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Finite Reynolds number effect and the 4/5 law
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Kolmogorov [A. N. Kolmogorov, Dokl. Akad. Nauk SSSR 30, 299 (1941)] formulated
a theory of small-scale turbulence (K41), valid at extremely large Reynolds numbers,
based on two similarity hypotheses and on an exact result derived from the transport
equation for the second-order structure function, known as the 4/5 law. Although K41 was
praised for its simplicity and elegance, Kolmogorov [A. N. Kolmogorov, J. Fluid Mech.
13, 82 (1962).] proposed a new refined similarity hypothesis (K62) mainly to account
for the effect of the large scales on the small scales. It has been widely interpreted in
the literature as a correction to K41 arising from the intermittency of the instantaneous
energy dissipation rate ε. In this paper we argue that since K62 retains the 4/5 law, it
must satisfy the same constraints as K41, viz., extremely large Reynolds number and flow
stationarity. The retention of the 4/5 law is not however consistent with the presence of
nonstationarity due to the effect of the large scales, as postulated by K62. A relatively
extensive survey of published data shows that, indeed, the 4/5 law has not yet been
observed in either experiments or simulations due to the Reynolds number not being
sufficiently large. The use of the transport equation for the second-order structure function,
together with an empirical model for the Kolmogorov-normalized second-order velocity
structure function, confirms that the 4/5 law is established only after this structure function
becomes independent of the Reynolds number.

DOI: 10.1103/PhysRevFluids.4.084602

I. INTRODUCTION

Kolmogorov’s 1941 theory (K41) [1,2], which requires the Reynolds number to be infinitely
large, is based on two similarity hypotheses. The first (H1) states that, for locally isotropic
turbulence, the statistical properties associated with the small scales are uniquely determined by
the kinematic viscosity ν and the mean turbulent kinetic dissipation rate ε (the overbar represents
time and/or spatial average). Using H1, Kolmogorov deduced, from dimensional analysis, a length
scale η = (ν3/ε)1/4 and a velocity scale vK = (νε)1/4 (η is the scale at which energy is dissipated
through the viscosity). The second hypothesis (H2), again for locally isotropic turbulence, states
that over a range of scales much larger than η but much smaller than the integral scale L (loosely
identified as the scale at which turbulent energy is introduced) the statistical properties of turbulence
are uniquely determined by ε and do not depend on ν. Using H1 and H2, Kolmogorov [1] derived
the two-thirds law, i.e.,

(δu)2 = C2ε
2/3r2/3, (1)
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where δu [=u(x + r, t ) − u(x, t )] is the velocity increment, r is the spatial increment, and C2 is a
universal constant. However, in the same year, he used the von Kármán–Howarth equation [3]

−(δu)3 = 4

5
εr − 6ν

∂ (δu)2

∂r
+ 3

r4

∫ r

0
s4 ∂ (δu)2

∂t
ds︸ ︷︷ ︸

Iu

, (2)

where s is a dummy index of integration, to derive the 4/5 law for homogeneous and isotropic
turbulence (HIT), viz.,

−(δu)3 = 4
5εr, (3)

where r lies in the inertial range (IR) η � r � L. The relation (3) follows from (2) provided both
the viscous term and the nonstationary term (here denoted by Iu), which in essence represents the
effect of the large scales, can be neglected. Kolmogorov justified the removal of these terms by
requiring the Reynolds number to be very large. There is little doubt that Eq. (3) is pivotal for any
asymptotic theory of small-scale turbulence; a measure of its importance in turbulence research
is reflected in the number of times it is cited across different chapters dedicated to prominent
turbulence researchers in Ref. [4]. K41 was introduced to western researchers by Batchelor [5], who
scrutinized all aspects of K41, including the derivation of (3), and received promising experimental
support, in the context of the spectrum of u, some 20 years after it was first published [6]. However,
mainly in response to a remark by Landau, Kolmogorov [7] felt compelled to revise his original
theory by introducing a refined similarity hypothesis, purportedly to account for the variation in ε

induced by the large (external) scales. He assumed a log-normal model, as obtained by Oboukhov
[8], for εr , the subscript denoting averaging over a sphere of diameter r. The variable δu/(rε)1/3 in
K41 was now replaced by δu/(rεr )1/3. It should be noted that the log-normal model was proposed
for the IR but subsequently extended to the dissipative range by other researchers (e.g., [9–11]) and
replaced by a plethora of other types of intermittency models [12–17]. According to Saffman [18],
the physical basis of K41, i.e., the hypothesis of a cascade of energy from large to small scales, is
supposedly invalidated by the spatial intermittency of the dissipative process, so new results now
depend on the intermittency model that is used. Indeed, the physics, and hence the consequences
for the small-scale statistics, was completely changed. We have recently reexamined the behavior
of dissipative range quantities such as the skewness and flatness factor of ∂u/∂x, the longitudinal
velocity derivative, in various turbulent flows and found that the behavior of these quantities, as
Reλ [=u′λ/ν, where λ is the longitudinal Taylor microscale u′/(∂u/∂x)′ and a prime denotes a rms
value] increases, is more aligned with K41 than with K62. In this paper we focus on the IR behavior
of (δu)n for n = 2 and 3.

K41 predicts

(δu∗)n = Cunr∗n/3, (4)

where the asterisk superscript denotes normalization by η, and vK and Cun are the Kolmogorov
universal constants. In particular, Cu3 = −4/5 since Eq. (3) can be rewritten as

−(δu∗)3 = 4
5 r∗. (5)

Apart from Cu3, the other constants in (4) are not known theoretically.
On the other hand, K62 predicts that

|δu|n = Dun(x, t )(εr)n/3

(
L

r

)μn(n−3)/18

, (6)

where Dun are constants which depend on the macrostructure of the flow and are functions of the
spatial location x and t . The L is usually identified as the integral scale (Kolmogorov refers to L
as the external scale) and μ (or k in Kolmogorov’s 1962 paper) is commonly referred to as the
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intermittency exponent (sometimes intermittency correction), assumed to be universal (with a value
of about 0.2). We now have a scenario where the external (large) scales can affect the IR so that
both the Kolmogorov constants (K41) and the exponent of r are modified. The notable exemption

is (δu)3, which is assumed in K62 to be given by (3). The deviation of the exponent from n/3 has
been seemingly confirmed by data from experiments and direct numerical simulations. It has also
been emulated by many intermittency models. As a result, the generally accepted behavior of (δu)n

in the IR is

(δu)n ∼ rζn , (7)

where ζn > n/3 for n < 3 and ζn < n/3 for n > 3. The distribution of ζn vs n is convex, in contrast
to the linear variation [relation (4)] of K41. Despite the shortcomings of the log-normal model,
Eq. (6) seems to represent the variation of ζn with n reasonably well, at least for n � 8.

At this stage, there are two major comments that need to be made. First, it should be fully
recognized that K41 and K62 are asymptotic theories, valid strictly at very large Reλ. In particular,
the derivation of Eq. (3) requires the second and third terms on the right-hand side of Eq. (2) to
be negligible. The term Iu hinders the establishment of a credible IR since it is the dominant term
as r continues to increase [when r exceeds L, Iu and the first term on the right-hand side of (2)
represent the conventional overall energy budget]. It is difficult to see how (3) can be derived
unless Iu disappears; yet, K62 asserts that K41 needs to be modified due to the effect from the
external scales. McComb [19] correctly points out that there is an inconsistency between the left-
and right-hand sides of Eq. (6) since the left-hand side should depend only on r in HIT. He also
states that the 4/5 law “emerges unscathed” from K62. This is not evident since the 4/5 law is
simply assumed in K62 in order to provide an expression for the skewness of δu in the IR. Using
the framework of K62, Eq. (3) can be recast as

− (δu)3

u′3 = 4

5
Cε

r

L
(8)

after replacing ε by Cεu′3/L, where Cε is the dimensionless energy dissipation coefficient. The 4/5
law survives only if Cε = 1; the available data [20–24] indicate that the magnitude of Cε depends
on the flow (it is unlikely that Cε is exactly 1). There is no doubt that K62 preserves the value of 1
for the exponent of r, as do all post-K62 intermittency models.

For n = 2, Eq. (6) yields

(δu)2 ∼ (εr)2/3

(
L

r

)−μ/9

. (9)

Since Kolmogorov’s equation, i.e., Eq. (2) with Iu = 0, satisfies similarity when normalized by vK

and η (see, e.g., [5,25]), we are entitled to normalize (9) using vK and η. This leads to

(δu∗)2 ∼ r∗2/3+μ/9Re−8μ/6
λ . (10)

Since μ > 0, (δu∗)2 will decrease to zero as Reλ → ∞. This trend, which is inconsistent with that
obtained by Oboukhov [8], does not seem realistic, nor can it be reconciled with the way estimates
of Cu2 have been made in the literature, either directly using Eq. (4) (e.g., [26]) or via the spectrum
of u (e.g., [27]). These estimates should have varied with Reλ systematically if Eq. (10) were valid.

Given the close link that exists between (δu)2 and (δu)3 through Eq. (2), it seems unlikely that (δu∗)2

will continue to depend on the Reynolds number after (δu∗)3 (=−4/5r∗) becomes independent of
Reλ. All of the previously mentioned inconsistencies lead us to question the inclusion of L in Eq. (6),
which is the major idea on which K62 is founded.

Second, it should be recognized that measurements and numerical simulations are carried
out at finite Reynolds numbers and there is no guarantee that ζn [Eq. (7)] can be estimated
without ambiguity. In their review of small-scale turbulence, Sreenivasan and Antonia [13] noted
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that although the experimental support for the anomalous scaling was overwhelming, several
uncertainties remained, in particular the need to account for the finite Reynolds number (FRN)
effect, “which is not understood and cannot be calculated a priori,” and the practical issue of
“how one defines the scaling range and obtains scaling exponents from [power laws] of modest
quality.” Since that review, several papers have dwelt on the FRN effect starting either with Eq. (2)
in physical space or von Kármán and Lin’s equation [28] in spectral space, i.e., without neglecting
the nonstationarity and without introducing any arbitrary intermittency model [19,29–37]. This
approach is solidly underpinned by the fact that the von Kármán–Howarth equation is valid at
any Reynolds number. This has been exploited successfully by experimentalists (see, e.g., [38,39])

to calculate the triple-velocity correlation [or (δu)3] starting with the measured double-velocity

correlation [or (δu)2]. It also accounts for intermittency in a natural manner since intermittency,
an unmistakable characteristic of turbulence, is intrinsically embedded in the transport equation for
(δu)2. The use of this approach has certainly heightened the need to increase Reλ as much as possible
in the quest for establishing an IR. Interestingly, experiments and numerical simulations [40–44]
have provided strong support for many consequences of H1 (K41) at small to moderate values of the
Reynolds number (Reλ � 1000). This is not surprising since it has been shown that Eq. (2) admits
similarity at small scales (over a range of r in which Iu ≈ 0) based on η and vK (see, e.g., [25,45])
even at modest values of Reλ; the range of validity of this scale invariance extends as Reλ increases.
Supporters of K62 argue that the anomalous scaling is real and that the best way of highlighting it
is to focus on large values of n (since the difference between ζn and n/3 is small for n � 4). This
argument can be countered, if not dismissed, on the basis that the larger n is, the greater the value of
Reλ that is required to ensure independence of (δu∗)n (in the IR) from the Reynolds number. Tang
et al. [44] provide some experimental evidence for this trend, even though the maximum value of
Reλ is insufficient. More importantly, if ζ2 and ζ3 cannot be estimated rigorously, why should one
trust the data for ζn (n � 4), especially in view of the continuous evolution with Reλ of (δu∗)n in
what is loosely described as the scaling range [44]; this evolution is more accentuated as n increases.
The arguments presented in this and previous paragraphs lead us to believe that it is important, if

not crucial, to first ascertain the evolution with Reλ of (δu)2 and (δu)3, in the context of Eq. (2), in
flows where external scales can, through Iu, affect the establishment of the IR differently.

In Secs. II and III we present a relatively extensive review of experimental and numerical data

for (δu)2 and (δu)3, as reported in the literature, with the aim of assessing the behavior of these

quantities as Reλ increases. In order to extrapolate the behavior of (δu)3 when Reλ → ∞, we use,
like Antonia and Burattini [34], an empirical model for (δu)2; justification for this approach is

provided by comparing measured distributions of (δu)3 with those inferred from the model using
Eq. (2). The conclusions from this review and the model-based extrapolation to Reλ → ∞ are
presented in Sec. IV.

II. RESULTS FOR (δu)3

We report in Fig. 1 a selection of distributions of −(δu∗)3/r∗ based on published data. The
selection is not exhaustive as we have restricted our attention to flows often encountered in the
literature: shearless and sheared grid turbulence, along the axes in the far field of plane and circular
jets, stationary forced periodic box turbulence (SFPBT), the flow in a cylindrical container between
counterrotating end disks, and a boundary layer at y/δ ≈ 0.5 (δ is the boundary thickness). Except
for Fig. 1(f), which to conserve space includes two rather disparate flows, the other components of
Fig. 1 focus on essentially similar flows. In each case, the effect of the large scales on the small
scales is likely to be different since the term Iu in Eq. (2) can differ from flow to flow. Expressions
for Iu, which reflects the energy balance at large scales, can be found in Ref. [44]. However, Iu can
be estimated with relatively good accuracy in only a few flows: grid turbulence, on the axis of a
circular jet, along the centerline of a fully developed channel flow, and in box turbulence.
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FIG. 1. Distributions of (δu∗)3/r∗ in various flows. (a) Shearless grid turbulence: black curves, Reλ =
26–99 [40]; , Reλ = 72 [46]; , Reλ = 144 [46]; , Reλ = 99 [47]; , Reλ = 134 [47]; , Reλ = 319
[47]; and , Reλ = 448 [47]. Also shown are the data along the axis of the ONERA wind tunnel (similar
to grid turbulence) at Reλ = 2260, [46]. (b) Sheared grid turbulence: , Reλ = 170 [48]; , Reλ = 660

[48]; , Reλ = 196 [49]; , Reλ = 254 [49]; , Reλ = 875 [49]; and , Reλ = 938 [49]. (c) Along the
axis of a circular jet: , Reλ = 835 [50]; , Reλ = 966 [51]; black curves, Reλ = 235–545 [52]; , Reλ =
485 [41]; pink curves, Reλ = 122–310 [53]; , Reλ = 350 [46]; , Reλ = 695 [46]; , Reλ = 200 [54];
and ©, Reλ = 430 [54]. (d) Along the axis of a plane jet: Reλ = 550–1067 [44]. (e) SFPBT: red curves,
Reλ = 38–240 [43]; green curves, Reλ = 177–435 [36]; blue curves, Reλ = 70–460 [42]; black curves, Reλ =
167–1131 [22]; pink curve, Reλ = 805 [55]; , Reλ = 1300 [56]; , Reλ = 650 [57]; and , Reλ = 240–700
[58]. (f) In a cylindrical container between counterrotating disks ( , Reλ = 120; , Reλ = 300; and pink
curve, Reλ = 1170) [59] and at y/δ ≈ 0.5 in a high Reynolds number boundary layer: Reλ = 600 (blue curve)
and Reλ = 1450 (black curve) [26]. The dashed horizontal line in each plot corresponds to the value of 4/5.

084602-5



ANTONIA, TANG, DJENIDI, AND ZHOU

100 101 102 103 104
0

0.5

1

1.5

2

FIG. 2. Local slope [LS3(r∗) = d log (δu∗)3/d log r∗] corresponding to the highest Reλ in each plot of
Fig. 1: , Reλ = 2260 [shearless grid turbulence; see Fig. 1(a)]; , Reλ = 938 [sheared grid turbulence; see
Fig. 1(b)]; , Reλ = 966 [circular jet; see Fig. 1(c)]; red curve, Reλ = 1067 [plane jet; see Fig. 1(d)]; ,
Reλ = 1300 [SFPBT; see Fig. 1(e)]; black curve, Reλ = 1450 [boundary layer; see Fig. 1(f)]; and pink curve,
Reλ = 1170 [flow between counterrotating disks; see Fig. 1(f)]. Also shown are ASL data (©, Reλ = 10, 304
[62]; , Reλ = 104 [64]). The black dashed line corresponds to the value of 1.

The local slope LS3(r∗) = d[log (δu∗)3]/d[log(r∗)], corresponding to the highest Reλ in each
of the flows considered in Fig. 1 is shown in Fig. 2. Since the atmospheric surface layer (ASL)
data are not suitable for testing K41 or K62 because of the likely effects of the mean shear, the
strong inhomogeneity of the large scales, and the blockage effect caused by the proximity to a solid
boundary [60] (see also [61]), we have not included these data in Fig. 1. We recall, however, that
Eq. (3) is not satisfied for the ASL data, as already noted by Sreenivasan and Dhruva [62]; as an
example, we show in Fig. 2 one distribution of the ASL data at Reλ ∼ 104 [62]. Kholmyansky
et al. [63] pointed out that, for their ASL data at Reλ = 104, −(δu∗)3/r∗ is equal to 0.8 ± 0.05 over
at least three decades of r∗ [≈30–(3.5 × 103)]. However, the estimated local slope LS3(r∗) from
Fig. 2(a) of Kholmyansky and Tsinober [64] at Reλ = 104, which is also shown in Fig. 2, does not
have a plateau, implying that Eq. (3) is actually far from being satisfied by their data.

Some remarks are warranted before discussing Figs. 1 and 2. A key element of K41 and K62 is
the assumption that the small-scale motion is isotropic. We have shown previously that local isotropy
(LI) is satisfied closely in the dissipative range at r∗ ≈ 1 [61,65–68] in the absence of a mean shear.
For sheared grid turbulence [Fig. 1(b)], there is a strong departure from LI [69]. As r∗ increases to a
value that lies within what is loosely identified as the scaling range, LI is satisfied closely in shearless
grid turbulence and on the axis of a circular jet (see, e.g., Fig. 4 of [70]). Gotoh et al. [42] noted that,
for SFPBT, “the isotropy of the [second-] and [third-order] moments (of δu) is excellent for scales
less than L/2” at Reλ = 128–460. However, Tang et al. [44] showed that, although the range of r∗ in
the plane jet (550 � Reλ � 1067) which satisfies LI improves as Reλ increases, the departure from
LI remains significant in the scaling range for both (δu)2 and (δu)3. There has been no examination
of LI in the scaling range for the flow in a cylindrical container between counterrotating end disks.
In the boundary layer at y/δ ≈ 0.5 (Reλ = 600 and 1450), Saddoughi and Veeravalli’s spectral tests
indicate that, for wave numbers in the dissipative range, isotropy is adequately satisfied but it is
not satisfied in the scaling range. Overall, based on the above discussion, only the shearless grid
turbulence, circular jet, and SFPBT satisfy LI to a reasonable degree over both dissipative and
scaling ranges for the flows considered in Fig. 1.
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FIG. 3. (a) Analytical predictions of (δu∗)3/r∗ based on Eqs. (11) and (2) at Reλ = 51 (pink curve), Reλ =
89 (green curve), Reλ = 144 (cyan curve), Reλ = 2260 (red curve), Reλ = 104 (blue solid curve), and Reλ =
105 (black solid curve). The symbols are the grid turbulence data [see Fig. 1(a)] at Reλ = 51 ( ), Reλ = 89

( ), Reλ = 144 ( ), and Reλ = 2260 ( ). Also shown are the analytical predictions of (δu∗)3/r∗ based on
Eqs. (11) and (13) at Reλ = 200 (blue dashed curve) and Reλ = 430 (black dashed curve), respectively. The

symbols are the circular jet data [see Fig. 1(c)] at Reλ = 200 ( ) and Reλ = 430 (©). The dashed horizontal

line corresponds to 4/5. (b) Corresponding local slope [LS3(r∗) = d log (δu∗)3/d log r∗] at Reλ = 51 (pink
curve), Reλ = 89 (green curve), Reλ = 144 (cyan curve), Reλ = 200 (blue dashed curve), Reλ = 430 (black
dashed curve), Reλ = 2260 (red curve), Reλ = 104 (blue solid curve), and Reλ = 105 (black solid curve). The
dashed horizontal line corresponds to the value of 1.

The following comments can be made with regard to Figs. 1 and 2.
(i) None of the distributions in Fig. 1 exhibit a convincing plateau, underlining the absence of an

IR [except perhaps for Figs. 1(b) and 4(b), the convex curvature exhibited by the distributions near
their peak value persists to the largest value of Reλ]. This is confirmed by the corresponding behavior

of the local slope [LS3(r∗) = d log (δu∗)3/d log r∗] of (δu)3 (Fig. 2), i.e., a power-law behavior for
(δu)3 is strictly untenable. The convex curvature mentioned above complies with Eq. (2) and should

be dissociated from experimental uncertainties in (δu)2 and (δu)3.
(ii) In Fig. 1(a), only the passive grid data [34,46] display a systematic (and well-behaved)

increase with increasing Reλ. There is much more scatter in the active grid data beyond the
maximum value of −(δu∗)3/r∗ [47]. This behavior is further emphasized in Fig. 1(b) for sheared
grid turbulence where the active grid data (Reλ = 875 and 938) exhibit two clear peaks, compared
to only one peak for the passive grid data. The trend of the Modane (ONERA closed-circuit wind
tunnel) data (Reλ = 2260) in Fig. 1(a), which are closest to reaching the value of 4/5 with a
flattening off around the peak, suggests that Reλ still needs to be significantly larger before an
IR is established. This supports the conclusions reached by Qian [29] and Antonia and Burattini
[34] (see also Figs. 3 and 6). Note that Frisch [12] (Fig. 8.6 therein) and Malecot [71] (Fig. 1.6
therein) also reported the same Modane data, but with a maximum value of −(δu∗)3/r∗ in excess of
4/5. As discussed below in the context of Fig. 1(c), this is most likely caused by an underestimation
of ε; note that the magnitude of ε reported by Malecot [71] (≈0.73 m2/s3) is about 23% smaller
than that of Gagne et al. [46] (≈0.95 m2/s3). After renormalizing the distributions of −(δu∗)3/r∗
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of Malecot [71] and Frisch [12] with ε ≈ 0.95 m2/s3, we found that they collapse reasonably well
with that of Gagne et al. [46] [not shown in Fig. 1(a)]. The renormalized (δu∗)2/r∗2/3 distribution
of Frisch [12] is shown in Figs. 4(a) and 6(a). Note that the Modane data were obtained in the return
leg of the tunnel where the flow characteristics are not documented. They can at best be described
as pseudogrid turbulence data. They are shown here since they have already been used extensively
in the literature.

(iii) Included in Fig. 1(c) are the circular jet data (Reλ = 835) of Anselmet et al. [50], which
provided the first strong evidence for the so-called anomaly of the scaling exponents, i.e., the
difference between ζn and n/3 continues to increase as n increases (beyond n = 3). For Anselmet
et al. [50] (also circular jet data at Reλ = 966), the maximum value of −(δu∗)3/r∗ exceeds 4/5.
Lindborg [33] pointed out that this is incorrect since the second and third terms on the right-hand
side of Eq. (2) should be negative if the Reynolds number is finite. The behavior is most likely
caused by an underestimation of ε due to the use of εiso [=15ν(∂u/∂x)2]. This is a problem
with experimental data since, with rare exceptions (see, e.g., [72–74]), the full mean energy

dissipation rate [≡ ν
2 ( ∂ui

∂x j
+ ∂u j

∂xi
)
2

(i, j = 1, 2, 3)], only available for direct numerical simulation data,
is estimated by its one-dimensional surrogate εiso in measurements. Nevertheless, the absence of a
plateau in Fig. 1 is unaffected by the actual value of ε and hence by the manner in which ε is
estimated. The largest Reλ (=1840) data on the axis of a circular water jet that have been published
are those of Boffetta and Romano [75]. Distributions of (δu∗)3 are not shown in the paper but one
can infer from the plotted variations (Fig. 3 of their paper) with r∗ of (δu)2 and (δu)4 that Eq. (3) is
unlikely to be satisfied.

(iv) We recall that SFPBT was first studied because it was expected that an IR would be possible
at smaller values of Reλ than in decaying flows, such as shearless grid turbulence. This expectation
is fully consistent with the Navier-Stokes equation, as shown by Antonia and Burattini [34]. Several
investigations have claimed to have established the 4/5 IR in a convincing manner in SFPBT.
For example, Yeung et al. [58] claimed that their data at Reλ = 700 exhibited a 4/5 plateau. Iyer
et al. [56] claimed that Eq. (3) is satisfied to an accuracy of better than 5% at Reλ = 1300, which
corresponds to an IR of about one decade in extent. Their data have been reproduced in Fig. 1(e).
It is clear that a 4/5 IR has not been attained even for Reλ = 1300. All the data in Fig. 1(e) exhibit
a convex curvature and, even at Reλ = 1300, are at best tangential to the 4/5 line. Note that, at
Reλ = 700, the magnitude of −(δu∗)3/r∗ over the range 100 � r∗ � 500 exceeds 4/5. Yeung et al.
[58] pointed out that, for their simulations, this magnitude is sensitive to the temporal variability of
the volume-averaged ε which, being driven by large scales, can vary by as much as 50% even in
a period of statistical stationarity. This could explain why the magnitude of −(δu∗)3/r∗ is smaller
at Reλ = 1300 than that at Reλ = 1131. As expected, the behavior of −(δu∗)3/r∗ in the dissipative
range [Fig. 1(e)] seems immune to the influence of the large scales.

As discussed in the context of Eq. (2), only when the viscous and large-scale terms become
negligible over a sufficiently large range of r∗ can the IR be unequivocally established in decaying

HIT. To illustrate this, we show in Fig. 3(a) distributions of (δu∗)3/r∗ at Reλ = 51, 89, 144, 200,

430, 2260, 104, and 105 estimated from (2) with a parametrized form of (δu∗)2 in decaying HIT
[34,39,76], viz.,

(δu∗)2 = r∗2(1 + r∗/L∗)−2/3

15[1 + (r∗/r∗
c )2]

2/3 , (11)

where r∗
c = (15Cu2)3/4 (Cu2 is the usually accepted value for the Kolmogorov constant, although

the universality of this value has not yet been established rigorously) has been interpreted as a
measure of the crossover between the dissipative and scaling ranges [77]. For isotropic turbulence,
L∗ = Cε15−3/4Re3/2

λ . We stress that the parameters Cε and Cu2, which feature in Eq. (11), can be
adjusted in different flows (or different regions of the same flow) since Eq. (11) is mainly used to
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provide an adequate fit to measurements of (δu)2 in a particular flow (or flow region). This allows
us to extrapolate to values of Reλ which cannot be achieved by measurement. The grid turbulence
distributions in Fig. 3(a) were calculated using Eqs. (11) and (2), where Iu is given by (see, e.g.,
[32,78,79])

Iu(r) = 3

r4

∫ r

0
s4

[
U

∂ (δu)2

∂x

]
ds, (12)

where U is the mean velocity in the x direction. For the axisymmetric jet, the distributions were
calculated with Iu [80,81] given by

Iu = 3

r4

∫ r

0
s4

[
U

∂ (δu)2

∂x
− 2[(δu)2 − (δv)2]

∂U

∂x

]
ds, (13)

where v is the velocity fluctuation along the y direction. The corresponding local slope LS3(r∗)

[=d log (δu∗)3/d log r∗], based on Eq. (11), at Reλ = 51, 89, 144, 200, 430, 2260, 104, and 105

is shown in Fig. 3(b). Also shown in Fig. 3(a) are the grid turbulence data at Reλ = 51, 89, 144,
and 2260 [see also Fig. 1(a)] and circular jet data at Reλ = 200 and 430 [see also Fig. 1(c)]. The
agreement between curves and symbols in Fig. 3(a) is satisfactory, confirming the fit used to emulate

the available data for (δu∗)2. No plateau can be observed in Fig. 3(a), even for Reλ = 105, a value
well beyond the reach of laboratory experiments and direct numerical simulations. The maximum
value (0.795) at Reλ = 105 is slightly below 4/5. The corresponding value of LS3(r∗) [Fig. 3(b)]
appears to be close to 1, but in fact Fig. 3(b) shows that, if an exaggerated linear scale is used for
the ordinate, the slope is equal to 1 only at one point (r∗ ≈ 700).

III. RESULTS FOR (δu)2

We show in Fig. 4 distributions of (δu∗)2/(r∗)2/3 in nearly the same flows as in Fig. 1. Surpris-
ingly, except for the Modane data shown by Frisch [12] at Reλ = 2260 [we have renormalized these
data with a more appropriate value of ε, as discussed in the context of Fig. 1(a)], we were unable

to find data for (δu∗)2 in shearless grid turbulence for Reλ > 144 in the literature. With regard to
Fig. 4, the following points can be made.

(i) For sheared grid turbulence [Fig. 4(b)], there is a systematic increase with Reλ as r∗ increases.

However, although the nondimensional shear parameter S∗ (= dU
dy

u2

ε̄iso
) is comparable (≈5.0–7.7) for

all the data sets, the magnitudes of (δu∗)2/(r∗)2/3 at Reλ = 875 and 938 reported by Shen and
Warhaft [69] are lower than those presented by Shen and Warhaft [49] and Ferchichi and Tavoularis
[48] at smaller Reλ (=170–660). This may be due to a difference in initial conditions since an active
grid was used by Shen and Warhaft [69] whereas a passive grid was used by Shen and Warhaft
[49] and Ferchichi and Tavoularis [48]. Similarly, for SFPBT [Fig. 4(e)], different types of forcing

may affect the behavior of (δu∗)2/(r∗)2/3 differently. For example, the distribution for Reλ = 240
reported by Yeung and Zhou [43] lies above that of McComb et al. [36] at a comparable Reλ.

(ii) Except for the data of Ishihara et al. [22] which decrease systematically as Reλ increases over
the range 20 � r∗ � 150, the magnitude at a given r∗, say, r∗ = 100, increases with Reλ in all other
box turbulence simulations [Fig. 4(e)].

(iii) There is reasonable collapse of the distributions in each flow in the range r∗ � 5. Arguably,
the collapse is most convincing when ε is known accurately [e.g., Figs. 4(a) and 4(e)]. More
importantly, the distributions in each flow increase systematically with Reλ when r∗ increases,

implying (see [82]) that it would not be meaningful to assume a power-law behavior for (δu∗)2. This

is further confirmed by the corresponding local slope [LS2(r∗) = d log (δu∗)2/d log r∗] (Fig. 5) for
the highest Reλ in each of the flow types included in Fig. 4. The message from Figs. 4 and 5 is clear:
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FIG. 4. (a) Distributions of (δu∗)2/(r∗)2/3 in various flows. (a) Shearless grid turbulence: black curves,
Reλ = 26–99 [40]; red curve, Reλ = 144 [71]; and , Modane data of Frisch [12] at Reλ = 2260 (the
distributions were renormalized with a more appropriate value of ε; see the text). (b) Sheared grid turbulence:

black curves, Reλ = 170–660 [48]; , Reλ = 875 [69]; , Reλ = 938 [69]; , Reλ = 196 [49]; and ,
Reλ = 254 [49]. (c) Along the axis in the far field of the circular jet: red curve, Reλ = 835 [50]; , Reλ = 536

[50]; , Reλ = 966 [51]; black curves, Reλ = 235–545 [52]; , Reλ = 485 [41]; pink curves, Reλ = 122–310

[53]; blue curve, Reλ = 695 [71]; , Reλ = 200 [54]; and ©, Reλ = 430 [54]. (d) Along the axis in the
far field of the plane jet: Reλ = 550–1067 [44]. (e) SFPBT: red curves, Reλ = 38–240 [43]; green curves,
Reλ = 177–435 [36]; blue curves, Reλ = 70–460 [42]; black curves, Reλ = 167–1131 [22]. Note that thick
lines are used for the distributions at the lowest and highest Reλ. (f) Boundary layer at Reλ = 600 (blue curve)
and 1450 (green curve) [26].

There is no discernible plateau, i.e., (δu)2 does not exhibit a power-law variation. Interestingly, the
local slope for Reλ = 966 (circular jet) and 938 (sheared grid turbulence) appears to be close to 2/3
over a very small range of r∗; for the corresponding distributions in Fig. 2, LS3 is not equal to 1.
This leaves open the possibility that, for a given flow at a fixed initial condition, ζ2 = 2/3 may be
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FIG. 5. Local slope [LS2(r∗) = d log (δu∗)2/d log r∗] corresponding to the highest Reλ in each plot of
Fig. 4: , Reλ = 2260 [shearless grid turbulence; see Fig. 4(a)]; , Reλ = 938 [sheared grid turbulence; see

Fig. 4(b)]; , Reλ = 966 [circular jet; see Fig. 4(c)]; red curve, Reλ = 1067 [plane jet; see Fig. 4(d)]; black
curve, Reλ = 1131 [SFPBT; see Fig. 4(e)]; and green curve, Reλ = 1450 [boundary layer; see Fig. 4(f)]. The
black dashed line corresponds to the value of 2/3.

achieved at a somewhat smaller Reλ than ζ3 = 1. To further illustrate this, we show in Fig. 6(a) the

distributions of (δu∗)2/(r∗)2/3 at Reλ = 59, 89, 144, 200, 430, 2260, 104, and 105 calculated with
Eq. (11) and the experimental data at Reλ = 59, 89, 144, 200, 430, and 2260. Although there is no
clear plateau for Reλ � 104, the distribution [Fig. 6(b)] for Reλ = 105 shows a plateau slightly more
than one decade in extent.

Equation (11) was tested against grid turbulence measurements by Antonia and Burattini [34]
(Reλ � 100); it has been tested more thoroughly here against several data sets, obtained in different
flows and in particular larger values of Reλ. Figure 6(a) shows that the model-based curves are
in reasonable agreement with both the grid turbulence and jet data. In Eq. (11), Cε and Cu2 were
chosen to be 1.2 and 2.0 for grid turbulence and 1.4 and 2.0 for circular jet. For the Reλ = 2260
Modane data, the agreement is adequate for r∗ > 150 but weaker for r∗ < 150 due, most likely,
to the increasing measurement difficulty as r∗ decreases and Reλ increases; this impairment is

consistent with the displacement at small r∗ of the Modane data for (δu∗)3 in Fig. 3(a).
Equation (11) was also tested extensively, for β ≡ L∗−1 = 0 (i.e., over the dissipative range and

most of the scaling range), by Antonia et al. [83] for different flows and by Stolovitzky et al.
[84] in a turbulent boundary layer over a smooth wall. We should recall that Eq. (11), with β = 0,
was first introduced by Batchelor [85] in the context of obtaining an analytical expression for the

mean-square pressure gradient. Batchelor [85] assumed that (δu∗)2 depends only on r∗, i.e., it is a
universal function which is quadratic (=r∗2/15) when r∗ � 1 and tends to Cu2r∗2/3 when r∗ � 1
as the Reynolds number approaches infinity. The inclusion of the term containing β does not affect

the tendency toward Cu2r∗2/3 when r∗ � L (and r∗ � 1). This term reflects how (δu)2 is influenced

by the Reynolds number through the effect of the large scales. When r exceeds L, (δu∗)2 must,
for a given Reλ, approach a constant value, i.e., 2u∗2. Equation (11) satisfies this requirement. The
asymptotic form of Eq. (11) in the IR, i.e., Cu2r∗2/3, is of course consistent with the result first
obtained by Kolmogorov [1] via dimensional arguments; this approach is considerably bolstered
by the fact that vK and η have been shown [25,45] to be the appropriate similarity variables which
satisfy the transport equation for (δu)2 over a range of scales for which the large-scale term can be
neglected. As noted in Ref. [1], the 2/3 law is compatible with Eq. (3) if one assumes the skewness

084602-11



ANTONIA, TANG, DJENIDI, AND ZHOU

100 102 104 106
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

100 102 104 106
0

0.5

1

1.5

2

2.5

3
(a) (b)

FIG. 6. (a) Distributions of (δu)2/(εr)2/3 based on Eq. (2) at Reλ = 51 (red curve), Reλ = 89 (black solid
curve), Reλ = 144 (cyan curve), Reλ = 200 (blue dashed curve), Reλ = 430 (black dashed curve), Reλ = 2260
(pink curve), Reλ = 104 (green curve), and Reλ = 105 (blue solid curve). The symbols are the grid turbulence

data [see Fig. 4(a)] at Reλ = 51 ( ), Reλ = 89 (©), Reλ = 144 ( ), and Reλ = 2260 ( ). Also shown

are the circular jet data [see Fig. 4(c)] at Reλ = 200 ( ) and Reλ = 430 (©). Note that Cε ≈ 1.4 is used for
circular jet whereas Cε ≈ 1.2 is used for grid turbulence; see the text. (b) Corresponding local slope [LS2(r∗) =
d log (δu∗)2/d log r∗] at Reλ = 51 (red curve), Reλ = 89 (black solid curve), Reλ = 144 (cyan curve), Reλ =
200 (blue dashed curve), Reλ = 430 (black dashed curve), Reλ = 2260 (pink curve), Reλ = 104 (green curve),
and Reλ = 105 (blue curve). The dashed horizontal line corresponds to 2/3.

of δu to be constant in the IR. This is consistent with the assumption of scale invariance of δu
across the IR [86]. Figures 3(a) and 6(a) indicate that the range over which self-similarity (or scale
invariance) is applicable extends to larger values of r∗ as Reλ increases. The inference is that scale
invariance will eventually be satisfied across the IR as Reλ → ∞, thus leading to the 2/3 law. If this
scenario is correct, the possibility that (δu∗)2 → r∗2/3 as Reλ → ∞ cannot be discounted. What is
important, in the context of this paper, is that Eq. (11) provides a satisfactory description of (δu)2 at
small Reynolds numbers where the influence of the large scales cannot be ignored (see Fig. 6). This
increases confidence in the extrapolation to values of Reλ sufficiently large for the external scales to
have a negligible effect on the IR.

In order to quantify, albeit approximately, the value of Reλ required for an IR to be established,

the range of r∗ over which the distributions, based on Eq. (11), of (δu∗)2r∗−2/3 and (δu∗)3r∗−1 depart
from 2 and 4/5, respectively, by no more than 2.5%, is identified in Fig. 7. It is clear that the IR
is extended in size as Reλ increases. Values of Reλ of about 104 and 105 are required before one
can claim a two-decade IR for (δu)2 and (δu)3, respectively. This is consistent with the implication,
from Figs. 2 and 5, that for a given flow and fixed initial condition, ζ2 = 2/3 may be attained at
a smaller Reλ than ζ3 = 1. Similarly, it would not be unreasonable to expect that ζ3 = 1 will be
attained at a smaller Reλ than ζ4 = 4/3 and so on.

IV. CONCLUSION

The 4/5 law [Eq. (3)] is considered to be an exact result in turbulence. It is valid only when
the large scales and viscosity cease to have an effect on the IR. Indeed, Eq. (3) was derived by
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FIG. 7. Range of r∗ over which (δu∗)2r∗−2/3 (blue line) and (δu∗)3r∗−1 (red line) depart from 2 and 4/5,
respectively, by no more than 2.5%. The locations of the vertical arrows give an approximate indication of the
values of Reλ needed to attain an IR, of two decades in extent, for (δu∗)2 and (δu∗)3, respectively.

Kolmogorov [2] after neglecting the nonstationary term in Eq. (2) by assuming that the Reynolds
number is infinitely large. Equation (3) was derived in K41 and assumed in K62. We have carried

out a relatively extensive review of results available in the literature for (δu)3 and also (δu)2. The
main conclusion that can be drawn from this review is that the maximum value of Reλ that has been
achieved in the laboratory is insufficient for these two quantities to display a power-law behavior.
Correspondingly, there is no evidence that an IR has been established. It is nonetheless inevitable
that Eq. (3) will be validated when the nonstationary term Iu in Eq. (2) is no longer important. The

use of Eq. (3) together with an empirical model for (δu)2 confirms the earlier result of Antonia and

Burattini [34], viz., Reλ needs to exceed 105 before one can claim an IR for (δu)2 of about two
decades in extent. Although the model for (δu)2 asymptotes towards r2/3 at very large Reλ, it is in

reasonable accord with the measurements of (δu)2 and (δu)3 for values of Reλ up to about 103, thus
providing confidence when extrapolating the model-based results to larger values of Reλ.

The results, based on Eqs. (2) and (11), indicate that the IR for (δu)2 is approached at a slightly

faster rate than that for (δu)3 (Figs. 2, 5, and 7); this is not surprising given the close link that exists,
through Eq. (2), between lower- and higher-order moments of δu and the expectation that lower-
order moments should reach their asymptotic states at lower Reynolds numbers than higher-order
moments. Since there is a hierarchy of equations (see, e.g., [87]) linking lower- and higher-order
moments of δu, all derived from the Navier-Stokes equation, one expects that the value of Reλ

required for a moment of order n to reach its asymptotic state will increase as n increases. This raises
a major concern with regard to the distribution of ζn vs n (see, e.g., [12,13,16,50]) that is generally
assumed to be independent of Reλ and has been more or less reproduced by several intermittency
models (see, e.g., [13]). The departure, referred to as anomalous scaling, of this distribution from the
K41 prediction ζn = n/3 [Eq. (4)] has been attributed to the effect of intermittency. This departure
needs to be reappraised critically in light of Figs. 2, 5 and 7.

The reasonably good collapse of (δu∗)3 [Figs. 1(d)–1(f)] and (δu∗)2 [Figs. 4(a), 4(d), and 4(e)]
at small r∗ supports the first similarity hypothesis of K41 with the important qualification that Reλ

does not need to be very large. The extent of the similarity (or scale invariance) is observed to
increase as Reλ increases; the possibility that the second hypothesis of K41 may be verified at very
large Reλ cannot be excluded, especially if we are guided by the extrapolation (Fig. 7) based on
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Eqs. (2) and (11). This, together with the recent observations that quantities like the skewness and
flatness factor of ∂u/∂x are bounded [44,61,65–68] at sufficiently large Reλ, strongly supports the
notion that, in the context of locally HIT turbulence, K41 cannot be ruled out when Reλ → ∞.

As underlined by McComb [19], K62 is predicated on the idea that the effect of the larger scales
is experienced at all small scales. We pointed out in the Introduction that this idea is inconsistent
with the retention of the 4/5 law or Eq. (3). The validity of Eq. (3) requires that the large scales
cannot affect the IR and, a fortiori, the dissipative range; Eq. (3) follows from Eq. (2) once the
effect of the large scales (or nonstationarity) is discounted and the influence of viscosity is neglected.
Nevertheless, all intermittency models have to date been tested in situations described by Eq. (2)
with the caveat that the nonstationarity term assumes different forms in different flows. In the context
of dissipative range scales, these models are best interpreted as attempts to describe the effect of
the large scales or, equivalently, the effect of Reλ on small-scale characteristics. In the context of
IR scales, the models have reproduced the apparently anomalous behavior of ζn, the anomaly or
departure from n/3 (or K41) increasing with n, with the notable exception of ζ3, which has been
assumed to be equal to 1. The present results, like those of McComb et al. [36], indicate that the
anomalous values of ζ2 are very likely associated with the FRN effect; Qian [29] was in fact first
to draw attention to this. More importantly, the present results also emphasize that ζ3 should never
have been assumed to be equal 1; the latter value can only be reached at extremely large Reynolds
numbers. The anomalous behavior of ζ2 and ζ3 when Reλ is finite is fully consistent with Eq. (2). A
bigger challenge will be to show that the apparent anomaly of ζn for n > 3 can be reconciled with
the appropriate exact equations relating (δu)n to (δu)n+1.
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