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Multiphase buoyant plumes with soluble drops or bubbles
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This paper presents the results of a scaling study of bubble and drop plumes in a stratified
ambient. Use is made of a standard integral model of the top-hat type, which can be reduced
to one of the Gaussian type by a simple transformation. The focus of the work is on the
effects of the dissolving material on the plume dynamics. It is pointed out that, for a drop
plume, the loss of buoyancy due to dissolution can be compensated by a lightening of
the ambient liquid associated with the dissolved drop material, or even aggravated if the
density of the solution is greater than that of the undissolved drops. For bubbles, these
effects are compounded by the volume expansion due to the falling hydrostatic pressure.
This process is not important in deep water, where the peel height is smaller than the
water depth, but can be significant in shallow water, where the two may be comparable.
With a focus on the analysis of a point-source, three important parameters are identified.
The first one compares the drop/bubble dissolution rate with the rise time to the neutral
height (the level at which the plume density equals the ambient density), the second one
accounts for the effect of the dissolved material on the liquid density, and the third one is
the drop/bubble rise velocity compared with the characteristic plume velocity.
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I. INTRODUCTION

Buoyant two-phase plumes in an ambient liquid are a frequent occurrence in nature (e.g.,
gas seepage from the ocean floor, hydrothermal vents), in environmental engineering (e.g., the
oxygenation and destratification of water bodies), and in other situations; recent reviews are given
in Refs. [1,2]. An occurrence that has garnered considerable attention has been the plume produced
by the major oil spill caused by the Deepwater Horizon accident in the Gulf of Mexico in 2010 (see,
e.g., Refs. [3–5]). In a plume of this type thermal buoyancy plays a relatively minor role, as the oil
gushing out of the ground quickly mixes and reaches thermal equilibrium with the ambient water
(see, e.g., Ref. [6]). Buoyancy is provided, rather, by the release of liquid hydrocarbons, less dense
than water, and by the free hydrocarbon gas which forms ascending bubbles and possibly hydrate
particles.

The present paper is a continuation of an earlier study [7] devoted to bubble plumes in a stratified
ambient up to the first peel height. In that paper we neglected the dissolution of the bubbles and
their volume expansion due to the falling pressure accompanying their rise. The first approximation
is justified for sparingly soluble gases. The second one is appropriate for situations in which the peel
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height is a small fraction of the water depth so that the hydrostatic pressure changes are small. This
point has been confirmed, e.g., by the results reported in Ref. [8] in which dissolution was found to
be more important than volume change. Both assumptions are also relevant in very shallow water
with very strong stratification, a situation often encountered in laboratory experiments.

In the present paper we allow for the effects of dissolution and variable hydrostatic pressure, and
we consider plumes produced by drops in addition to bubbles. Unlike previous studies, we consider
the effect that the dissolving drop/bubble material has on the density of the plume liquid, an aspect
that has attracted scant attention to date. An exception is Ref. [9], which is the first study in which
bubble shrinking due to both chemical reaction and dissolution were considered in a general form. In
that study, bubbles were treated as passive scalars with a negligible slip velocity, an approximation
that is not made in this paper.

In keeping with much of the previous theoretical work on the subject (see, e.g., Refs. [6,9–13]),
we adopt an integral model as in our previous study. A RANS study was carried out in Ref. [11]
and, more recently, two-fluid models and Lagrangian-Eulerian models based on Navier-Stokes
equations have been developed (see, e.g., Refs. [11,14–17]). References [11,18] compared these
models with the integral approach finding a good agreement on several fundamental aspects of the
plume behavior. The results of Ref. [18] confirm this conclusion except in the flow development
region very near the source.

There are several theoretical studies that include gas dissolution in bubble plumes. On the basis of
an integral model and an entrainment hypothesis, Ref. [13] reports on the dissolution of an oxygen
plume in a stratified lake. The authors also carry out a systematic study of source conditions such
as initial bubble radius, oxygen volume rate and initial plume area. Their calculations are based on
a measured stratification profile which limits somewhat the generality of their results. The RANS
study of Ref. [11] considers dissolution of oxygen and nitrogen bubbles in a uniform, rather than
stratified, ambient liquid. A carbon dioxide bubble plume was studied in Ref. [19] and compared
with experimental results. The authors used a double plume model to predict the intrusion height
finding results in general agreement with data, if with a large scatter. The results are reported in
dimensional form which prevents their generalization to different situations.

In the present contribution we make an effort to identify the key dimensionless parameters that
have the greatest influence on the dynamics of the system. For the deep-water case, we find that
these parameters are essentially three. The first one compares the drop/bubble dissolution rate with
the rise time to the neutral height (at which the plume density equals the ambient density), the
second one accounts for the effect of the dissolved material on the liquid density, and the third one
is the drop/bubble rise velocity compared with the characteristic plume velocity. In shallow water,
the water depth compared with the neutral height must be added to the list.

Among other considerations, the extension of our previous model presented here is motivated
by the observation, in connection with the Deepwater Horizon accident, that low-molecular-weight
hydrocarbons, both liquid (benzene, toluene, ethylbenzene, xylenes, so called BTEX) and gaseous
(methane, ethane, propane, butane) dissolved completely or partially as crude oil drops and natural
gas bubbles rose in the deep ocean [4,5]. As a result, several carbon-rich intrusion layers were
formed, with an observed persistence of months [20]. We find that the results for the peel and
neutral heights are significantly affected by the dissolution rate and density modification of the
plume liquid.

The multiphase plumes studied here bear some similarity with the single-phase thermal plumes
encountered in one form of single-phase double-diffusive convection (see, e.g., Refs. [21–23]). In
both cases salt provides the negative buoyancy, while upward momentum is provided by the liquid
itself in one case, and by the ascending drops/bubbles dragging the liquid in the other. There are
two further points of contact with conventional double-diffusion. First, much as the cold water
entrained in a thermal plume gradually dilutes the source of buoyancy, the dissolution of bubbles
or drops in a multiphase plume causes the buoyancy to decrease even though, as we show later,
the soluble material dissolved in the water may decrease its density and restore, to some extent, the
buoyancy lost by dissolution. Second, the multiple layers formed in single-phase double-diffusion
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are reminiscent of the multiple peel and intrusion heights formed in multiphase plumes when the
plume source is sufficiently deep (see, e.g., Refs. [9,24]). A major difference between the two cases
lies in the horizontal extension, which is typically relatively small in the multiphase case due to
the localized nature of the drop/bubble source, while it is typically much larger in conventional
double-diffusion as encountered, for example, in the ocean.

The formation of low-molecular-mass hydrates is possible at the temperature and pressure of
the very deep ocean (see, e.g., Refs. [25,26]). We do not attempt to account for this process as its
modeling is subject to considerable uncertainties [8,25,27] and its inclusion would prevent us from
obtaining general results.

II. INTEGRAL MODEL FOR BUBBLE AND DROP PLUMES

As in several other earlier studies (see, e.g., Refs. [13,24,28,29]), in this paper we consider
monodisperse bubble or drop plumes. While the assumption of monodispersity is an approximation,
its severity is mitigated by the fact that there is a significant size range (between 1 and 30 mm for
bubbles and a comparable but smaller range for drops (see, e.g., Ref. [30]) in which the rise velocity
of drops and bubbles depends rather weakly on their size. We also neglect the possibility of break-up
and coalescence, the former because of the weakness of turbulence in many water bodies (except
possibly in the top water layers), the latter because in natural waters the surface of bubbles and drops
gets quickly contaminated so that coalescence is inhibited. It is also known that bubble coalescence
is inhibited by dissolved salts (see, e.g., Refs. [31,32]). Several investigators have developed models
to predict the bubble size distribution in an underwater blowout (recent references are Refs. [33,34]),
but these models do not seem to have yet been incorporated into full plume models. We also neglect
the possible presence of a horizontal current. The speed of these currents at depth is usually of the
order of a few cm/s, and cannot therefore induce a horizontal drift of drops/bubbles nor have a
significant effect on their vertical rise velocity. The plume axis may bend, but the horizontal drag is
large enough that the drops/bubbles will be transported by the current so that, in a Lagrangian sense,
they will not be affected by it. A horizontal current may however affect the liquid entrainment into
the plume (see, e.g., Ref. [35]), which, without horizontal current, occurs at a rate of approximately
10% of the plume velocity. This may be the most significant effect of a weak horizontal current,
which therefore becomes non-negligible when its velocity becomes about 10% of the plume rise
velocity.

We begin by presenting the equations appropriate for a drop plume because, as will be explained
in next section, the same equations apply for bubble plumes in deep water. After this we consider
the case of bubble plumes in shallow water.

The theoretical framework of the current study is essentially the same as in our previous paper
[7], with the exception that it incorporates drop/bubble dissolution and the consequent liquid density
modification as described in Sec. IV.

A. Drop plume

We consider explicitly single-component drops. The multicomponent case can be treated
analogously provided the interaction between the different components is properly accounted for
as shown in Ref. [36]. The case in which only one component of the drop is soluble, while the
remaining ones are insoluble, is briefly sketched in the Appendix. Some of the relations that we
derive here are applicable also to the case of bubble plumes, which justifies the use of the words
drop/bubble in this case.

The procedure by which the equations for the integral model are derived is well known. We
demonstrate it here for the volume fraction of the disperse phase referring the reader to the literature
(see, e.g., Ref. [37]) and to our earlier paper [7] for details on the derivation of the complete model.

In steady conditions the balance equation for the disperse phase is

∇ · [αdρd (w + wd )] = πd2nd hd (ρd,dslv − ρsat ). (1)
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In the left-hand side, αd = π
6 d3nd , with nd the number density of drops/bubbles with diameter d

and density ρd , is the volume fraction of the disperse phase, assumed monodisperse, w is the liquid
velocity, and wd the drop/bubble drift velocity relative to the liquid. In the right-hand side, hd is the
mass transfer coefficient, ρd,dslv is the density of the drop/bubble material dissolved in the liquid,
and ρsat is the saturation value. We integrate this equation over a thin horizontal “slice” of the plume
with thickness dz and apply the divergence theorem to find

d

dz

∫
αdρd (w + wd )dA =

∫
πnd dDSh(ρd,dslv − ρsat )dA, (2)

where w = w(z) and wd = wd (z) are the vertical velocities (positive upward); the integration is
over the area A = A(z) of the plume cross section, and Sh = hd d/D is the Sherwood number. The
small ring-shaped surface at the edge of the plume does not give any contribution because, by the
very definition of the volume of the plume, there is no transport of the disperse phase through its
edge.

The analogous integral form for the balance of the dissolved drop/bubble material is

d

dz

∫
(1 − αd )ρd,dslvwdA = −

∫
πnd dDSh(ρd,dslv − ρsat )dA. (3)

The appearance of the same quantity with opposite signs in the right-hand side of these two
equations guarantees the conservation of the soluble material.

The integral form of the balance equation for the dissolved salt is

d

dz

∫
(1 − αd )(ρs − ρs,a)wdA + dρs,a

dz

∫
(1 − αd )wdA = 0. (4)

Here ρs is the density of the dissolved salt in the plume and ρs,a the ambient value of this quantity
outside the plume. The second term accounts for the entrainment of ambient liquid into the plume,
a process that does not affect the balance relations for the dissolved material since ρd,dslv vanishes
outside the plume.

The statement of conservation of the liquid mass flow rate in the plume is

d

dz

∫
A

(1 − αd )ρwdA = 2πρaαew. (5)

Here αe is the entrainment coefficient at the plume’s edge which will be treated as a constant,
as is appropriate for fully developed turbulent conditions; a discussion of this assumption can be
found in Refs. [38,39]. The proportionality relation between the plume vertical velocity and the
rate of entrainment, originally introduced in Ref. [40], can be justified on the basis of dimensional
considerations noting the irrelevance of viscosity at high Reynolds numbers in fully developed
turbulent conditions. On the same basis, the numerical value of αe can be expected to be independent
of the physical properties of the liquid but, because of this hypothesis, the considerations that
follow are not directly applicable to laminar plumes. Frequently used values in the literature are
αe = 0.083–0.085 [28,38,41]. For a Gaussian profile of the flow fields, the values encountered in
the literature are between 0.07 and 0.11 [42]. This range is supported by the recent DNS simulations
of single-phase plumes in Ref. [16] where, however, a dependence on distance from the source
was found. Such a dependence was also found in the recent LES numerical simulations of bubble
plumes in Ref. [17], where the mean value over the entire height of the simulation was reported
to be 0.086 and over the fully developed region 0.067. A likely explanation for this dependence is
the presence of a flow establishment zone (see, e.g., Ref. [18]). Since we are interested here in the
basic aspects of buoyant plumes rather than precise numerical values, we feel justified in assuming
a constant value for αe. We do not need to commit ourselves to a specific value because αe will
be absorbed in the dimensionless groups introduced later. It may be noted that conversion of the
values of αe reported for a Gaussian distribution to the case of the top-hat profile assumed in this
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work requires multiplication by
√

2 so that, for example, αe = 0.083 for a Gaussian profile becomes
αe = 0.083

√
2 = 0.117 for a top-hat profile.

With the neglect of the viscous and turbulent stresses at the edge of the plume, the total
momentum flow rate in the plume is

d

dz

∫
[(1 − αd )ρw2 + αdρd (w + wd )2]dA =

∫
[αd (ρa − ρd ) + (1 − αd )(ρa − ρ)]gdA. (6)

The appearance of ρa in the first term of the right-hand side is justified by noting that, if ρ = ρd ,
then the total buoyancy must be the area integral of (ρa − ρ)g = (ρa − ρd )g. It is argued in the
Appendix that αd can be neglected everywhere except in Eq. (2).

For simplicity, and to carry out a scaling analysis, we assume that all fields are uniform over the
cross section A of the plume, the so-called “top hat” approximation. However, as in other models
(see, e.g., Refs. [18,37,43]), we allow for the disperse phase to occupy only a fraction of the plume
cross sectional area. Thus, for the mass flux md carried by the drops/bubbles, we let

md (z) ≡
∫

αdρd (w + wd )dA � λAαdρd (w + wd ), (7)

in which λA is the area of the plume cross section occupied by drops or bubbles. For bubble
plumes, λ has been variously reported as 0.6 and 0.8 (cited in Ref. [12]). The calculations of
Ref. [12] show negligible differences between λ = 0.8 and 0.9. The comparison between a detailed
three-dimensional model and the integral model of Ref. [15] is reasonable assuming λ = 0.8. No
similar information seems to be available for drop plumes but, due to the smaller buoyancy of drops,
turbulent transport may be expected to be effective, which would lead to an even smaller difference
between the two cross sections for drops than for bubbles. In any event, it will be seen below that, in
the limit of small disperse-phase volume fraction that we consider, the plume momentum is mostly
affected by the total buoyancy exerted by the disperse-phase mass flux rather than by its spatial
distribution over the plume cross section, so that the parameter parameter λ has no influence on the
model predictions.

While the flow rate of the drop/bubble material in the plume changes due to dissolution, the
total flow rate of the number of drops/bubbles does not, at least as long as they do not completely
dissolve. Of course, in principle, break-up and coalescence could also change the number of
drops/bubbles but, as noted before, usually the turbulence environment in which plumes are
encountered is not so violent as to cause these phenomena on a large scale. Hence, we feel justified
in neglecting them. With these hypotheses, the rate of injection of drops/bubbles at the source,

� = λnd (w + wd )A, (8)

remains a constant. Upon making a top-hat profile assumption in the right-hand side of Eq. (2), we
may write

dmd

dz
= −dmd,dslv

dz
� π�dDSh

w + wd
(ρd,dslv − ρsat ), (9)

independent of λ. It may be noted that, because of the constancy of �, this equation can be reduced
to

(w + wd )
d

dz

(
π

6
d3ρd

)
= d

dt

(
π

6
d3ρd

)
= πdDSh(ρd,dslv − ρsat ), (10)

where d/dt denotes the Lagrangian derivative, which describes the dissolution of an individual
drop/bubble.

Conservation of the soluble material requires that

md + md,dslv = md0, (11)
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in which md0 is the total mass flow rate of the soluble material injected by the source and

md,dslv(z) ≡
∫

(1 − αd )ρd,dslvwdA � λdAρd,dslvw, (12)

in which λd is the fraction of the plume cross-section containing an appreciable amount of dissolved
material. Even in the absence of true turbulence, mixing in the plume is favored by the so-called
pseudoturbulence, namely, the disordered motion caused by the rising disperse phase. Hence, we
expect that λ < λd .

With

m(z) ≡
∫

A
(1 − αd )ρwdA � Aρw, (13)

the balance equation for the liquid mass flow rate in the plume becomes

dm

dz
= 2πb(z)ρaαew = 2αe

√
πρM, (14)

in which b = √
A/π is the radius of the plume and

M ≡
∫

[(1 − αd )ρw2 + αdρd (w + wd )2]dA � Aρw2. (15)

The ratio of the two terms in the integrand, representing the momentum flow rate of the disperse
and continuous phases, is

αdρd (w + wd )2

(1 − αd )ρw2
= αd

1 − αd

ρd

ρ

(
1 + wd

w

)2
, (16)

and is therefore negligible for small αd given that the other two factors are of order 1 or smaller.
In effecting this estimate we have taken λ = 1, which has no adverse consequences given that the
conclusion of the argument is that αd is negligible.

Turning now to the right-hand side of the momentum Eq. (6), we note that

αd (ρa − ρd ) + (1 − αd )(ρa − ρ) � αd (ρa − ρd ) − (ρ − ρa), (17)

because αd � 1 (see Appendix), and ∣∣∣∣ ρa − ρ

ρa − ρd

∣∣∣∣ � 1, (18)

given that the density difference due to the different salt content between the plume and the ambient
water is much less than the density difference between water and organic liquids and, even more,
gases. The difference between the densities of the plume water ρ and of the ambient water outside
the plume ρa is due to the higher salt content of the former and to the presence of dissolved material.
Since the concentration of both quantities is small, their contributions to the density superpose
linearly and we may write

ρ − ρa = βdρd,dslv + βs(ρs − ρsa), (19)

in which ρs and ρsa are salt densities inside and outside the plume, respectively, and

βd = ∂ρ

∂ρd,dslv

∣∣∣∣
ρd,dslv=0

, βs = ∂ρ

∂ρs

∣∣∣∣
ρs=ρsa

� ∂ρ

∂ρs

∣∣∣∣
ρs=0

. (20)

After substitution of (19), the right-hand side of Eq. (17) contains the three major contributions to
the buoyancy of the plume, each one of which is associated to a corresponding flux, namely, the
buoyancy flux due to the disperse phase

Fd =
∫

αd (ρa − ρd )(w + wd )gdA � λAαd (ρa − ρd )(w + wd )g = ρa − ρd

ρd
md g, (21)
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the buoyancy flux due to salinity

Fs = −
∫

(1 − αd )βs(ρs − ρs,a)wdA � −Aβs(ρs − ρs,a)w, (22)

and that due to the dissolved material

Fd,dslv = −
∫

(1 − αd )βdρd,dslvgwdA � −
∫

βdρd,dslvgw dA

� −λd Aβdρd,dslvgw = −βd gmd,dslv. (23)

Thus, upon expressing Fd in terms of md and Fd,dslv in terms of md,dslv, the momentum balance
relation Eq. (6) may be written as

dM

dz
= ρa − ρd

ρd

md g

w + wd
− βd g

md,dslv

w
+ Fs

w
. (24)

Since Fs is negative and continually decreasing, a level is reached where the right-hand side of
this equation vanishes; we refer to this level as the neutral buoyancy height or, more simply, the
neutral height. The right-hand side of Eq. (24) displays a structure analogous to that encountered in
double-diffusive phenomena already mentioned in Sec. I.

Due to the accumulated inertia, the plume rises beyond the neutral height until its momentum
vanishes at the peel height. At this level the density of the liquid in the plume is so much greater than
that of the ambient liquid that the drops/bubbles are unable to lift it further. The plume liquid slumps
back down spreading horizontally somewhat above the neutral height, as the further dilution due to
the entrained liquid between the neutral height and the peel height has moved the equal-density
level upward, as we have noted in out earlier paper [7]. Several papers can be found in the literature
having as their objective the description of the “double-plume” structure, with the rising liquid in
the inner plume and the descending liquid in the outer one (see, e.g., Refs. [6,44]), although this
subject remains in need of further clarification.

From the balance Eq. (4) for the dissolved salt we derive an equation for the salinity flux, namely,

dFs

dz
= −mN2, (25)

in which

N2 = − g

ρa0

dρ

dz
, (26)

is the Brunt-Väisäla frequency in terms of the ambient density at the source ρa0. In view of the
small effect that the difference in salt content has on all terms except buoyancy, in keeping with
the Boussinesq approximation, we replace ρ and ρa by ρa0 everywhere except in Eq. (22) of the
buoyancy flux due to salinity Fs. Given the strong decrease in the concentration of the disperse
phase that occurs already near the source, the density of dissolved material ρd,dslv will be much less
than the saturation density. We neglect this term in the following, writing Eq. (9) as

dmd

dz
� −π�dDSh

w + wd
ρsat. (27)

Furthermore, from Eqs. (7) and (8), we see that

d =
(

6md

π�ρd

)1/3

, (28)

which can be used to express d in Eq. (27).
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III. NONDIMENSIONALIZATION

At distances from the source of the order of the neutral height Ln, the mass of fluid entrained
in the plume is much larger than the mass emitted by the source so that the mass balance Eq. (14)
gives, in order of magnitude,

πb2ρw

Ln
∼ 2πbρaαew. (29)

In view of the smallness of the difference between the plume liquid density ρ and the ambient
density ρa, from this relation we deduce that the plume radius at the neutral height is of the order of

b(z = Ln) ∼ 2αeLn. (30)

The dominant terms in the right-hand side of the momentum equation are those due to the positive
buoyancy of the disperse phase and to the negative buoyancy of the entrained salty water, with the
buoyancy due to the dissolved material playing a relatively minor role. Disregarding the dissolution
of the disperse phase, so that Fd � Fd0, at the neutral height the salinity and drop/bubble buoyancy
fluxes are in approximate balance so that

Fs � − w

w + wd
Fd0 = − w

w + wd

ρa0 − ρd0

ρd0
md0 g, (31)

where, as before, the subscript 0 refers to values at the source. Since, at the source, no entrainment
has yet taken place, so that Fs = 0, and no material has yet dissolved, so that Fd,dslv = 0, the total
buoyancy flux reduces to the disperse-phase contribution Fd0. At the height Ln above the source the
plume radius is of the order of 2αeLn, as just noted, and therefore, upon using Eq. (31) in the salinity
flux Eq. (25), we may write

− Fs

Ln
∼ 1

1 + wd/w

Fd0

Ln
∼ π (2αeLn)2wN2 ∼ π (2αeLn)2LnN3. (32)

Since, as is well-known, N−1 is of the order of the rise time of the plume liquid from the source to
the neutral height [45], which implies that w ∼ LnN , and since w/wd does not differ much from
unity, we find

Ln =
(

Fd0

4πα2
e ρa0N3

)1/4

. (33)

The equal sign defines the quantity Ln which the previous argument has shown to be of the order of
the neutral height. Since Ln equals the neutral height hn only in order of magnitude, we retain two
different symbols for these two quantities; a precise determination of hn will be given below. This
result agrees in order of magnitude with that in the classical work of Ref. [46] and, in its detailed
form, with that found in our previous paper [7].

The previous arguments suggest the use of the length scale Ln and of the time scale N−1 to
nondimensionalize the plume-related quantities:

z∗ = z

Ln
, m∗ = m

π (2αeLn)2ρa0(NLn)
, (34)

M∗ = M

π (2αeLn)2ρa0(NLn)2
, F ∗

s = Fs

π (2αeLn)2ρa0(NLn)(N2Ln)
, (35)

in which NLn and N2Ln are of the order of the plume velocity and acceleration. As already noted, for
simplicity, and in the spirit of the Boussinesq approximation, we systematically replace the liquid
densities ρ and ρa by ρa0 everywhere except in the salinity buoyancy term.
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We use the values at the source to nondimensionalize the disperse-phase quantities:

d∗ = d

d0
, m∗

d = md

md0
= ρ∗

d (d∗)3, ρ∗
sat = ρsat

ρsat,0
. (36)

Here ρsat,0 is the drop/bubble material solubility at the source and ρ∗
d = ρd/ρd0.

With these definitions, the previous Eqs. (14), (24), (25), and (27) become

dm∗

dz∗ =
√

M∗, (37)

dM∗

dz∗ = 1 − (ρd0/ρa0)ρ∗
d

1 − ρd0/ρa0

m∗
d/ρ

∗
d

w∗ + VN
+ 	

1 − m∗
d

w∗ + F ∗
s

w∗ , (38)

dF ∗
s

dz∗ = −m∗, (39)

dm∗
d

dz∗ = −

Sh∗

w∗ + VN

(
m∗

d

ρ∗
d

)1/3

ρ∗
sat. (40)

In the last equation we have neglected the contribution of ρd,dslv for the reason explained earlier in
connection with Eq. (27).

Three dimensionless parameters enter the system Eqs. (37)–(40), namely,

	 = −βd
ρd0

ρa0 − ρd0
, (41)


 = πd0ρsat,0DSh0

Nmd0
= 6ρsat,0DSh0

ρd0Nd2
0

, (42)

VN = wd

LnN
. (43)

The parameter 	 accounts for the capability of the dissolved material to provide buoyancy. For
	 = 1 the soluble material provides the same amount of buoyancy whether in the disperse phase
or dissolved in the ambient water, whereas there is a loss of buoyancy upon dissolution when
0 < 	 < 1 and a gain in those fairly rare cases in which 	 > 1. Negative values of 	 signify
that the dissolved material makes the ambient liquid heavier and, therefore, they amplify the loss
of buoyancy associated with dissolution. For a drop plume, with the relation Eq. (50) derived in
Sec. IV, 	 � 1. Therefore, with that model, 	 is not really a free parameter for drops. With 	 = 1
and VN = 0, the previous system of equations reduces to the model studied in Ref. [40]. For a
bubble plume, in many cases, βd is of order 1 and therefore 	 ∼ ρd0/ρa0, which is of order 0.1 at
1000 m depth and smaller at shallower depths (see Table III).

The parameter 
 represents the ratio of the plume rise time, N−1, to the time necessary for the
dissolution of the � drops/bubbles injected per unit time. Indeed, it immediately follows from
Eq. (10) that the fractions in Eq. (42) are of the order of the time necessary for the complete
dissolution of a drop/bubble in a liquid containing a negligible amount of solute, for which ρd,dslv

can be neglected. Small 
 corresponds to a slow dissolution. In the limit 
 = 0, there is no
dissolution at all so that m∗

d remains equal to its initial value 1. In this case the middle term
in the right-hand side of the momentum Eq. (38) drops out and so does the parameter 	. The
results become therefore independent of 	 and reduce to those presented in Ref. [7]. Conversely,
dissolution is very rapid for large 
 and the plume becomes a single-phase plume.

For purposes of orientation Table I shows the values of some parameters pertinent for the
Deepwater Horizon accident from Ref. [47].
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TABLE I. Typical values of some plume parameters for the Deepwater Horizon accident calculated with
αe = 0.11. The buoyancy flux is defined by Qd = md/ρd = Aαd (w + wd ) with all parameters evaluated at
source conditions.

Qd m4/s 103N s−1 Ln m NLn m/s H m Ln/H

0.04 0.4 448 0.179 1500 0.299
0.09 2.7 131 0.354 1500 0.0874

IV. MIXTURE LIQUID DENSITY

One of the points made in this paper is that the dissolution of bubbles or drops may not completely
remove the plume buoyancy as the dissolved material may lower the density of the liquid. In some
cases as, for example, with CO2 in water, the dissolved material may actually increase the liquid
density. To quantify these effects it is necessary to estimate the density of the solution. In view of the
smallness of the concentration of all the dissolved quantities, as already noted, their contributions to
the density superpose linearly and we can therefore limit our considerations to the effect of a single
solute dissolved alone in the liquid.

Since the volume V of a binary mixture is a homogeneous function of the first degree in the
number of moles n1, n2 of the constituents, it follows from Euler’s theorem that

V =
(

∂V

∂n1

)
p,T,n2

n1 +
(

∂V

∂n2

)
p,T,n1

n2, (44)

in which p and T are the pressure and the (absolute) temperature. On a molar basis this relation is

v =
(

∂v

∂x1

)
p,T,x2

(1 − x) +
(

∂v

∂x2

)
p,T,x1

x = v1(1 − x) + v2x, (45)

in which x = n2/(n1 + n2) is the mole fraction of of the solute and vi the partial molar volumes. If
M1 and M2 denote the molar masses of the constituents, then the density of the solution is given by

ρ = (1 − x)M1 + xM2

(1 − x)v1 + xv2
� M1

v1

[
1 + M2

M1

(
1 − M1/v1

M2/v2

)
x,

]
, (46)

with the approximation in the last step based on the assumption x � 1. Upon noting that

M1

v1

M2

M1
x = M2

v1

n2

n1 + n2
� m2

V
, (47)

where m2 is the dissolved mass, we may write Eq. (46) in the more convenient form

ρ � M1

v1
+

(
1 − M1/v1

M2/v2

)
ρ2,dslv, (48)

in which ρ2,dslv = m2/V is the density of the dissolved material in the solution. Since M1/v1 = ρ1 �
ρa0 is very close to the density of the ambient liquid, the mixture density Eq. (48) may actually be
written as

ρ � ρa0 +
(

1 − ρa0

Md/vd

)
ρ2,dslv, (49)

in which Md and vd are the molar mass and the partial molar volume of the solute. Upon comparison
of Eq. (49) with Eq. (19) we thus conclude that parameter βd accounting for the change in mixture
density due to dissolved material may be written as

βd = 1 − ρa0

Md/vd
. (50)
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TABLE II. Some physical properties of a number of water-soluble liquid organic compounds at 4 ◦C and
10 MPa (asterisks indicate values at standard conditions). aRef. [48]; bRef. [49]; cRef. [50]; d Ref. [51];
eRef. [52]; f Ref. [53]; gRef. [54]; hRef. [55]; jRef. [56].

(ρd0 )a (vL∞
d )b Md/v

L∞
d ρsat,0

kg/m3 cm3/mol kg/m3 kg/m3 βd 	

CO2 954 33.9∗ 1298 78.1g 0.245 −5.08
Ethane C2H6 426 52.9∗ 563 10.2 −0.877 0.651
Propane C3H8 541 70.7∗ 661 13.1 −0.512 0.603
Butane C4H10 609 76.6∗ 757 15.3 −0.321 0.500
Ethylene C2H4 395 51.3∗ 545 22.6 −0.834 0.545
Benzene C6H6 879∗h 83.3∗c 938 1.88∗h −0.0661 0.480
Toluene C7H8 888 99.5∗ 929 0.526∗ j −0.0764 0.606
Xylene C8H10 864∗d 120∗ f 885 0.106∗e −0.130 −0.826

In an ideal mixture the components mix isometrically, i.e., with no change in the total volume,
so that

vid = v1(1 − x) + v2x, (51)

with v1 and v2 the molar volumes of the pure constituents. The difference,

vE = v − vid = vE
1 (1 − x) + vE

2 x, (52)

is the excess molar volume. From the thermodynamic relation between Gibbs’s free energy and
volume (see, e.g., [57]), an analogous relation between the excess free energy gE of each constituent
and the excess volume of that constituent follows:

vE
i =

(
∂gE

i

∂ p

)
T,x

, (53)

or, since gE
i = RGT log γi, with RG the universal gas constant and γi the activity coefficient,

vE
i

RGT
=

(
∂ log γi

∂ p

)
T,x

. (54)

Various approximations exist for the activity coefficients in liquid-liquid mixtures (see, e.g.,
Ref. [58]), but none of these includes a pressure dependence. Thus, for solutions of liquid
hydrocarbons in water, one may assume that vE vanishes so that the rule Eq. (51) for ideal solutions
applies. With this approximation, we can set Md/vd = ρd0 identifying the ratio with the density of
the pure liquid solute and, in this case, from Eq. (50) we find

β id
d = 1 − ρa0

ρd0
. (55)

With βd = β id
d , it follows from the definition Eq. (41) that the parameter 	 equals 1. The values

reported in Table II for some water-soluble liquid compounds at 4 ◦C and 10 MPa show that,
while Md/vd and ρd0 are comparable, significant quantitative differences exist. In view of the great
uncertainty affecting the data available in the literature, the implication of these differences remain
unclear.

For a gaseous solute, since the gases of present concern are only sparingly soluble in water,
we approximate the partial molar volume vd by vL∞

2 , the value at infinite dilution. An empirical
expression for the partial molar volume of gases dissolved in water at infinite dilution is [49]

vL∞
d = 10.74 cm3/mol + 0.2689 v∗

c,d , (56)
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TABLE III. Some physical properties of a number of water-soluble gases at standard conditions (above the
line) and at 4 ◦C and 10 MPa (below the line; asterisks denote values at standard conditions where appropriate
values are not available); Henry’s constant has been adjusted for temperature according to Ref. [59] but not for
pressure. The dimensionless parameters βd and 	 are defined in Eqs. (50) and (41), respectively. Note that,
in water, methane at 4 ◦C and 10 MPa may form hydrates (see, e.g., Ref. [25]). The sources for the data are:
aRef. [48]; bRef. [49]; cRef. [59].

(ρd0 )a (vL∞
d )b 105 Henry’s const.

kg/m3 cm3/mol mol/(m3 Pa)c (ρsat,0/ρd0 )a,c βd 104	

Oxygen O2 1.29 33.2 1.3 0.0322 −0.0375 −0.485
Nitrogen N2 1.13 35.7 0.64 0.0159 −0.275 3.11
CO2 1.78 33.9 33 0.851 0.230 −4.11
Methane CH4 0.648 34.5 1.4 0.0347 −1.16 7.49
Ethane C2H6 1.22 52.9 1.9 0.0471 −0.763 9.32
Propane C3H8 1.83 70.7 1.5 0.0372 −0.607 11.1
Butane C4H10 2.45 76.6 1.2 0.0297 −0.321 7.88
Ethylene C2H4 1.15 51.3 4.8 0.119 −0.832 9.61
Acetylene C2H2 1.1 42.5 41 1.01 −0.635 6.99

Oxygen O2 150 33.2∗ 1.85 0.028 −0.0375∗ 66.2
Nitrogen N2 123 35.7∗ 0.891 0.014 −0.275∗ 386
Methane CH4 87.3 34.5∗ 2.10 0.025 −1.16∗ 1110

in which v∗
c,d is the molar critical volume of the solute. This relation represents the data with an error

of about ±10%. Since v∗
c,d is a constant, the values vL∞

d predicted by this relation are independent
of pressure and temperature, which may be a significant limitation far from standard conditions, and
partly responsible for the differences between Md/vd and ρd0 in Table II.

Table III shows numerical values of the physical properties relevant to the present study for
several gaseous solutes. The data above the horizontal line are for standard conditions (25 ◦C
and 101.3 kPa), at which several organic compounds are gases. The data below the line are for
a temperature of 4 ◦C and a pressure of 10 MPa.

V. RESULTS: DROP PLUMES AND DEEP-WATER BUBBLE PLUMES

The effect of the source mass and momentum fluxes on the plume dynamics have been discussed
in our previous paper [7] for situations in which dissolution effects were negligible. Since the focus
of the present work is on dissolution, and to limit the number of parameters, here we consider only
the limit case of plumes generated by a point source, for which m∗(0) = 0. We will also assume
that the initial plume momentum is mostly the result of the disperse phase buoyancy, which justifies
setting M(0) = 0.

When the neutral height Ln is much smaller than the water depth H , a case we refer to as deep-
water, the hydrostatic effect on the bubble expansion is negligible so that ρ∗

d = ρ∗
sat = d∗ = 1

[see, e.g., Ref. [9]]. For the case of drops, this is true irrespective of depth due to their approximate
incompressibility. This argument justifies setting ρ∗

d = 1 in Eq. (38) and ρ∗
sat = 1 in Eq. (40) so that

the equations that we consider are

dM∗

dz∗ = m∗
d

w∗ + VN
+ 	

1 − m∗
d

w∗ + F ∗
s

w∗ , (57)

dm∗
d

dz∗ = −
 Sh∗(m∗
d )1/3

w∗ + VN
. (58)
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With m∗(0) = 0, M∗(0) = 0, the solution of the system Eqs. (37), (39), (57), and (58) depends
only on the dimensionless parameters 	, 
 and VN . The importance of these parameters has
already been pointed out in Ref. [9], where parameters G/T and N/T , related to our 	 and 
 by
G/T = 1 − 	 and N/T = 1/
, were introduced. These authors, however, did not consider the
effect of the slip velocity VN and used Sh∗ = d∗ for the normalized Sherwood number, which implies
that the dimensional mass transfer coefficient is independent of the bubble size.

A. Small slip velocity

It is convenient to start with the limit case of a very small rise velocity of the disperse phase
because an approximate solution of the previous system is then available due to the fact that VN can
be neglected in comparison with w∗. In addition to its theoretical interest, this limit is relevant for
the case of a plume of small drops in a weakly stratified environment. Indeed, in order of magnitude,
we have

wd

w
� wd

LnN
= Red

ν

dLnN
, (59)

in which Red = dwd/ν is the Reynolds number of the drops-water relative motion and ν the water
kinematic viscosity. For millimeter-size drops, ν/d ∼ 10−3 m/s which can be much smaller than
LnN . For example, in the Deepwater Horizon case, from Table I we see that NLn ∼ 0.1 m/s. In
these conditions, therefore, wd/w � 1 even for Red of a few tens. This limit case is interesting
also because the limit wd � w corresponds to the strongest coupling of the drops/bubbles with
the plume water and, therefore, to the maximum buoyancy that they can impart to the plume.
With this approximation, convection does not significantly contribute to the mass flux out of
the drops/bubbles so that Sh = 2 and Sh∗ = 1. This conclusion is strictly applicable only for
Red � 1. For larger Red , the general dependence Sh ∝ Re1/2

d Sc1/3 (see Eq. (78) below) predicts a
larger Sh. However, the dependence of Sh on Red remains fairly weak and keeping Sh∗ = 1 will
give results of reasonable accuracy, at least for purposes of estimation.

When VN is negligible compared with w∗ it is convenient to replace the variable z∗ with m∗
d . In

this way we find

dM∗

dm∗
d

= −m∗
d + 	(1 − m∗

d ) + F ∗
s


(m∗
d )1/3

, (60)

dF ∗
s

dm∗
d

= M∗


(m∗
d )1/3

. (61)

These two equations form a closed system to be solved subject to the condition F ∗
s = 0 at the

source, where m∗
d = 1. The solution for general M∗ at the source is complicated, but some insight

can be gained by considering the solution for the special initial condition M∗ = 0 which, as noted
before, attributes the entire plume momentum to the buoyancy of the disperse phase. With M∗ = 0
the solution of Eqs. (60) and (61) is

M∗ = sin

(
3(1 − (m∗

d )2/3)

2


)
+ (	 − 1)


{
(m∗

d )1/3 − cos

(
3(1 − (m∗

d )2/3)

2


)

+
√

π


3

[
cos

(
3(m∗

d )2/3

2


)
IC + sin

(
3(m∗

d )2/3

2


)
IS

]}
, (62)

F ∗
s = cos

(
3(1 − (m∗

d )2/3)

2


)
+ (	 − 1)m∗

d − 	

+ (	 − 1)

√
π
3

3

[
sin

(
3(m∗

d )2/3

2


)
IC − cos

(
3(m∗

d )2/3

2


)
IS

]
, (63)
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in which

IC =
√

2

π

∫ √
3/(π
)

√
3/(π
)(m∗

d )1/3
cos η2dη, IS =

√
2

π

∫ √
3/(π
)

√
3/(π
)(m∗

d )1/3
sin η2dη (64)

can be expressed in terms of Fresnel’s integrals. With these results, z∗ and m∗ can be found by
integrating

dm∗

dm∗
d

= − (M∗)3/2


m∗
d m∗ , (65)

dz∗

dm∗
d

= − M∗


m∗
d m∗ , (66)

subject to z∗ = 0 and m∗ = 0 for m∗
d = 1. We do not show these expressions for brevity.

The previous solution simplifies considerably in the case 	 = 1 which, as noted before, is
approximately applicable for drops:

M∗ = sin

(
3(1 − (m∗

d )2/3)

2


)
, (67)

F ∗
s = cos

(
3(1 − (m∗

d )2/3)

2


)
− 1. (68)

In this case the plume momentum vanishes at the peel height, where the argument of the sine in
Eq. (67) equals π :

(m∗
d )2/3 = 1 − 2π

3

. (69)

Since 0 � m∗
d , the plume completely dissolves before reaching the peel height when 
 > 3/(2π ) �

0.4775. The value 
 = 3/(2π ) identifies the critical situation in which the soluble material is
completely dissolved right at the peel height. When 
 < 3/(2π ), enough of the soluble disperse
phase is left to give rise to a second plume, which will be characterized by a larger value of 
 in
view of the partial dissolution of the drops/bubbles that has already taken place. This process will
repeat itself until 
 exceeds the critical value. The neutral height corresponds to the vanishing of
the right-hand side of Eq. (60) and is found therefore to correspond to

(m∗
d )2/3 = 1 − π

3

. (70)

The soluble phase will have totally dissolved at the neutral height for 
 = 3/π .
For a general value of 	 �= 1, these critical situations—namely, total dissolution at the peel height

or at the neutral height—are encountered, respectively,when the following relations between 	 and

 hold:

	 = 1 − sin
(

3
2


)
√

π
3

3 C
(

3
π


) − 
 cos
(

3
2


) , (71)

and

	 = 1 − cos
(

3
2


)

 sin

(
3

2


) −
√

π
3

3 S
(

3
π


) , (72)

in which C and S are the cosine and sine Fresnel integrals. Graphs of these two lines in the 	, 


plane are shown in Fig. 1. For large 
 dissolution is rapid and, in order for it to be complete at the
peel or neutral height, the plume has to slow down rapidly. This requires negative value of 	 for the
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FIG. 1. Relation between the parameters 	 and 
, defined in Eqs. (41) and (42), respectively, correspond-
ing to total dissolution of the disperse phase at the neutral height (upper curve) and at the peel height. Below
the curves the disperse phase does not dissolve completely before reaching the neutral or peel height. A second
rising plume will be formed, with a smaller value of 
 and so forth until 
 becomes so small that the disperse
phase dissolves below the last peel height.

peel height and a small value of 	 for the neutral height. A series expansion for large 
 produces
the asymptotic result

	 = −2

3
+ 5

18
2
+ 41

2808 
4
+ O(
−9/2), (73)

for the peel height, and

	 = 9

14
2
+ 675

4312
4
+ O(
−5), (74)

for the neutral height. Conversely, for small 
, dissolution is very slow and, in order for it to be
completed at the peel or neutral height, these heights must be large, which requires the plume
buoyancy to increase with dissolution and the value of 	 to increase.

Figure 2 shows some numerical results for the peel and neutral heights for this case in which
VN � w. The left panel shows the dependence of hp (red) and hn (blue) on 	 for 
 = 0 (solid), 1
(dashed), and 4 (dash-dots). The right panel shows the dependence of hp and hn on 
 for 	 = 1.5
(solid), 1 (dashed) and −0.5 (dash-dots). For an insoluble disperse phase, 
 = 0 and 	 has no
effect on the plume, which is shown by the horizontal lines in the left panel of the figure, with the
peel height hp = 2.6 [40] as also found in our earlier paper [7]. A comparison with the other curves
shows the importance of dissolution. When the parameter 
 increases past 1, however, dissolution
is so rapid that the results become essentially independent of 
. With 	 = 1 the loss of buoyancy
caused by the dissolution of the soluble component is exactly balanced by the equal gain in buoyancy
of the ambient liquid due to the dissolved material. In this case, with VN negligible compared to w∗,
m∗

b has no influence on M∗, which implies that the peel height and neutral height are independent
of the parameter 
. Indeed, in Fig. 2, the curves corresponding to different 
 all cross at the same
point when 	 = 1.

More generally, the total plume buoyancy increases with 	, as the loss of buoyancy is mitigated
by the lightening of the solution (for 0 < 	 < 1) or even over-compensated (for 1 < 	). In these
circumstances dissolution is beneficial and the peel and neutral heights increase with 
 as can be
seen in the right panel of Fig. 2 for the case 	 = 1.5. The effect, however, is only appreciable over
a limited range for small 
 as the dissolution rate increases with 
. As this parameter increases,
dissolution occurs closer and closer to the source, the two-phase plume becomes effectively a single-
phase plume and the total plume buoyancy comes to depend only on the parameter 	. Conversely,
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FIG. 2. Left: Dependence of the normalized peel height hp (red curves) and neutral height hn (blue curves)
upon the parameter 	 for negligible slip velocity, VN = 0. The solid, dashed, and dash-dotted lines are for

 = 0, 1, 4, respectively. Right: Dependence of hp (red curves) and hn (blue curves) on the parameter 
 for
	 = 1.5 (solid) 1 (dashed), and −0.5 (dash-dotted). The parameter 	, defined in Eq. (41), describes the effect
of the dissolved material on the density of the plume liquid. The parameter 
, defined in Eq. (42), accounts for
the relative rapidity of dissolution as compared with the plume ascent time; large 
 implies rapid dissolution.

for 	 < 1, the dissolved component provides less buoyancy than the discrete component. Therefore,
rapid dissolution (larger 
) will decrease the total plume buoyancy and thus decrease the plume peel
and neutral heights. Consequently, hp and hn decrease with 
.

B. Finite slip velocity

When the slip velocity cannot be neglected, the exploration of the parameter space and the
presentation of results becomes more difficult. To begin with, it is necessary to deal with the
large number of different correlations available in the literature for the drag coefficient and
Sherwood number for translating drops/bubbles. Secondly, the explicit dependence of the Reynolds
and Sherwood numbers on the size of the drops/bubbles and their physical properties increases
considerably the size of the parameter space. Since it is impossible to present a complete exploration
of this space, here we limit ourselves to some illustrative results. We focus mostly on the case of
bubbles.

A widely used correlation for the bubble slip velocity has been given in Ref. [60]:

wb

wc
= 0.0545F 3/4 (1 + 1.31 × 10−5Mo11/20F 73/33)21/176

(1 + 0.02F 10/11)10/11
, (75)

where Mo = gμ4/(ρσ 3) is the Morton number,

F = g

(
ρ5d8

σμ4

)1/3

(76)

is the so-called flow number, and

wc = 1.53

(
σg(ρ − ρd )

ρ2

)1/4

(77)

is a velocity scale close to that in the plateau region for the slip velocity of bubbles in small-Mo
fluids (see, e.g., Refs. [30,61]). The advantage of this correlation is that it gives the bubble rise
velocity explicitly with no need for iteration. For the Sherwood number we use the classic relation
of Ref. [62] developed for contaminated bubbles with a no-slip interface:

Sh = 2 + 0.95Re1/2
d Sc1/3. (78)
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FIG. 3. Dependence on the normalized height z∗ = z/Ln above the source of the normalized plume
momentum flow rate M∗, disperse-phase mass flow rate m∗

d , and bubble Reynolds and Sherwood num-
bers normalized by their initial values, Red/Red0 and Sh/Sh0. The red, blue, and black curves are for
(
, VN ) = (19.2, 0.63), (2.1, 0.69), and (0.26, 0.92), respectively. For the conditions specified in the text
the corresponding values of the initial dimensional bubble diameter are d = 1.00, 4.47, and 20.0 mm. Solid
and dashed lines are for 	 = 0.2 and −0.2, respectively.

In using this correlation to calculate the mass transfer coefficient, we neglect the area increase of the
bubbles due to their deformation, which usually is a small effect [see, e.g., Ref. [30], p. 194]; it could
be included, if desired, by introducing a shape factor [63,64]. It may be noted that Sh and wd and,
therefore, their normalized counterparts Sh∗ and VN , evolve in the course of the simulation due to the
decrease of the diameter d upon dissolution. Some representative results for the normalized plume
momentum flow rate M∗, bubble mass flow rate m∗

d , and the drop/bubble Reynolds and Sherwood
numbers normalized by their initial values, Re/Re0 and Sh/Sh0, all versus the normalized depth
z∗ = z/Ln, are shown in Fig. 3. For D = 1.49 × 10−9 m2/s, the physical properties of methane, and
the conditions of the Deepwater Horizon accident, with N = 2.7 × 10−3 s, with a water column
depth of 1500 m (Table I), these correspond to initial bubble sizes between 1 and 20 mm; the lines
in each family correspond to two different values of 	, 	 = 0.2 (solid) and 	 = −0.2 (dashed);
these values are fairly large for most gases, but serve to bracket the range of the phenomena
observed. The red, blue and black curves are for (
, VN ) = (19.2, 0.63), (2.1, 0.69), (0.26, 0.92),
corresponding to initial bubble diameters d (0) of 1.00, 4.47 and 20.0 mm, respectively, injected with
the same volume flow rate of 0.09 m3/s with NLn = 0.343 m/s.

The first panel shows the plume momentum, which is a maximum at the neutral height and
vanishes at the peel height. Since the strength of the liquid-bubbles coupling increases as the
rise velocity and, therefore, the bubble radius, decreases, one would expect that, for the same
gas injection rate, the buoyancy effect would be strongest for the smallest bubbles. The rate of
dissolution, however, tends to oppose this tendency. Indeed, in the figure we see that the peel
height (where M∗ = 0) for 	 = 0.2 is lowest for the smallest bubbles and increases with bubble
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size, following an inverse trend with the dissolution rate (decreasing 
). That is, the faster the
dissolution rate, the lower the peel height, in inverse order of the strength of the bubbles-liquid
momentum coupling. As expected, this outcome is even starker for 	 = −0.2 as, in this case,
dissolution makes the liquid heavier (a typical case being CO2) and further diminishes the effect
of buoyancy. The effect is minor when the dissolution rate is slow as shown by the closeness of the
black solid and dashed curves.

Interestingly, while the neutral heights (the maxima of the curves in the first panel) are
significantly larger for 
 = 2.1 (blue, d = 4.47 mm) than for 
 = 19.2 (red, d = 1 mm), the final
peel heights are very close. The reason is that, below the neutral height, the 4.47 mm bubbles impart
to the plume a larger momentum than the smaller bubbles due to their slower dissolution. With the
larger momentum, however, comes a larger entrainment of the relatively heavier deep liquid so that,
ultimately, both peel heights turn out to be very similar. Generally speaking, while an increased
mass flow rate always decreases the neutral and peel heights due to the increased entrainment [the
right-hand side of Eq. (37)], the momentum flow rate has a twofold effect, as in this case, and as
implied by the opposite signs between the first and last terms in the right-hand side of Eq. (38).

The effect of 	 on m∗
b , Red and Sh is minor. The smaller bubbles dissolve completely before

reaching the neutral height (second panel in Fig. 3), but buoyancy is not completely lost when
	 = 0.2 and only modestly decreased when 	 = −0.2. Their normalized Reynolds number also
decreases rapidly [Fig. 3(c)] and the Sherwood number Sh tends to 2, so that Sh∗ → 2/Sh0

[Fig. 3(d)]. Due to their slow dissolution rate, for the largest bubbles the difference between the
two values of 	 is barely discernible as far as m∗

d , Red and Sh are concerned and manifests itself
mostly in the height dependence of M∗. Of the three bubble sizes considered here, only the largest
ones (black lines) will persist beyond the peel height and will give rise to one or more repeated
plumes above this level.

It is well-known that the rise velocity of bubbles in water takes on an approximately constant
value, close to Eq. (77), for equivalent bubble diameters in the range between about 1 and 30 mm
(see, e.g., Ref. [30]). Once larger bubbles dissolve to diameters below 1 mm, they have lost most of
their initial amount of gas and the subsequent dissolution is very rapid as shown by the red lines in
the lower two panels of Fig. 3. Thus, it makes sense to focus on the period of the bubble life when
their radius is larger than 1 mm and their drift velocity approximately constant. For these bubbles,
fixing VN at its initial source value will result in a relatively small error. The same approximation is
likely to incur a small error for bubbles larger than 30 mm as well, as their dissolution will not have
progressed very much by the time they reach the peel height. The Sherwood number is dependent
on Red rather than on the drift velocity, which involves the bubble diameter and, therefore, a greater
sensitivity to the bubble size. Nevertheless, the blue and black lines in the last panel of Fig. 3
indicate that the approximation Sh ∼ constant, followed by a very rapid decline to zero, captures
the essence of the Sherwood number dependence on height. These considerations justify considering
the parameters VN and Sh constant as we continue our parameter study in the next section.

The rise velocity of drops in an immiscible liquid also exhibits a plateau as a function of the
equivalent diameter similarly to gas bubbles (see, e.g., Ref. [30]), characterized by a velocity of
the order of wc defined in Eq. (77). For such drops, with sizes of a few millimeters or larger, the
Reynolds number dwc/ν is typically of the order of a few hundreds. With Sc ∼ 103, the Sherwood
number given by Eq. (78) becomes of the order of 100. According to the data of Table II, the ratio
ρsat,0/ρd0 appearing in the definition of the parameter 
 in Eq. (42) is, however, of the order of
10−3–10−2, as opposed to the order of 10−2 or larger for bubbles. As a consequence, the typical
values of 
 tend to be smaller than for the case of bubbles so that these drops dissolve slowly.
We are thus led to a situation in which the results of our previous paper [7], in which dissolution
was neglected, and those of the next subsection, in which VN is assumed to be constant, become
approximately applicable. Thus, we feel justified in omitting a detailed study of this case.
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FIG. 4. Dependence of the normalized peel height hp (red curves) and neutral height hn (blue curves) upon
the parameter 	 for a normalized slip velocity VN = 2. The solid, dashed, dash-dotted lines are for 
 = 0, 1, 4,
respectively.

C. Constant VN and Sh

With VN = VN (0) constant and Sh∗ � 1, the behavior of the present system comes to depend on
the three parameters VN , 	 and 
. As noted in our earlier paper [7], the slip velocity VN is large when
the bubbles are weakly coupled to the liquid and are therefore unable to impart much momentum
to it. In this case the effect of the bubble buoyancy flux is weak with the consequence that the peel
height is small. This trend is evident from the right-hand side of Eq. (57) in which the influence of
the first term, which is the dominant driving term, decreases with increasing VN .

Figure 4 shows the dependence of hp and hn on 	 for VN = 2 and different values of 
. For

 = 0, m∗

b remains equal to 1, and therefore, the parameter 	 in Eq. (57) becomes irrelevant.
Thus, the corresponding curves are just straight horizontal lines. For 
 > 0, as in the previous case
of Fig. 2, in this case also we see the strong effect of 	 with both hp and hn increasing functions of
this parameter.

One notices in this figure that the lines corresponding to different values of 
 appear to go
through a single point 	̃. We mentioned a special case of this result in Sec. V A where, for VN � w∗,
we saw that lines for different 
’s all cross at 	 = 1. When VN is not small, as in the case of this
figure, this special value of 	 comes to depend on VN . A detailed analysis of the numerical results
shows that, in fact, a very weak dependence on 
 is always present, although the effect is very small
for values of VN and 	 in particular small ranges about values ṼN and 	̃ as can be observed in this
figure. We can understand this result by focusing on the first and second terms in the right-hand side
of the momentum Eq. (57):

m∗
d

w∗ + VN
+ 	

1 − m∗
d

w∗ . (79)

Both these terms correspond to buoyancy sources: The first one is the buoyancy provided by the
rising drops/bubbles, the second one is the buoyancy provided by the dissolved material. With
	 = 1 and VN = 0, the decrease of buoyancy caused by dissolution is exactly balanced by the
increase provided by the lightening of the plume liquid. In these conditions, the rate of change of
m∗

d and, with it, the influence of the parameter 
, becomes irrelevant. When 0 < 	 < 1, however,
the second effect is reduced. For the two terms to approximately balance so as to add up to an effect
approximately independent of 
, it is therefore necessary for the first term to be reduced as well
and, therefore, for VN to increase. A telltale sign of the approximate nature of this balance is that the
value of 	 at which the lines corresponding to different 
’s appear to intersect is slightly different
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FIG. 5. Dependence of the normalized peel height hp (left) and neutral height (right) on the parameter 


for 	 = 1.5 (solid), 1 (dashed), and −0.5 (dash-dotted). The red curves are for VN = 0, the blue curves for
VN = 2, both held constant.

for hn and hp. Figure 4 shows that both hp and hn increase with 
 for 	 to the right of 	̃, while they
tend to decrease with 
 for 	 to the left of it.

Figure 5 shows the dependence of hp and hn on 
 for different 	 and VN = 0 (red curves)
and 2 (blue curves). For 
 = 0, i.e., no dissolution, the density of the plume liquid is unaffected
and therefore the curves corresponding to different 	’s start at the same point. For 	 = 1.5 (solid
lines), both hp and hn are initially increasing functions of 
 because, since 	 > 1 implies a gain
of buoyancy upon dissolution, a faster dissolution increases the plume momentum. At some point,
however, the dissolution becomes so fast compared with the rise time of the plume that further
increases are immaterial. It is found that, by increasing 
 beyond the range shown in the figure,
the curves corresponding to VN = 0 and VN = 2 come together. Complete dissolution occurs fast
enough that the two-phase plume becomes essentially a single-phase plume with a liquid lighter
than the ambient and 
 ceases to influence the results. In these conditions the analysis of Ref. [40]
applies.

For 	 = 1 (dashed lines in Fig. 5) there is no effect of 
 for VN = 0, as already noted in
connection with Fig. 4, while an initial growing trend with 
 is found for VN = 2. This effect occurs
because, as long as the dissolving material remains in the drops/bubbles, its effect on buoyancy is
limited by the nonzero value of VN as explained before. However, when the material enters into
solution, the drag exerted by rising drops/bubbles [first term in Eq. (79)] is replaced by a lightening
of the plume liquid [second term in Eq. (79)], which is more effective. As before, the curves come
together for 
 beyond the range shown in the figure.

For 	 = −0.5 (dash-dotted lines) the solution is heavier than the pure liquid and, the faster the
dissolution, the lower the neutral and peel heights. In this case, for 
 large, once again we have
effectively a single-phase plume and the effect of VN disappears. In this case the confluence of the
curves for different VN ’s occurs for smaller values of 
 than for positive 	.

A direct comparison of the results for constant and variable VN and Sh is shown in Fig. 6. The
solid and dashed curves, for hp and hn, respectively, show results for VN and Sh calculated from
Eqs. (75) and (78) with the instantaneous value of the bubble diameter. The dash-dotted lines are for
hp and hn calculated keeping the rise velocity and Sherwood number constant at their values at the
source. The negligible difference between solid and dashed lines over the majority of the parameter
range studied justifies the approximation of keeping VN and Sh constant at their source values.

When the drops/bubble totally dissolve the nature of the plume changes from two-phase to
single-phase and, in the dilute limit that we consider, the further rise of the plume is severely limited.
It is therefore interesting to investigate the height hdslv at which the drops/bubbles completely
dissolve as a function of the model parameters. These results are shown in Figs. 7, 8, and 9; in these
figures the curves begin where the complete dissolution height equals the peel height. Figure 7 shows
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FIG. 6. Peel height hp (solid lines) and neutral heigh hn (dashed lines) as predicted with size-dependent
rise velocity and Sherwood number compared with predictions based on values of rise velocity and Sherwood
number held constant at the source level (dash-dotted lines). In the left panel the red, blue, black curves are
for 
 = 4, 1, 0.26, respectively. In the right panel the red, blue, black curves are for 	 = 1.5, 1, −0.5,
respectively. The black dash-dotted line in the left panel and the blue and black lines in the right panel
are actually a superposition of the dashed and dash-dotted lines. The predictions for hn in these cases are
indistinguishable within the thickness of the lines.

the normalized total dissolution height as a function of 
 for VN = 0, 1, 2, and 4 with 	 = 1. As
expected, the dissolution height rapidly decreases with increasing dissolution rate 
 and increases
with the drop/bubble rise velocity VN . The effect of the drop/bubble rise velocity is shown in Fig. 8.
The upper group of lines is for 
 = 2 and the lower one for 
 = 4; in each group, in ascending
order, the lines are for 	 = 0, 0.5, 1, and 1.5. The expected upward trend with increasing VN of the
previous figure is confirmed. As 	 increases the loss of buoyancy due to dissolution is mitigated
and the dissolution height correspondingly increases. The dependence of the dissolution height on
	 is weak, but is strongly affected by the increasing peel height with increasing 	. The effect of
the dissolution rate parameter 
, however, is marked as seen before. The relatively small effect of
the parameter 	 is clearer in Fig. 9 in which the curves are ordered according to increasing VN and

. For negative values of 	 dissolution magnifies the loss of buoyancy and complete dissolution
occurs at such small heights that they are not visible in graphs of this type.

FIG. 7. Normalized height for complete dissolution for 	 = 1, in which case there is no loss of buoyancy
with dissolution. In ascending order, the curves are for dimensionless drop/bubble rise velocity VN = 0, 1, 2,
and 4. The curves begin at the value of the dissolution rate parameter 
 corresponding to the peel height.
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FIG. 8. Normalized height for complete dissolution as function of the dimensionless drop/bubble rise
velocity VN ; the upper group of lines is for 
 = 2 and the lower one for 
 = 4; in each group, in ascending
order, the lines are for 	 = 0, 0.5, 1, and 1.5.

VI. RESULTS: BUBBLE PLUMES IN FINITE WATER DEPTH

At shallow water depths, it may happen that the (theoretical) peel height is larger than the liquid
depth so that no intrusion can form except at the surface. Since the peel and neutral heights have a
comparable magnitude, a comparison of the water depth with the characteristic length Ln defined in
Eq. (33) may be used as an approximate guide to decide whether this is a possibility in any specific
case. As Eq. (33) shows, Ln depends fairly strongly on the degree of stratification, decreasing when
stratification increases.

Other than for this aspect, there are two important reasons why the previous model needs to be
modified for shallow submergence of the plume source, especially for a bubble plume. In the first
place, the solubility of gases has a strong dependence on pressure, which may vary significantly as
the bubbles rise. Second, the falling hydrostatic pressure will cause the bubbles to expand. These
factors are less of a concern for a drop plume in view of the near-incompressibility of most liquids

FIG. 9. Normalized height for complete dissolution as function of the parameter 	. In ascending order the
curves are for VN = 0, 
 = 4; VN = 0, 
 = 2; VN = 2, 
 = 4; and VN = 2, 
 = 2. The topmost line begins
where the complete dissolution height equals the peel height. For negative values of 	 dissolution magnifies
the loss of buoyancy and complete dissolution occurs at such small heights that they are not visible in graphs
of this type.
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and of the small effect of pressure on liquid-liquid solubilities. For these reasons, in this section we
focus on bubble plumes. Since we are dealing with limited depths, the gas density will be orders of
magnitude smaller than the liquid density so that the parameter 	 defined in Eq. (41) can be taken
as zero.

The bubble volume is determined by two countervailing effects, gas dissolution and expansion
due to the pressure falling with height. When the latter dominates, the bubbles tend to rise relatively
fast, their coupling with the liquid is reduced and both the peel and neutral height tend to decrease.
When gas dissolution is the dominant effect, buoyancy is quickly lost and the peel and neutral height
will also decrease. Thus, for shallow plumes, one may expect the existence of optimal conditions
such the the two effects are in balance and the peel and neutral heights reach a maximum.

The compressibility factor Z for a gas of molecular mass M occupying a volume V at pressure p
and temperature T is defined by

Z = M p

RGρd T
, (80)

in which RG is the universal gas constant and we write ρd for the gas density consistently with the
notation used in the previous sections. Since Z is usually a fairly weak function of p over a range of
a few atmospheres, we have, approximately,

ρ∗
d = ρd

ρd0
� p

p0
= p∗. (81)

For the effect of pressure on solubility we use Henry’s law assuming a direct proportionality to the
local pressure. As a consequence, the ratio ρsat,0/ρd0 in the definition Eq. (42) of the parameter 


is independent of the water depth so that 
 itself is also independent of the water depth.
The pressure p0 at the source level z = 0 is the sum of the atmospheric pressure patm and the

hydrostatic pressure, which we write as ρagH , in which H is the depth of the source and the water
density can be taken as constant even in the presence of stratification with negligible error. Thus,
we may write

p∗ = 1 − ρagz

patm + ρagH
= 1 − Ln

Ht
z∗, (82)

where z is measured upward from the source level as before and Ht = H + patm/(ρag), with
patm/(ρag) = Ha � 10 m, is the total head at the source. The parameter Ln/Ht determines the relative
importance of the water depth in affecting the expansion of the rising bubbles. The case addressed
in the previous section can be considered as the limit in which Ln/Ht � 1.

Another point to keep in mind is that the peel height has an upper limit given by the water depth
H as mentioned before. Thus, it is necessary that hp � H or

hp

Ln
� Ht

Ln

H

Ha + H
, (83)

with hp/Ln � Ht/Ln being an absolute upper limit when Ha � H .
The equations appropriate for this case differ little in form from those used to derive the results

of the previous section. The term multiplied by 	 may be omitted in the momentum Eq. (38) as
already noted and so can ρd0/ρa0. With these simplifications the momentum Eq. (38) becomes

dM∗

dz∗ = m∗
d

ρ∗
d (w∗ + VN )

+ F ∗
s

w∗ . (84)

Here and in the mass dissolution Eq. (40) the density ρ∗
d is now a function of z∗ according to Eq. (81).

There are other more subtle differences because the correlations used for the Sherwood number and
the bubble rise velocity all depend on the bubble diameter which changes not only due to dissolution
as before but, in this case, also due to expansion.
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FIG. 10. Peel height (left) and neutral height in shallow water as a function of the parameter Ln/Ht

expressing the ratio of the estimated neutral height to the total hydrostatic head at the plume source; water
depth increases from right to left. The lines have been calculated with patm/(ρag) = Ha = 10 m. The dashed
black lines denote the upper limit when the peel and the neutral heights hp and hn equal the water depth H ; in
the latter case, there is no peeling. The solid lines are for 
 = 0, the dashed lines for 
 = 1, and the dotted
lines for 
 = 4; red lines are for VN = 0 and blue lines for VN = 2.

Figure 10 shows the dependence of hp and hn on the parameter Ln/Ht ; the dashed black line is
the upper limit hp = H . The solid lines are for 
 = 0, the dashed lines for 
 = 1 and the dotted
lines for 
 = 4; red lines are for VN = 0 and blue lines for VN = 2. According to Eq. (75), a bubble
with a diameter of 60 mm has a rise velocity of wb = 0.55 m/s. Thus, VN = 2 in this case would
correspond to LnN = 0.275 m/s.

Nondissolving bubbles produce higher peel and neutral heights, and smaller rise velocities also
increase the peel height as found in the deep-water case. As the dissolution rate increases, bubbles
dissolve more and more quickly before they have a chance to feel the decreasing hydrostatic head
and the sensitivity of the peel height to the water depth correspondingly decreases. An interesting
remark that can be made in connection with Fig. 10 is that the largest values of the peel and
neutral heights can be 50% larger than in deep water due to the increased buoyancy provided by
the expanding bubbles.

The rate of growth of the peel and neutral heights with decreasing water depth sharply
increases as it gets close to the water depth. The reason is that a small fractional decrease of the
hydrostatic pressure requires a proportional increase of the bubble volume. If the bubbles have
grown significantly rising from the source, then this fractional volume increase corresponds to a
large volume increase in absolute terms and a corresponding increase in buoyancy.

VII. SUMMARY AND CONCLUSIONS

This paper has presented a scaling analysis of bubble and drop plumes in a stratified ambient
including the effects of mass transfer between the bubbles/drops and the ambient liquid. The work
is based on a standard top-hat integral model, which can be readily reduced to a Gaussian model as
explained in our earlier paper Ref. [7]. To make the investigation of parameter space manageable
we have focused on the limit case of a point source, to which more realistic source conditions can
be reduced by appealing to the notion of virtual source (see, e.g., Ref. [65]).

The results for the peel and neutral heights have been found to be primarily dependent on two
dimensionless parameters: 
, which compares the bubble dissolution rate with the rise time to the
neutral height, and 	, which accounts for the effect of the dissolved material on the liquid density
and, therefore, buoyancy. For bubbles, this latter parameter is very small in shallow water, but
becomes more important in deep water where the hydrostatic pressure increases the ratio between
the gas and liquid densities. For drops, 	 is typically of order 1 and can be positive when the
dissolved material makes the liquid lighter, as in the case of methane and water, or negative, when
the dissolved material makes the liquid heavier, as in the case of CO2 and water. In the former case
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the buoyancy lost upon dissolution of the drops/bubbles can be restored, fully or in part, by the
modification of the liquid density. We have shown that the neglect of this effect, as in much of the
literature, may be unjustified in some situations.

A third important parameter is the drop/bubble rise velocity compared with the characteristic
plume velocity. A small value of this parameter corresponds to a strong coupling of the disperse
phase with the liquid and results in an increase of the neutral and peel heights.

Drop plumes in deep or shallow water behave similarly in view of the approximate incompress-
ibility of liquids. For bubbles, however, the situation is very different. When the peel height is small
compared to the total water depth, expansion due to the falling hydrostatic pressure is a minor effect.
When peel height and water depth are comparable, however, bubble expansion can play a significant
role if the dissolution rate is slow enough that bubbles can rise close to the free surface. In this case,
the peel and neutral heights can be significantly larger than in deep water.

An important process that has not been considered is the fall-back of the liquid from the peel
height to the intrusion height. This extension would require some version of the so-called double-
plume model [6,44] and will be pursued in a future paper.
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APPENDIX

In the development of the mathematical formulation of the model and in its simplification we
have made several assumptions that we now justify quantitatively.

1. Neglect of αd

In Sec. II we have neglected the disperse-phase volume fraction everywhere except in md , the
flow rate of the disperse phase. We now justify this procedure ignoring the fact that the area occupied
by the bubble is smaller than that of the plume liquid since the conclusion of the argument is that
αd is negligible.

We consider the ratio between the volumetric flow rates of the disperse phase, md/ρd and of the
plume, m/ρ:

md/ρd

m/ρ
= αd

1 − αd

(
1 + wd

w

)
, (A1)

or, upon using the relation between Fd and md given in Eq. (21), the definition Eq. (33) of the
characteristic neutral height Ln and of the dimensionless mass flow rate Eq. (34),

αd

1 − αd

(
1 + wd

w

)
= ρ

ρ − ρd

LnN2

g

Fd

Fd0

1

m∗ = ρ

ρ − ρd

[
− d

dz∗

(
ρ

ρa0

)]
Fd

Fd0

1

m∗ . (A2)

Since, as is readily shown,

LnN2

g
= d

dz∗
ρ

ρa0
, (A3)

this term therefore represents the relative change of the ambient water density over a distance of
the order of the neutral height and is typically of the order of a few parts in 102–103. For any
problem in which the disperse-phase buoyancy is significant, the first fraction in Eq. (A2) will be
a number greater than 1, but not by an order of magnitude. For example, for oil drops, it would be
about 5, and much closer to 1 for gas bubbles. Since the disperse phase dissolves, Fd/Fd0 � 1. The
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only large contribution to Eq. (A2) comes from m∗ which, for the limit case of a pointlike source,
vanishes at the source and, due to the nondimensionalization explained in Sec. III, is a number of
order one at the neutral height. By considering the limit case 	 = 1 and VN � w∗, it is easy to show
from Eqs. (37), (39), and (57) that, near the source, m∗ ∝ (z∗)5/3. Thus, m∗ ∼ |(d/dz∗)(ρ/ρa0)| for
z∗ ∼ |(d/dz∗)(ρ/ρa0)|3/5, which equals about 0.06 and 0.02 for |(d/dz∗)(ρ/ρa0)|3/4 = 10−2 and
10−3, respectively. We therefore conclude that, except for a very small fraction of the plume height,
the assumption αd � 1 is very well justified.

2. Equation (40)

Avoiding the simplification stemming from ρd,dslv � ρsat, the dimensionless form of Eq. (40) for
m∗

d is

dm∗
d

dz∗ = 

Sh∗

w∗ + VN

(
m∗

d

ρ∗
d

)1/3(
ρd,dslv

ρsat0
− ρ∗

sat

)
. (A4)

Since the solubility tends to decrease with pressure, ρd,dslv � ρsat0, and the first term in parentheses
is certainly less than, or equal to, 1. If n drops/bubbles per unit volume, each one containing a mass
m1 of soluble material, dissolve completely, then the resulting density of dissolved material in the
ambient liquid is nm1 = αdρsat. We thus conclude that ρd,dslv/ρsat0 � αd and, therefore, small over
most of the plume as concluded before.

3. Multicomponent drop

The model of Sec. IV, in which drops are assumed to consist of a single soluble component,
can be readily extended to a multicomponent drop only some constituents of which are soluble as
follows.

We express the density of such a drop as

ρdrop = (1 − αB)ρA + αBρB, (A5)

where αB is the volume fraction of the soluble components, and ρA, ρB are the (mean) densities of
the insoluble and soluble constituents, respectively. In principle, each soluble component will have
different solubility. In what follows we neglect the solubility difference for simplicity, although the
model can be readily extended to include this effect.

The mass flux of the insoluble component in the plume is

mA = (1 − αB)ρAAdrop(w + wdrop). (A6)

The mass fluxes of undissolved and dissolved B components are

mB = αBρBAdrop(w + wdrop), (A7)

mB,dslv = ρB,dslvAlw. (A8)

The conservation relations for A, B are mA = mA0, mB + mB,dslv = mB0.
The momentum equation for the multicomponent case is, then,

dM

dz
= ρa − ρA

ρA

mAg

w + wd
+ ρa − ρB

ρB

mBg

w + wd
− βBmB,dslvg

w
+ Fs

w
. (A9)

Given the similarity of this equation with the momentum Eq. (24) used in the analysis of the
main text, it is clear how to apply scaling arguments parallel to those of Sec. III to find two new
dimensionless parameters.
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