinetic energy, and ε is the turbulent energy dissipation
rate.

B. A new dissipation scaling

In our simulations the flow develops from random initial conditions. The turbulence will decay,
after a certain time, as a power law, with k/ε ∼ t . This power-law decay region is situated, in
time, well beyond the transient nonequilibrium region where relation Eq. (7) is valid and in this
self-similar decaying regime the normalized dissipation is expected to be roughly constant, if
Reλ � 100. The fact that a constant value for Cε can be observed in freely decaying turbulence
with a value different from its steady state value was already explained in previous work [20],
using the notion of a Reynolds-number-independent-imbalance between large and small scales.
Note that our Reynolds number is not large enough to be completely in this asymptotic regime.
Direct numerical simulations [21] suggest that the cross-over to a Reynolds number independent
value of the normalized dissipation takes place in the range 100 < Reλ < 200. In our investigation
the time-instant t = 0 corresponds to the time at which the flow is reversed and this time-instant is
chosen well beyond the transient region, within this self-similar decay regime.

In Fig. 1(a) we plot the values of Cε and Reλ during the simulations. The direction of time
is indicated by arrows. For the NN case (red line) Cε is not completely constant but slowly
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FIG. 1. (a) Relation between dissipation coefficient Cε and Reynolds number Reλ in different evolution
stages. Stages are marked as I, II, III, and IV, respectively. (b) Relation between L/λ and Reynolds number
Reλ in different evolution stages. Stages are marked as I, II, III, and IV, respectively. The dash-dotted lines
corresponds to L/λ ∝ Reλ, and L/λ ∝ Re−1

λ . Arrows indicate the time directions.

increasing in time, which can be explained when taking into account the finite value of the Reynolds
number [20].

The complementary scaling for L/λ as a function of Reλ is shown in Fig. 1(b), showing that
for the NN case (red line) L/λ is approximately proportional to Reλ, as predicted by traditional
Kolmogorov theories [22]. Note that at the Reynolds numbers at which our simulations are carried
out this relation is expected to be valid only to some approximation.

The behavior of the dissipation rate scaling for the reversed case is radically different. To
discuss the behavior, we divide the time evolution into four qualitatively different temporal
stages.

(I) Time interval [0 < t/T < 0.2]. In the beginning, a large and rapid variation of the dissipation
coefficient is observed, Cε ∝ Re−2

λ (empty triangles). Furthermore, during this interval L/λ ∝ Re−1
λ .

(II) Time interval [0.2 � t/T < 1.5]. A transition stage is observed (filled diamonds).
(III) Time interval [1.5 � t/T < 2.4]. The graphs show nonequilibrium scaling in agreement

with existing observations in grid-generated turbulence (empty circles). This corresponds to
approximately constant values of L/λ while the Cε ∝ Re−15/14

λ .
(IV) Freely decaying turbulence with self-similar scaling is observed at longer times (filled

squares), similar to the NN case. This corresponds to L/λ ∝ Reλ [see Fig. 1(b)] and slowly
increasing values of Cε with time [see Fig. 1(a)].

Probably the most intriguing observation is the very clear power-law scaling for Cε and L/λ at
short times in stage I. Moreover, this scaling is radically different from the scaling behavior in recent
experiments and simulations. We will explain this observation in Sec. IV A.

C. Time-evolution of the integral quantities

As stressed in Sec. II, the nonequilibrium scaling observed in grid-generated turbulence is related
to the deviations of the large scales, characterized by k and L, from an equilibrium state. Changing
the sign of the velocity changes the sign of the energy transfer, an effect which is not instantaneously
felt by the large scales, but which radically changes the small-scale dynamics. For instance, the value
of the longitudinal velocity gradient skewness,

Sk = 〈(∂u1/∂x1)3〉
〈(∂u1/∂x1)2〉3/2

, (13)

changes its sign [Fig. 2(a)], which illustrates that the small scales are immediately affected, in
particular the sign of the energy transfer, which is directly related to Sk . From Fig. 2(b) it is shown
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FIG. 2. (a) Temporal evolution of the skewness of longitudinal velocity derivative Sk . The subfigure is the
zoom of stage I. (b) Variation of Cε with Sk in stage I.

that the value of Sk is also clearly correlated with the value of Cε in stage I, which qualitatively
supports the conclusion of Ref. [23], that Sk might be considered as a sensitive indicator of
nonequilibrium. However, in Fig. 4(a) of Ref. [23] they are positively correlated, differing from
Fig. 2(b). This can be understood since the numerator of Sk is an odd moment which changes sign
with reversed velocity field in short time, but Cε does not change sign. This shows that the positive
correlation between Sk and Cε, observed in Fig. 4(a) of Ref. [23], is not a universal feature of
nonequilibrium turbulence.

The reversal of the velocity does not change the sign of k, ε and L, which are all strictly positive
quantities. These three quantities, together with Cε are shown as a function of time in Fig. 3. In
particular, the insets of these figures, zooming on the initial time interval, are interesting. These
zooms clearly show that it is the dissipation which is most strongly affected in this flow. Indeed,
since the dissipation scales are no longer supplied with new energy from the large scales, which is
flowing in backwards direction, and since the viscous friction will continue to remove the energy
from the same small scales, the dissipation drops rapidly. Note that from Fig. 3(b) it is observed that
L is always much smaller than the box size 4π (qualitatively, 0.11 < L/4π < 0.25, consistent with
setups in literature such as Refs. [24–27], though in some literature [28] it was argued that finite
size effect remains).

A diminished dissipation also corresponds to a slower-decaying kinetic energy, compared to the
unmodified case, which is clearly observed. Furthermore the inverse energy cascade will for short
times generate a larger integral correlation scale. However, this build up is on a slower timescale
than the evolution of the dissipation.

To summarize, the dissipation evolves at short times much faster than the large-scale quantities
k and L.

IV. ORIGIN OF THE NEW NONEQUILIBRIUM SCALING

A. Derivation of the scaling

The newly observed scaling of Cε can be readily derived, using the observations in the previous
section. Indeed at short times it is the dissipation which evolves most rapidly. We therefore
consider an equilibrium state, represented by the quantities k0, L0, and ε0. In the derivation of the
nonequilibrium scaling of Ref. [8], the quantities k and L deviated from their equilibrium state.
In the present case, as can be concluded from the observations in the previous section, it is the
dissipation ε which is affected. Therefore, we replace in the expression for the dissipation coefficient
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FIG. 3. Temporal evolution of (a) the kinetic energy k, (b) the integral scale L, (c) the turbulent energy
dissipation rate ε, and (d) the dissipation coefficient Cε . Insert: short-time evolution of each statistic.

the lengthscale and kinetic energy by their equilibrium values, and we let ε be a function of time,

Cε(t ) = ε(t )L0

(2k0/3)3/2
, (14)

while the Reynolds number becomes

Reλ(t ) =
√

20/3
k0√
ε(t )ν

. (15)

The whole time-dependence will be driven by the only strongly changing quantity, ε(t ). Combining
the above two equations, eliminating the time-dependent parameter ε, we have immediately

Cε =
√

150
k1/2

0 L0

ν
Re−2

λ . (16)

This shows thus that if we change the small, rapidly adapting scales, keeping the large scales
approximately constant, then the time variation of Cε as a function of Reλ will become inversely
quadratic Cε ∼ Re−2

λ instead of relation Eq. (7), ∼Re−15/14
λ . Furthermore, measuring the Reynolds
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FIG. 4. Dissipation coefficient Cε against Reynolds number Reλ in stage I. The dash-dotted line represents
the relation in Eq. (16).

number dependence of the lengthscale ration L/λ, from Eq. (16), we have immediately

L

λ
= CεReλ ∼ Re−1

λ , (17)

as observed in Fig. 1(b).
To further illustrate the validity of the above arguments we show in Fig. 4 the comparison of

Eq. (16) with the numerical simulation. Indeed, it is not only the power-law exponent which is
correctly predicted, but it is the full expression including the prefactor which collapses perfectly
with the data at short times.

B. A further look at the nonequilibrium

We have thus understood from the observations that the nonequilibrium scaling in time-reversed
turbulence is directly associated with the rapid evolution of the dissipation scales. To this end
we have assessed the time-evolution of the integral quantities k, L, and ε. In this section we will
further scrutinize the nonequilibrium properties of the flow, scale-wise. For this we evaluate the
wave number dependence of the imbalance.

The energy spectrum and its evolution were introduced in Eqs. (11) and (12). The energy transfer
is a redistributive term, and its integral over wave numbers is zero,∫

T (κ, t )dκ = 0. (18)

Its integral from 0 to a certain wave number κc represents the flux of energy from smaller toward
larger wave numbers than κc,

�(κc, t ) =
∫ κc

0
T (κ, t )dκ, (19)

furthermore, we can define the partial dissipation,

ε>(κc, t ) =
∫ ∞

κc

2νκ2E (κ, t )dκ. (20)

The difference between � and ε> is a direct measure for the imbalance of the flow.
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FIG. 5. Comparison between energy flux −�(κc, t ) and dissipation ε>(κc, t ), with κc fixed and its value is
shown in Fig. 6. (a) NN, the inset shows −�/ε>; (b) RR, the inset shows a zoom view on the early evolution
of the quantities.

In Fig. 5(a), it is clearly observed that the normal case can be considered to be close to
equilibrium, since � ≈ −ε> during the whole time-evolution of the flow. Note that we have chosen
κc = 0.12κη0, where η0 is the kolmogorov scale at the time of reversal. This location corresponds
to the maximum of the flux � at t = 0. In Fig. 6(a), no asymptotic scaling [E (κ ) ∝ κ−5/3] is
observed, as is usual in moderate Reynolds number, decaying turbulence [29]. By contrast, in the
RR case [Fig. 5(b)] the equilibrium � ≈ −ε> is heavily perturbed. At the time of reversal, the flux
takes the opposite sign. However, the value of −� rapidly increases, and an overshoot is observed,
reaching a peak largely superior to ε> at a time instant that we will call �(κ ). The time t = �(κ ) is
approximately the end of stage I when κc is close to the bottleneck region (see Fig. 6).

This timescale, corresponding to the time it takes from the time of reversal until the moment that
the transfer flux reaches its peak-value, measures the reaction time of the turbulence up to a scale κc

to react to the nonequilibrium. Figure 7 shows −� at different times, in which we can observe that
the timescale depends on the wave number in the RR case: −� evolves faster toward equilibrium
at higher wave numbers. This timescale is then quantitatively calculated as follows. In Fig. 8(a)
the early time evolution of � is shown for different values of the wave number κc. It is observed
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FIG. 6. Compensated energy spectra for (a) NN case and (b) RR case, respectively. The vertical dashed
lines indicate the location of κc used in Fig. 5.
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that when the value of κc increases (moving toward the dissipative range), the reaction time �(κ ),
decreases. Indeed, qualitatively this shows that the small scales react faster than the large scales. In
Fig. 8(b) the value of �(κ ) is plotted as a function of κ . It is observed that the reaction time in the
inertial range is proportional to κ−2/3, in agreement with classical scaling arguments [22]. Indeed,
what we measure is the time it takes for a given scale to adapt back to the usual energy transfer
direction. This timescale is expected to be of the order of the typical lifetime of the eddy associated
with wave number κ . This timescale is, in the absence of viscous effects, mainly determined by the
cumulative straining induced by larger eddies. A typical estimate of this time τ (κ ) is

τ (κ ) ∼
[∫ κ

0
p2E (p)d p

]−1/2

. (21)

Since this straining time is a function of the energy spectrum, and not of the transfer, its estimate
should give close to classical scaling for our reversed flow, since the energy spectrum is not directly
affected by the reversal. For a spectrum proportional to κ−5/3, τ (κ ) should scale proportional to
κ−2/3. In the present case, there is no κ−5/3 range in the energy spectrum due to the finite value
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FIG. 8. (a) Temporal evolution of the energy flux −�(κ, t ) at fixed wave numbers. The filled squares
denote the maximum value of �(κ, t ), defining the time t = �(κ ). (b) The relationship between the
characteristic time �(κ ) and the wave number κ in reversed turbulence. The dash-dotted line indicates a
power-law behavior proportional to κ−2/3. The Kolmogorov scale η0 := η(t = 0) is used for normalization.
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FIG. 9. (a) Temporal evolution of the energy flux −�(κ, t ) at fixed wave numbers. The filled squares
denote the maximum value of �(κ, t ), defining the time G(t ) = �G(κ ). (b) The relationship between the
characteristic time �G(κ ) and the wave number κ in reversed turbulence. The dash-dotted line indicates a
power-law behavior proportional to κ−2/3. The Kolmogorov scale η0 := η(t = 0) is used for normalization.

of the Reynolds number, but a κ−2/3 scaling is approximately observed for the nonequilibrium
timescale. This rather puzzling observation, that the nonequilibrium timescale satisfies classical
scaling whereas the energy-spectrum does not, might be related to a different dependence on
nonlocal interactions of the two quantities. Further investigation using triadic closures [30] might
shed further light on this.

We can also define the localized nondimentional time G(t ) := ∫ t
0 T (s)−1ds, where T (s) is the

eddy turnover time at time s, and then define the timescale at wave number κ [9] [see Fig. 9(a)],
denoted as �G(κ ). It is shown in Fig. 9(b) that the κ−2/3 law is even better satisfied by comparing
to Fig. 8(b), which supports the use of G(t ) in the nondimensionalization of nonequilibrium
turbulence [9].

These observations show that the dynamics of the dissipation in the reversed flows is radically
affected, in particular since the reversed transfer depletes the dissipation scales from their energy.
The time it takes for structures in a flow with a length scale associated with the wave number κ ,
to return from their backwards energy transfer toward their conventional forward transfer, scales
as κ−2/3. Since the reversal does not change the variance of the velocity, the energy spectrum is
unchanged at the time of reversal. The scaling of the imbalance is thus determined by the equilibrium
state. Indeed, this was also the rationale of the derivation of the nonequilibrium scaling [8], where
the imbalance was determined as a perturbation around the equilibrium state.

V. CONCLUSIONS

We have explored the nonequilibrium of time-reversed turbulence. Indeed, this type of flow,
where the velocity is reversed at every point in space can be considered to be one of the most extreme
cases of nonequilibrium turbulence. It is observed that the recently discovered nonequilibrium
scaling of the normalized dissipation rate [7,8] is not observed at the time of reversal. Instead
we show that during the time interval, in which the reversed flow reorganizes to restore its
energy cascade, a new dissipation scaling is observed, where Cε ∼ Re−2

λ , which corresponds to the
nonequilibrium transient in which the dissipation evolves rapidly, independent from the large-scale
quantities L and k.

The derivation in Ref. [8] shows that in grid turbulence, or decaying box-turbulence, the
dissipation scaling Eq. (7) can be obtained by a perturbation expansion around an equilibrium flux
of energy, assuming weak disequilibrium. In the present case this derivation is not valid since the
flux of energy is completely reversed, which corresponds to a case where the size of the perturbation
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is twice the equilibrium flux. We can therefore not use the same perturbation around an equilibrium
flux. However, when we consider the energy spectrum and the large scales to be frozen, and assume
that only the dissipation evolves, the exact scaling Cε ∼ Re−2

λ can be derived.
We further show that the time it takes for a structure with a typical wave number to restore its

equilibrium transfer scales as κ−2/3. At later times, when the dissipation is again slaved to the large-
scale dynamics, the behavior of Cε evolves back to the behavior observed in preceding simulations
and experiments.

Both the present investigation and Ref. [8] show that imbalance in turbulence can often be
considered a perturbation around an equilibrium state. In the present case, it is a perturbation of
the dissipation scales, whereas in most nonequilibrium flows the imbalance reflects a deviation of
the large energy-containing scales from their equilibrium value.

The case of time-reversed turbulence can be considered to be an extreme example of energy
backscatter. It can therefore be expected that in more complex flows, during strong backscatter
events, localized in space and or time, the dissipation rate behaves as in the present investigation. For
example, Sk can be positive in the internal flow of compressors (see Fig. 13 of Ref. [31]), indicating
a strong local backscatter. Taking into account such events in engineering turbulence models might
turn out an interesting direction for future research.
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