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Criterion for particle rebound during wet collisions on elastic coatings
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We combine lubrication theory and solid linear elasticity to model the elastohydro-
dynamic deformation of a rigid, spherical particle impacting a stratified surface—a soft
incompressible coating atop a rigid substrate. The model depends on three dimensionless
parameters: Stokes number, elasticity parameter, and thickness parameter. These parame-
ters collectively determine whether the particle will stick to or rebound against the stratified
surface. We show that coating thickness moderates the degree to which elasticity affects
the rebound criteria (and vice versa) in a fashion distinct from the effect of the elasticity or
of the Stokes number. We also demonstrate the possibility of approximating a stratified
surface as an elastic half space with an elasticity between the rigid substrate and soft
coating. This “effective elasticity” of the half space couples both the elasticity parameter
and thickness parameter of the stratified surface condition while maintaining the same
sticking criteria. Lastly, we discuss the limitations of this effective elasticity, such as in
thin or more-rigid coatings.

DOI: 10.1103/PhysRevFluids.4.084305

I. INTRODUCTION

Wet particle-particle or particle-wall collisions play an important role in many natural and
industrial phenomena, including particle deposition [1], erosion [2], and wet granular flows [3,4].
For processes with particulate and multiphase systems, a better understanding of particle-particle
and particle-wall collisions is important for the modeling and optimization of fluid flow and particle
transport, for example, in riser reactors [5,6], impurity separators [7], and pipelines [8]. Beyond its
industrial applications, colloidal and particle-wall interactions in biological microenvironments can
lead to technical advances in pharmaceutical applications like drug delivery [9], blood substitutes
[10], and biomimetics [11,12], as the microenvironment in vivo consists of a large variety of particles
and boundaries (protein, cells, vessels, bones, and tissues) where drainage and wet collisions can
occur.

For particle-particle or particle-wall collisions mediated by a viscous fluid, the kinetic energy of
the colliding particles is dissipated into the fluid through viscous forces. Simultaneously, viscous
forces can cause elastic deformation of the interacting surfaces [13–15], thereby increasing the
fluid gap width, decreasing the rate of fluid drainage, and decreasing the rate of viscous dissipation
[16]. Therefore, the interplay between elastic deformation and viscous forces determines the ratio
of energy conservation and dissipation during particle collision. For instance, in the case of a wet
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collision between perfectly rigid surfaces, the absence of a deformable boundary leads to completely
inelastic collisions. On the other hand, compliant boundaries allow partially inelastic collisions, or
elastohydrodynamic bouncing [17]. Therefore, understanding the role of elastic deformation in wet
particle collisions is crucial in predicting the dynamics of soft particulate systems.

The problem of elastohydrodynamic collisions has been thoroughly studied over the years. Davis,
Serayssol, and Hinch [18] (DSH) developed a framework for elastohydrodynamic bouncing and
showed that collisions were dependent on two dimensionless parameters: the Stokes number St
and elasticity ε. Experiments wherein spheres of various elasticities were dropped onto liquid films
atop glass [19,20] showed good agreement with DSH theory. In particular, bouncing was observed
to occur only when the Stokes number exceeded a critical Stokes number, Stc. Moreover, the wet
coefficient of restitution CORwet, defined as the ratio between a particle’s velocities immediately
after and before the collision, is an important required parameter in discrete elements method
simulation of particulate flows [21,22]. The CORwet depends on the Stokes number and its critical
value, Stc [17,23,24]. Following the seminal work of DSH, many variations and extensions of the
original elastohydrodynamic bouncing problem have been studied. For example, oblique collisions
and the effect of impact angle on Stc have been investigated using pendulum configurations [24–26].
Müller and Huang [27] examined how the fluid film thickness atop the glass substrate would
affect CORwet. Surface asperities have also been demonstrated to significantly impact Stc and,
consequently, the wet coefficient of restitution [24]. Chastel et al. [28] further investigated the effect
of asperities on bouncing by analyzing the collision against a fabricated microtextured surface with
various heights and surface fractions of micropillars and found the critical Stokes number to be
significantly influenced by surface texture.

A limit that remains in the description of elastic collisions is that particles are generally
assumed to be homogeneous. The elastohydrodynamic deformation during bouncing is, therefore,
determined solely based on bulk material properties. Stratified particles, more specifically, rigid
particles with soft coatings, are ubiquitous [29,30]. Nevertheless, the role of stratification on
elastohydrodynamic bouncing is not well-understood, especially considering that stratification
influences elastohydrodynamic deformation for other configurations. For instance, Mahadevan et al.
analyzed the sliding motion of particles past a stratified substrate and clarified the role played by
the coating thickness [31]. Leroy and Charlaix [32] and Restagno et al. [33] modeled an immersed
spherical probe oscillating some distance away from either a thin or a thick, substrate-bounded
elastic film. They then showed through models and experiments how to use elastohydrodynamics
to obtain the mechanical properties of a compliant layer from out-of-contact oscillations. Craster
et al. presented the numerical results for the gravitational settling of a two-dimensional (2D)
object toward a plane wall with a soft coating in a viscous fluid [34]. Wang et al. [35,36] studied
elastohydrodynamic deformation in the context of dynamic surface forces measurements. They
observed that dynamic surface forces depend on the mechanical properties and coating thickness.
They also showed that simple corrections for stratification employed to predict the deformation
caused by a spherical indenter were not sufficient to account for the role of the coating thickness on
the deformation during dynamic surface force measurements. These recent advances demonstrate
the noninterchangeable role played by coating elasticity and thickness on the elastohydrodynamic
problem. However, due to the complex nature and nonlinearity of the governing equations [37,38],
full numerical calculations are necessary to fully describe the variation in fluid gap thickness and
deformation profile of the soft layer during the process of approaching or bouncing, which consume
intensive computational source and time.

Here we analyze the bouncing of a rigid particle off a stratified coating in viscous fluid (see
Fig. 1). We model the full elastohydrodynamic bouncing process through the incorporation of
three governing equations coupling the fluid drainage and infusion, the elastic deformation, and
the particle motion, and solve the equations numerically. We show the transition from thick to
thin coating thickness on the dynamics of the fluid gap profile and particle velocity for a fixed
Stokes number and elasticity. From an energy analysis, we investigate the relationship between
hydrodynamic force and the soft coating’s stored elastic energy. We compare the evolution of the
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FIG. 1. Schematic diagram showing the (a) approach and (b) bouncing of a spherical particle against
a coated substrate. Important variables include the fluid gap width (h), the undeformed separation (x), the
deformation (w), particle velocity (v), and coating thickness (δ). The particle is immersed in a Newtonian
fluid with viscosity (η). In (a) as the particle approaches the soft coating, fluid is drained out of the gap.
In (b) fluid is infused into the gap as the particle rebounds away from the coating. The figure is scaled such that
the horizontal axis (radial direction) is compressed 50 times relative to the vertical axis (z direction), which
results in the nonspherical appearance of the particle.

particle’s kinetic energy and the soft coating’s elastic energy and show that, depending on the
coating thickness, the energy transfer between the particle and the soft coating repeatedly transitions
between a viscous-dominated and elastic-dominated regime. Lastly, we define an effective elasticity
parameter that couples thickness and elasticity while maintaining the same rebound characteristics.

We provide a close form correction for the Stc in terms of an effective elasticity that accounts for
the effect of stratification. The correction can be employed along existing classic scaling of Stc with
surface elasticity from Davis et al. [18] and Lian et al. [39] or empirical curves [40] developed for
homogeneous particles, without the need of full numerical simulations. Aiming to further simplify
the original problem, we couple the coating thickness and elasticity parameters into one single
effective elasticity, and therefore reduce the dependency on three dimensionless parameters to only
two (St and ε). This effective elasticity is different from the one conceptualized by Wang et al.
[35] since Stc is independent of time and space, unlike the deformation and fluid gap profile.
Therefore, it is possible to use the effective elasticity to realign the Stc between configurations with
different coating thicknesses. This method could contribute to improving the accuracy of large-scale
multiparticle simulations, which are currently limited to the dichotomous “hard sphere” or “soft
sphere” particles [21], with limited options for stratified materials. We also provide regime maps
that can be employed to predict rebound or sticking after normal collisions, which are useful in
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understanding how clusters or aggregation initiate. Our work also has implications for the studies
of some non-Newtonian behavior of highly concentrated particulate systems [41], including shear
thickening, for which the detailed mechanism is still under debate [42–44].

II. THEORETICAL DEVELOPMENT

A. Description

We pose the problem as follows: a spherical particle of radius a and mass m approaches a wall
coated with compliant film of thickness δ and elastic modulus E, as shown in Fig. 1. Cylindrical
coordinates are chosen due to the radial symmetry of the problem. The origin is fixed at the point on
the coating surface (undeformed) that is closest to the spherical particle. At time t = 0, the sphere
and coating are separated by an undeformed gap of width x0 by a Newtonian fluid of dynamic
viscosity η. Initially, the velocity of the sphere is v0 and the momentum of the sphere is therefore
mv0, directed perpendicular toward the wall (see Fig. 1).

A force balance governs the overall motion of the spherical particle:

FH =
∫ a

0
2πr p(r)dr = m

[
∂2h(0, t )

∂t2
− ∂2w(0, t )

∂t2

]
. (1)

In Eq. (1), p(r) is the pressure distribution within the fluid gap, h is the fluid gap thickness,
w is the coating deformation, r is the radial coordinate, and t is time. The integral term is the
hydrodynamic force that resists the motion of the spherical particle, while the derivative term is the
product of the mass and the instantaneous acceleration of the particle. If we assume the fluid gap is
small relative to the sphere radius (x0/a � 1), together with a no-slip condition on both surfaces and
continuum fluid phase, the pressure within the thin fluid gap can be modeled with the lubrication
equation:

∂h(r, t )

∂t
= 1

12ηr

∂

∂r

[
rh3 ∂ p(r, t )

∂r

]
. (2)

The lubrication approximation also requires the inertial terms of the fluid in the Navier-Stokes
equation to be relatively small compared to the viscous term. For the current geometry, this condition
can be stated as Re � a/x0, in which Re is the Reynolds number defined as Re = ρ f v0a/η with ρ f

the fluid density. In the lubrication limit, the fluid pressure decreases radially in the r direction but
does not vary with the z direction.

We can obtain the coating deformation using the fluid pressure from the lubrication equation. The
pressure directly translates to a normal stress boundary condition on the compliant layer at z = 0.
The other boundary of the compliant layer located at z = −δ is attached to a rigid substrate under
a sticky boundary assumption. With these boundary conditions, we calculate the deformation of the
compliant coating using the equations from Leroy and Charlaix [32], where the linear elastic theory
of soft coatings in contact mechanics developed by Gacoin et al. [45] was applied to the context of
elastohydrodynamic oscillations. The deformation of the compliant coating at z = 0 is given by

w(r, t ) =
∫ ∞

0

2

E∗ξ
X (ξδ)Z (ξ )J0(ξr)dξ ; E∗ = E/(1 − ν2), (3)

where

X (ξδ) = γ (1 − e−4ξδ ) − 4ξδe−2ξδ

γ (1 + e−4ξδ ) + [γ 2 + 1 + 4(ξδ)2]e−2ξδ
; γ = 3 − 4ν, (4)

and

Z (ξ ) = ξ

∫ ∞

0
r p(r, t )J0(ξr)dr. (5)
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In Eqs. (3)–(5), E∗ is the reduced Young’s modulus, J0 is the zeroth-order Bessel function, ν

is the Poisson’s ratio of the coating, δ is the coating thickness, ξ is the Hankel transform variable,
and w(r) is the normal deformation profile of the coating at the surface. To determine if the strain
in the coating remains within the linear elasticity regime, we estimate the strain as

√
w(0, t )/a

[46], which does not exceed 0.6
√

x0/a. The 0.6 term is extracted from our simulation data, while
the term within the radical stems from the scaling of coating deformation [see Eqs. (10) and (11)
below]. Given that the term within the radical is �1, the strain does not exceed the linear elasticity
limit, so deformation can be calculated using the biharmonic equation. With an expression for the
coating deformation w(r, t), the fluid film thickness, h(r, t), can be now described as

h(r, t ) = x(0, t ) + r2

2a
+ w(r, t ). (6)

In Eq. (6), x(0, t ) is the central undeformed position at time t , and r is the radial position from
the center (see Fig. 1). We use a parabolic approximation to model the central gap between a sphere
and a planar surface that are near contact. With the equations for h(r, t) and w(r, t), we can complete
the force balance on the sphere [Eq. (1)].

The configuration described above is one of the geometries relevant to elastohydrodynamic
collisions. Our analysis focuses on the sphere-wall configuration, which is commonly employed in
particle-rebound experiments [19,20,47]. In the configuration investigated here, only the rigid wall
is coated with a compliant film, while the sphere’s surface is not. Note, however, that the analysis
presented can be generalized to other configurations. The same equations can be used to model a
sphere-sphere collision by replacing our sphere radius with a “reduced radius” parameter that factors
the radii of both spheres [18]. Alternatively, if it were the sphere instead of the rigid wall that was
coated with compliant film, the equations and boundary conditions would remain unchanged, but
if the coating were applied to both the sphere and the rigid wall, the deformation of each coating
should be summed together for the force balance [48].

B. Nondimensionalization

We rely on our previous nondimensionalization to rescale Eqs. (1)–(6) and extract three key
nondimensional parameters [35]. The normal characteristic separation is the initial undeformed gap
width, x0, and the radial characteristic length is set to be the hydrodynamic radius,

√
ax0. The

characteristic timescale is set to be x0/v0, the time it takes the sphere to touch the planar surface if
it traveled at its constant initial velocity. We introduce these dimensionless parameters into Eq. (2)
and rearrange the equation. The resulting dimensionless form of the lubrication equation is

∂ ĥ

∂ t̂
= 1

12r̂

∂

∂ r̂

(
r̂ĥ3 ∂ p̂

∂ r̂

)
, (7)

where the dimensionless variables are

ĥ = h/x0, t̂ = v0

x0
t, r̂ = r/

√
ax0, p̂ = x0

2

aηv0
p, v̂ = v

v0
. (8)

From Eqs. (3)–(5), the scaling parameter for the Hankel transform variable ξ is 1/
√

ax0,
since the multiplication of ξ and r in the Bessel function should be rendered dimensionless. The
dimensionless coating thickness T is therefore δ/

√
ax0, since ξδ appears as an exponential order in

Eq. (4). The scaling parameter for the deformation w(r, t ) is also set to be x0, the same as for h(r, t),
since the deformation is subtracted directly from h(r, t). The corresponding dimensionless equation
for the elastic deformation is then derived as

ŵ(r̂, t̂ ) = ε

∫ ∞

0

2

ξ̂
X (ξ̂T )Ẑ (ξ̂ )J0(ξ̂ r̂)d ξ̂ , (9)

084305-5



TAN, WANG, AND FRECHETTE

with the dimensionless variables obtained being

ξ̂ = ξ
√

ax0, T = δ/
√

ax0, ŵ = w/x0, Ẑ = 1

ηv0

(x0

a

)1.5
Z, ε = ηv0a1.5

E∗x0
2.5

. (10)

Note that the elasticity parameter ε, which is derived directly from the nondimensionalization
of Eq. (3), serves as a measure for the compliance of the coating material under current conditions
(η, a, v0, x0). Lastly, the dimensionless force balance on the sphere can be derived as

F̂
(
t̂
) = St

[
∂2ĥ

(
0, t̂

)
∂ t̂2

− ∂2ŵ
(
0, t̂

)
∂ t̂2

]
= 1

3

∫ √
a/x0

0
p̂(r̂, t̂ )r̂d r̂, St = mv0

6πηa2
. (11)

In Eq. (11) we neglect gravitational force. Gravitational forces can be neglected when the
initial kinetic energy is greater than the initial gravitational energy, i.e., when �ρgx0

ρsv
2
0

� 1. Based on
Eqs. (7)–(11), the change in the sphere velocity, coating deformation, separation, and other variables
during approach and rebound is determined by three dimensionless parameters—Stokes number
St, elasticity ε, and coating thickness T. For comparison, approach and rebound on a half-space
coating are described with analogous dimensionless parameters St and ε [18]. The addition, here,
of the third parameter T accounts for the constraints in the coating deformation due to finite
thickness effects caused by stratification. In addition, the Poisson’s ratio is a fourth parameter, which
cannot be decoupled from Eq. (3) because of its nonlinear dependence with X (ξδ). An alternative
approach to disentangle X (ξδ) and derive simpler formulation of Eq. (9) would be using polynomial
approximations for X (ξδ), which are only valid for either thin or thick coatings. To capture the
role of the coating thickness, especially the transition between thin to thick films (which includes
intermediate film thicknesses), we instead opted to use here a fixed Poisson’s ratio of ν = 0.5,
which encompasses many polymeric materials and rubbers [49]. Elastohydrodynamic deformation
for compressible materials (ν < 0.5) has been investigated in Ref. [30]. Based on Ref. [30], we do
not expect the choice of the Poisson’s ratio to affect the bouncing of a rigid sphere from a thick
coating. For thinner coatings we expect that compressibility will increase the normal deformation
and reduce the effect of the constraint imposed by the rigid substrate (for a given St and ε).

To solve Eqs. (7), (9), and (11), we use a numerical algorithm that extrapolates changes in the
fluid gap at small time increments. First, at t̂ = 0, we use 500 evenly spaced points to discretize the
fluid gap in the central region (r̂ < 0.1

√
a/x0) of the sphere, where non-negligible deformation will

occur. We then make an estimate of the fluid gap after a small time increment (�t̂ = 0.02) based on
the instantaneous sphere velocity. The change in the fluid gap is used to calculate the fluid pressure
based on the lubrication equation [Eq. (7)]. With the fluid gap pressure, we use the biharmonic
equation of linear elasticity [Eq. (9)] to solve for the coating deformation. We also integrate
the fluid gap pressure to get the hydrodynamic force [Eq. (11)]. For 0.1

√
a/x0 < r̂ <

√
a/x0 we

use an approximation for the pressure, p̂(r̂, t̂ ) = 3v̂/(ĥ − εŵ + r̂2/2)2 [18] with the underlying
assumption that the deformation is sufficiently small that it does not affect the pressure. With the
updated deformation profile and hydrodynamic force, we can calculate the expected fluid gap profile
from Eq. (11). Next, we compare the calculated fluid gap profile to the estimated value. If the
difference in fluid gap at all points throughout the mesh does not exceed 0.0001, we consider the
fluid gap profile to satisfy the differential equations, and proceed to the next time increment. If
not, we calculate the weighted arithmetic mean of the estimated (weight = 0.9) and calculated
(weight = 0.1) fluid gap profile. The mean value is used as the new estimated fluid gap for the next
iteration, and this cycle continues until convergence. We do not consider surface forces, such as
van der Waals interactions, in our algorithm because we are solely interested in the contribution of
elastohydrodynamic deformation to the sticking behavior of the falling spheres. However, should
the fluid gap become extremely narrow (<50 nm), such surface forces will become important. In
those cases, the van der Waals and electrostatic double layer interactions can be incorporated into
the boundary stress condition of the elastic layer to modify the algorithm.

084305-6



CRITERION FOR PARTICLE REBOUND DURING WET …

III. RESULTS AND DISCUSSION

In the following sections, Secs. II A and III B, we set St = 5 and ε = 0.01 to analyze the effect
of coating thickness T separately from the two other dimensionless parameters. The choice of
Stokes number and elasticity is such that our results can be compared to those of Davis et al. [18].
Furthermore, under these conditions, changing the coating thickness will result in either bouncing
or sticking behaviors, as opposed to a smaller elasticity parameter or Stokes number, where there
might not be bouncing regardless of the thickness parameter. We investigate three different regimes
for the thickness parameter: thin (T < 0.1), intermediate (0.1 < T < 1), and thick (T > 1). We
provide an animation in the Supplemental Material [50] that compares the approach, deformation,
and rebound for the four particular thickness parameters: T = 0.05, 0.5, 5, and 50.

A. Fluid drainage and infusion during approach and rebound

To investigate the effect of coating thickness on the fluid drainage and infusion, we track three
variables: the central fluid gap ĥ(0, t̂ ), the coating deformation at the center ŵ(0, t̂ ), and the sphere
velocity v̂(t̂ ); see Figs. 2(a)–2(c). We evaluate the change in these three variables, during the sphere’s
approach and rebound, for thin (T = 0.05), intermediate (T = 0.5), and thick (T = 5, 50) coatings.
In Fig. 2(a), our results for the central fluid gap for the thinnest coatings (T = 0.05) closely match
the Reynolds lubrication theory where, as the central fluid gap decreases, the sphere decelerates to
a stop and does not rebound. Due to the mechanical constraint of the rigid substrate supporting the
very thin coating, the coating deformation at the center is negligible. On the other hand, for the
thickest coating (T = 50), our results for the central fluid gap are also in close agreement with DSH
half-space results [18]. DSH also noted similar oscillatory motion in the sphere velocity of their
half-space model, indicating alternating approach and rebound phases [18]. For the thick coating
condition, the amplitude of the coating deformation at the center is large compared to that of the
thin coating. Furthermore, the coating deformation also reverses sign. A comparison of the coatings
with deformations of opposite signs during approach and rebound is illustrated in Fig. 1. Based
on our sign convention, Figs. 1(a) and 1(b) display positive and negative coating deformations,
respectively.

First, we explain the effect of T on the coating deformation shown in Fig. 2(b). Coating
compliance is the ratio of the coating displacement to the applied stress. Under a given applied
stress, the magnitude of the deformation will be larger if the coating is more compliant [51]. Coating
compliance is dependent on both ε and T parameters. The relationship between the elasticity
parameter ε and compliance is straightforward since the elastic modulus of the coating is included
within the parameter. Because the coating is bound to the substrate, the thickness parameter T
also similarly affects the compliance of the coating. The compliance of thin coatings decreases
and can even become comparable to that of the underlying substrate, while compliance of thicker
coatings is more dependent on the elastic properties of the coating itself. In our scenario, since
we have a rigid underlying substrate, the compliance decreases as the coating thickness decreases.
Another consequence of stratification is that the elastic properties of the coating (included in ε)
have less effect on the coating compliance as the thickness parameter decreases. Given the same
pressure distribution, a thicker coating will deform more than a thinner coating, which corresponds
to the higher amplitudes in Fig. 2(b). The mechanical constraints from the underlying substrate also
explain why the deformation at t̂ = 0 varies even when all other initial conditions (ε and St), are
identical.

The changes in coating compliance caused by a decrease in the coating thickness also affect
the central fluid gap [ĥ(0, t̂ ); see Fig. 2(a)], which is indicative of the rate of fluid drainage and
infusion. A downward slope corresponds to fluid drainage, while an upward slope corresponds to
fluid infusion at the center. Note that the drainage or infusion at the center does not necessarily
imply that the particle as a whole is approaching or rebounding (more details in Fig. 3). We can
distinguish between drainage and infusion by defining t̂h min, the time wherein the central fluid gap
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FIG. 2. From top to bottom: (a) Central fluid gap width ĥ(0, t̂ ), (b) central coating deformation ŵ(0, t̂ ),
and (c) particle velocity v̂(t̂ ) during the collision of a spherical particle against a stratified, flat surface.
Stokes number and elasticity of the film are held constant at St = 5 and ε = 0.01. The four chosen thickness
parameters encompass the thin (T = 0.05), intermediate (T = 0.5), and thick (T = 5, 50) regimes for coating
thicknesses. The DSH and Reynolds limit for a half space and foundation, respectively, are included as dashed
lines. Arrows in (a) mark the first transition from fluid drainage to infusion at the center, while arrows in (c)
mark the first transition from the particle’s approach to rebound. Inset in (a): Pathway for fluid infusion into
the central gap for intermediate and thick coatings, T = 0.5 (left) and T = 50 (right), respectively. When the
deformation of the coating adopts a curvature similar to that of the particle, the narrowness of the fluid gap at
the sides determines the rate of fluid infusion into the gap.
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FIG. 3. (a) Comparison between the dimensionless velocity (solid line) of the sphere and the dimensionless
central gap (dashed line) for St = 5, ε = 0.01, and T = 50. The lag region (gray) is between t̂ν=0 and t̂h min.
Inset: t̂ν=0 and t̂h min for St = 5, ε = 0.01, and different thickness parameters. (b) Comparison between the
velocity of the sphere, the central coating deformation, and the central undeformed gap for St = 5, ε = 0.01,
and T = 0.05. The undeformed gap is adjusted by subtracting x̂eq so that it oscillates around the x axis.
Intersections between the central coating deformation (blue) and the x axis (black line) are marked with ri.
Inset: The first through sixth time t̂ each of the curves crossed the x axis.

is most narrow, indicated with the arrows in Fig. 2(a). Fluid drainage and infusion ooccur mostly
before and after t̂h min, respectively. There are two notable trends in Fig. 2(a): (1) The rate of central
fluid drainage decreases as T increases, and (2) t̂h min increases with T . The reason behind (1) is
that as the coating compliance increases with T , the increased deformation of the coating widens
the fluid gap, which in turn reduces the necessity for fluid drainage. (2) is a consequence of the
differences in velocity profiles in Fig. 2(c) discussed below.

Deceleration of the spherical particle is dependent on the size of the fluid gap. As the fluid
gap decreases, the lubrication pressure and hydrodynamic force increase within the interstitial gap.
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The hydrodynamic force opposes the motion of the sphere, resulting in the deceleration of the
particle, as shown in Fig. 2(c). As the coating compliance increases with T , the magnitude of the
coating deformation also increases, resulting in a wider fluid gap. Therefore, a wider fluid gap
decreases the hydrodynamic force, thereby reducing the rate of deceleration of the spherical particle.
Consequently, the particle can move toward the coating for a longer period of time, which increases
the time until the fluid gap is minimum t̂h min.

By aligning Figs. 2(a)–2(c) vertically, we can compare features among the three sets of curves.
For example, we define t̂ν=0 as the first time point wherein the velocity is zero, which we mark with
arrows in Fig. 2(c). For intermediate and thick coatings, the peak of coating deformation in Fig. 2(b)
closely corresponds to t̂ν=0 in Fig. 2(c). As the particle decelerates significantly and almost no longer
moves toward the soft coatings, the lubrication pressure starts to drop [Eq. (1)]; therefore the coating
will start to return to its uncompressed state, thereby decreasing the magnitude of the deformation.
On the other hand, t̂h min [arrows in Fig. 2(a)], which marks the transition from central fluid drainage
to infusion, does not correspond with any immediately observable feature in Figs. 2(b) and 2(c).
Specifically, t̂h min does not occur at the same time as t̂ν=0.

Restricted fluid infusion into the gap leads to a time lag between the transition from approach
to rebound (t̂ν=0) and the transition from central fluid drainage to infusion (t̂h min). In the elastic
half-space limit, for example, when T = 50, infusion begins at t̂h min ∼ 4, but at that time, both the
particle velocity and the coating deformation are already negative [Figs. 2(b) and 2(c)]. Therefore,
the spherical particle is closest to the coating when the particle is moving away. During the approach,
fluid drainage results in a narrow gap between the particle and coating that restricts infusion at a later
time. When the particle is moving away, the narrowness of the fluid gap caused by the curvature of
the deformation [inset of Fig. 2(a)] limits the rate of fluid infusion, especially the narrow fluid entry
at the edges. Since there is only a finite amount of fluid within the gap and limited fluid infusion
into the gap, the particle has to “pull” the soft coating along as it moves away, leading to an almost
parallel movement of two surfaces, and ultimately a negative deformation of the soft coating [as
illustrated in Fig. 1(b)]. Here, since T affects the compliance of the coating, increasing the coating
thickness thereby increases the magnitude of the troughs in Fig. 2(b) (i.e., the maximum distance
the particle can pull the soft coating). For a less compliant coating, since the particle can no longer
pull the coating before the particle can move away, the fluid has to slowly infuse back into the center
of the gap, which thereby limits the rebound velocity of the particle.

The limited fluid infusion into the gap creates a lag between the particle rebound and fluid
infusion at the center. For St = 5, ε = 0.01, and T = 50 (half space), the particle velocity v̂ = v/vo

is plotted alongside the fluid gap width in Fig. 3. The gray region starts from t̂ν=0 to t̂h min, thereby
spanning the entire time interval wherein central fluid infusion “lags” behind the particle rebound.
The inset shows t̂ν=0 and t̂h min for different thickness parameters, and the lag between the two,
also highlighted in gray, increases with thickness. For small T, such as T = 0.05 in Fig. 3, there
is no observable rebound behavior or fluid infusion. Then t̂v=0 ≈ t̂h min is the time wherein the
sphere simply stops. For T ∼ 0.1–10, the lag time difference increases, but eventually plateaus at
around T ∼ 10, as the coating thickness is sufficient to match the behavior of the half-space system.
Regardless of the thickness parameter, the timescale for elastic rebound is faster than that for fluid
infusion.

The dampened oscillations observed in Figs. 2(b) and 2(c) are similar to those observed by Salez
and Mahadevan for a cylinder rolling down a ramp with elastic coating [52]. Aside from the central
coating deformation [Fig. 2(b)] and velocity [Fig. 2(c)], the central undeformed gap x̂(0, t̂ ) also
oscillates, except unlike the prior two which tend toward zero as the oscillations dampen, the central
undeformed gap approaches some nonzero equilibrium position x̂eq. In Fig. 3(b) we superimpose
the three oscillating curves, ŵ(0, t̂ ), v̂(t̂ ), and x̂(0, t̂ ) − x̂eq, for St = 5, ε = 0.01, and t = 0.05. The
five arrows labeled ri indicate the ith point where the central deformation (blue curve) crosses the
x axis. If the central deformation curve were sinusoidal, the distance between two consecutive ri

would be half the period of the wave. The inset shows the times t̂ when each of the three curves
crosses the x axis from the first through sixth time. From the inset we note that the three curves share
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FIG. 4. Hydrodynamic forces during the sphere’s approach and rebound. Stokes number and film elasticity
are held constant at St = 5 and ε = 0.01 while the thickness is changed. Inset: The peak force and the peak
stored elastic energy as a function of the coating thickness T.

a similar period of oscillation. How the oscillations vary with Stokes number, elasticity parameter
or thickness, or their quantitative predictions are not within the scope of our analysis but would be
an interesting topic for future work.

B. Energy analysis

In the previous section, we described the fluid gap and the elastic deformation of the coating at
the line of symmetry of the spherical particle. This section focuses on the hydrodynamic forces and
macroscopic energy balances during the approach and rebound. The objective is to understand how
stratification affects energy dissipation during bouncing.

The thickness parameter affects the scaling of hydrodynamic forces and elastic potential energy.
Figure 4 compares the hydrodynamic force, calculated from Eq. (11), for St = 5, ε = 0.01, and
different thickness parameters. The peak hydrodynamic force and the peak stored potential energy
in the coating for different thickness parameters are shown in the inset. We calculate the stored
elastic potential energy of the coating using Eq. (12):

Êp(t̂ ) = 2π

∫ 0.1
√

a/x0

0
p̂(r̂, t̂ ) · ŵ(r̂, t̂ )r̂d r̂. (12)

The upper integration limit was based on our mesh boundaries. When we extend the integration
limit from 0.1

√
a/x0 to

√
a/x0, the difference in Êp is <0.1% because the deformation term in the

integral is negligible for large r̂.
For all thicknesses the hydrodynamic force reaches a maximum (F̂max) during the approach.

As T increases the maximum in the hydrodynamic force occurs later and its magnitude decreases
(see Fig. 4). The hydrodynamic force scales directly with the velocity of the spherical particle
and inversely with the dimension of the fluid gap between the particle and the coating. As noted
in the previous section, coatings with larger thickness parameters are more compliant. Thus,
the lubrication pressure from the particle’s motion generates a larger deformation in the coating
with larger thickness parameter. The larger deformation increases the gap size and decreases the
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FIG. 5. (a) The particle’s kinetic energy (blue dashed line), the coating’s stored elastic potential energy
(red dot dashed line), and cumulative energy dissipated into the fluid (black solid line) for T = 50. The gray and
white areas denote the viscous- and elastic-dominated regime, respectively. The Stokes number and elasticity
are fixed at St = 5 and ε = 0.01. (b) The rate of energy dissipation into the fluid as a function of fluid gap for
different thickness parameters. Inset: The time evolution of dissipated energy for different coating thicknesses.

hydrodynamic force. Consequently, the particle decelerates more slowly and takes longer to reach
the peak hydrodynamic force, as we observe in Fig. 4. Additionally, the elastic potential energy
stored in the coating, as shown in the inset, unsurprisingly increases with T as the magnitude of
coating deformation ŵ becomes larger for thicker film, especially at the center [Fig. 2(b)].

In the remainder of this section, we discuss the mathematical basis for elastohydrodynamic
rebound. Initially, the spherical particle has a finite velocity and kinetic energy and both decrease
during the approach toward the soft surface due to the hydrodynamic resistance originating from
lubrication pressure. Figure 5(a) below shows the kinetic energy of the particle and the stored elastic
potential energy of the coating for St = 5, ε = 0.01, and T = 50. The stored elastic potential energy
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is calculated using Eq. (12) above, while the particle’s kinetic energy is calculated using Eq. (13)
below:

Êk = v̂2. (13)

The kinetic energy will reach zero at t̂ = t̂v=0, marked in Fig. 5(a). At this time, although the
kinetic energy is zero, there is elastic potential energy when the coating is deformed. Note that the
elastic potential energy peaks before the kinetic energy reaches zero. This is because the relaxation
of the coating drives further fluid drainage and generates a lubrication pressure. The hydrodynamic
force from the lubrication pressure pushes the spherical particle away from the coating. The kinetic
energy is zero when the sphere transitions between approach and rebound. However, as the fluid gap
increases between the sphere and the coating, there is a transition from fluid drainage to infusion.
From the lubrication equation, the lubrication pressure will be negative (relative to the surrounding
fluid pressure). Consequently, the hydrodynamic force is directed downward, pushing the sphere
toward the coated surface again, albeit with less momentum. The oscillations observed in Fig. 5(a)
originate from the conversion of kinetic energy from the sphere into hydrodynamic force, then into
elastic potential energy, and vice versa. The details of this energy conversion process as the basis
for elastohydrodynamic bouncing are discussed by Davis et al. in greater detail (see Ref. [18]).

Although the kinetic energy of the particle is converted into stored elastic potential energy
of the soft coating and vice versa, we must also consider nonconservative forces that decrease
the efficiency of transfer between these two forms of energy. Similar to a “dry” collision where
some energy is transformed into heat in the collision process, in an elastohydrodynamic collision,
even without contact, the energy is lost through viscous dissipation during fluid drainage and
infusion. The dampening of the oscillations in Fig. 5(a) reflects this energy loss through viscous
dissipation. We can track the total amount of energy dissipated into the fluid, Ŵ , through an energy
balance:

Ŵ = 1 − Êk − Êp. (14)

The energy dissipated Ŵ is also shown in Fig. 5(a). Leroy and Charlaix [32] describe the
elastohydrodynamic interactions of an oscillating, spherical indenter some distance away from an
elastic surface using two different regimes: the viscous and elastic regimes. In a viscous-dominated
regime, most of the kinetic energy is irreversibly lost through viscous dissipation. The elastic-
dominated regime, in contrast, denotes an efficient transfer from kinetic energy to elastic potential
energy, and vice versa, with minimal energy dissipation into the fluid. In Fig. 5(a), the particle–soft
coating interaction transitions from a viscous-dominated regime (gray) to an elastic-dominated
regime (t̂ ∼ 2 − 3) to an intermediate between the two. The viscous regime is characterized by
rapid energy dissipation (Ŵ ) through viscous forces, while the elastic regime has little to no energy
dissipation, as evidenced by the plateaus of the Ŵ curve in Fig. 5(a). The width of the fluid gap
is one of the factors that determine which regime dominates at a given time [32]. When the fluid
gap is large, the resistance to fluid drainage is low. Consequently, the lubrication pressure is lower
and the coating will deform less. In this regime, the kinetic energy primarily drives fluid drainage,
and the interaction is viscous dominated. As the fluid gap decreases, however, the resistance to
fluid drainage is much higher, lubrication pressure increases, and the coating will deform more.
As a result, the interaction becomes elastic dominated, and most of the particle’s remaining kinetic
energy is translated into elastic potential energy, similar to an out-of-contact indentation [36], which
is what is observed in Fig. 5(a).

Another factor that determines the relative importance of the elastic- or viscous-dominated
regimes is the thickness parameter. Figure 5(b) shows the rate of energy dissipation (dŴ /dt̂) at
different fluid gap separations, while the particle is approaching the soft coating. As the particle
approaches the surfaces, we see that the rate of viscous dissipation increases, and reaches a
maximum and then decreases. The decrease after the maximum indicates the transition from
viscous-dominated to elastic-dominated regimes also shown in Fig. 5(a) for the limit of an elastic
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half space. The curves in Fig. 5(b) clearly show that even at identical fluid gaps the rate of
viscous dissipation is higher as the coating thickness decreases. We also see that the transition
from viscous-dominated to elastic-dominated regimes shifts to smaller fluid gap distance when the
coating thickness decreases. Furthermore, for thin coatings (T = 0.05, T = 0.1), the approach is
only viscous dominated. In this case, dŴ /dt̂ will only approach zero when the particle has come to a
complete stop. This can be verified by the inset, where the energy dissipation immediately increases
from 0 to 1 without reaching a plateau at an intermediate value. The reason smaller thickness
parameters increase the rate of energy dissipation is that thinner coatings are less compliant and
thus cannot store as much potential energy through deformation, so the kinetic energy is lost through
viscous dissipation during the approach.

In summary, we observe that the decrease in compliance caused by stratification increases the
viscous dissipation during the collision process (when compared to collisions with an elastic half
space of the same elasticity).

C. Critical Stokes number and effective elasticity

We expand our investigation to the effect of coating thickness on the critical Stokes number
Stc, defined as the minimum Stokes number for which the particle will rebound away from the
coated surface after a collision. Previous theoretical and experimental work on particle rebound
demonstrated that surface asperities on the spherical particle or on the substrate allow for physical
contact during an elastohydrodynamic collision [24,53,54]. After physical contact is reached, the
motion of the particle away from the contact point can be defined as rebound. In the absence
of physical contact, as investigated here, the scaling argument can be used to predict rebound.
For example, in their work with particles impacting an elastic half space, Davis et al. used the
condition of x(0, t ) > w(0, t ) as their criterion for sticking to determine Stc [20]. If at any time
the undeformed gap at the center was smaller than the elastic deformation, their predicted outcome
was defined as rebound. However, in our case, using a rebound criterion that depends only on the
central deformation would lead to errors because the thickness parameter affects the morphology
of the deformation profile beyond just the deformation at the centerpoint. See, for example, the
inset of Fig. 6, where we compare the deformation profile of coatings for St = 5, ε = 0.01 of
varying thickness parameters at a selected time t̂ . We select the time t̂ such that the magnitude
of the deformation at the center is similar for all [to emphasize the effect of stratification on
the deformation profile, ŵ(r̂, t̂ )]; therefore the time t̂ is different for different T. (Note that the
undulations observed for T = 0.5 and T = 1.0 are not artifacts of the simulations. In our prior work
we directly measured the deformation profile through interferometry and showed the formation of
“wimples” or double dimples as those shown in Fig. 6(a) [36].) As the thickness parameter increases,
we find that the deformation profile is broader, so more elastic potential energy is available to
transform back into kinetic energy for rebound, even if the central deformation is nearly identical.
Thus, even after normalizing the central deformation, rebound is more likely to occur if the thickness
parameter is larger. This variation is not encompassed by the criterion of Davis et al. for the elastic
half space. Instead, we propose an alternative rebound criterion that encompasses different thickness
parameters: v̂r > 0.05, where v̂r is the absolute value of the maximum velocity of the particle
moving away from the coating.

We plot all our data points that were close to the criterion of Davis et al. for rebound in Fig. 6(a).
The horizontal dashed line x̂/ŵ = 1 is their stick-rebound criterion for a half-space model. We
selected our stick-rebound criterion for all coating thicknesses as the black vertical dashed line v̂r =
0.05 to minimize the differences of our stick-rebound predictions with that of Davis et al. From our
criterion, quadrants I and IV are rebound outcomes while quadrants II and III are sticking outcomes.
Meanwhile, if we apply their criterion regardless of thickness parameter, quadrants III and IV are
rebound outcomes while I and II are sticking outcomes. Most of the results fall within quadrants
II and IV regardless of thickness parameter, which shows good consistency between our criterion
and that of Davis et al. However, several points fall within quadrant III, most of which are situations
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FIG. 6. (a) Comparison between the rebound criterion of Davis et al. [20]. (horizontal dotted line)
and our own (vertical dashed line). Data points are selected from simulation results with St = 1 − 7, ε =
0.0001 − 0.01, T = 0.05 − 50 close to the rebound criteria and plotted against the ratio of central undeformed
gap (x̂) to deformation (ŵ) and the maximum rebound velocity (v̂r). Red markers indicate small thickness
parameters (T < 1) while blue markers indicate larger thickness parameters. Based on the criterion of Davis
et al., quadrants I and II result in sticking while III and IV result in rebound. Based on our criterion, quadrants
II and III result in stick while I and IV are rebound. Inset of (a): Cross section of coating deformation for
different thicknesses parameters. The time when the deformation is captured is selected specifically to ensure
the magnitude of deformation at the center is similar for all T . (b) The maximum rebound velocity (v̂r) for
various Stokes numbers and thickness parameters. Here v̂r = vr/v0 can be interpreted as a wet coefficient of
restitution. From bottom to top: T = 0.1, 0.5, 1.0, 5.0, 10, and 50. Elasticity parameter was constant at 0.01.
Condition for rebound was set to be a maximum rebound velocity of 0.05 (blue dashed line).

with thickness parameters T � 0.1, indicated with red markers. As mentioned earlier, even when the
central deformation is similar, the likelihood of rebound decreases as coating thickness decreases.
As such, the criterion of Davis et al. would “overestimate” the rebound for conditions with small
thickness parameters, like in quadrant III.
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Our proposed rebound criterion allows particles that move a small distance away from the coating
after the collision to be considered a nonrebound result. We estimate this distance to be small; we
obtain an upper limit of “bouncing” distance for all St = 1−10, ε = 0.0001−0.01, and T = 0.5–50
surfaces to be 0.015. To give this distance some context, if we consider the sphere to have a radius
no more than 0.5 cm, the coating to have a Poisson’s ratio of 0.5, and an elastic modulus between
30 kPa and 5 MPa, the dimensional upper limit of the rebound distance is 100 nm, which is in most
cases comparable to or less than the scaling of surface roughness.

Figure 6(b) shows the maximum rebound velocity v̂r for different Stokes numbers and coating
thicknesses. Note here that v̂r can be interpreted as the wet coefficient of restitution (COR = v̂r =
vr/v0) [20], except that here the particle is always submerged. As the Stokes number increases,
v̂r first remains nearly constant at a value near to zero before increasing nonlinearly. However,
unless there is energy transformation—such as from rotational or chemical to kinetic energy—
of which there is none within our conditions, we expect that v̂r will not exceed 1. The low Re
prerequisite limits the range of Stokes numbers that we can test, so we cannot capture the asymptotic
behavior of the curve. Nevertheless, we do observe that the curves for rebound velocity for any
intermediate thickness are strictly bounded between those of thicker and thinner coatings. Using the
rebound criterion v̂r introduced above, we find the critical Stokes number for different elasticities
and thickness parameters.

Prior work by Davis et al. [20] and Lian et al. [39] relates the Stc of a half space linearly
to ln(1/ε). Using our rebound criterion, we solve numerically for the critical Stokes number for
combinations of elasticities between 0.000 01 and 0.05 and coating thicknesses between 0.1 and 50.
For each value of the thickness parameter, we observe similar linear relationships between Stc and
ln(1/ε), as shown in Fig. 7(a). For a coating thickness of 50, which is mechanically equivalent to an
elastic half space, we find that Stc = 0.64 ln(1/ε) − 0.89. The difference in our equation compared
to those of Davis et al. Stc = 0.40 ln(1/ε) − 0.20 and Lian et al., Stc = 0.52 ln(1/ε) − 1.67, is due
to the rebound criterion used. Compared to the other two Stc equations, ours will yield slightly
higher values of Stc for the same elasticity parameter.

In Fig. 7(a), we also show that the linear relationship between Stc and ln(1/ε) holds for thin and
intermediate coatings just like the case of the half space, but with different slope and y intercept of
the line. Also shown are the prediction from Davis et al. [20] and Lian et al. [39] for comparison.
From the variation in slope, we observe that coating thickness moderates the sensitivity of the critical
Stokes number to elasticity. In other words, for the same change in elasticity, the critical Stokes
number of a thinner coating will change less than a thicker coating. Similarly, for the same change
in the thickness parameter, the critical Stokes number will change more significantly when ln(1/ε)
is smaller; i.e., the coating material is softer. The reason for both of these trends is the sensitivity of
compliance to both ε and T . Large changes in ε will result in smaller changes in compliance when
T is small, and vice versa.

To further quantify the role of coating thicknesses on critical Stokes number Stc, we summarize
our results in Fig. 7(a) for intermediate to thick coating thickness T and rewrite the equation for the
critical Stokes number in the form

Stc = α(T ) ln

(
1

ε

)
+ β(T ). (15)

Note that α(T ) and β(T ) are sole functions of coating thickness (geometrical constraint) which is
fully decoupled from the material property in Eq. (15). To obtain the functional forms for α(T ) and
β(T ) for Eq. (15), 250 trials with T = 0.1∼50 were fitted using MATLAB’S CFTOOL. For β(T ) we
interpolate the numerical results to the (unphysical) limit of ln(1/ε) = 0 [shown in dashed lines in
Fig. 7(a)]. The only limitation was that α(T ) and β(T ) approach the thick coating asymptotic value
of α(∞) = 0.64 and β(∞) = −0.89, respectively. Negative values for β(∞) have been predicted
by others [20,39]. Within the parameter space investigated here (ε < 0.01), the negative values for
β never lead to negative Stc. It is possible that Eq. (15) would no longer be linear for values of
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FIG. 7. (a) Critical Stokes Stc as a linear function of ln(1/ε) for different thickness parameters. From top
to bottom, T = 0.1, 0.5, 1, 5, 10, 50. Also shown are the predictions from Davis et al. [18] and Lian et al.
[37] for comparison. Dashed lines are extrapolated from a linear fit of the data at ln(1/ε) � 2. (b) Slope α

[Eq. (16)] and y intercept β [Eq. (17)] of the Stc equation [Eq. (15)], as functions of the thickness parameter T .
The circular and triangular markers are values of slope and y intercept, respectively, from Fig. 8(a), while the
dotted lines are curve fits generated using MATLAB CFTOOL.

the elasticity parameter beyond the range investigated in our work. The resulting curve fits are as
follows:

α(T ) = 0.64

1 + 0.19T −0.91
, (16)

β(T ) = 4.76 − 5.65

1 + 0.27T −1.24
. (17)

The two equations are a good fit for the α(T ) and β(T ) data points, as shown in Fig. 7(b) above.
At intermediate thickness parameters, 0.1 < T < 1, the values of α(T ) and β(T ) are increasing and
decreasing, respectively. Increasing α(T ) corresponds to an increased sensitivity of Stc in response
to changes in elasticity. Both curves begin to plateau at T > 10, where the thickness parameter is
significantly large to be comparable to an elastic half space. On the other hand, since there was
limited data for rebound in thin coating parameter conditions T < 0.1, the behavior of Eqs. (16)
and (17) in that region are not accurate. In the theoretical limiting case of an extremely thin coating
T → 0, the compliance of the coating is essentially that of the rigid substrate regardless of the

084305-17



TAN, WANG, AND FRECHETTE

elasticity of the coating. We would expect that under those conditions, the Stc is insensitive to
changes in the elasticity parameter, so α(0) = 0, which is satisfied by Eq. (16). On the other hand,
the extremely thin coating, which will be as noncompliant as the rigid substrate, will not be able
to deform and store elastic potential energy. Thus, assuming that there are no surface asperities on
the particle, all the kinetic energy of the particle will be dissipated through fluid drainage, and there
will not be any rebound. There is no value of St that can cause the particle to rebound away from
the coating, so theoretically, β(0) = ∞. This is not the case in Eq. (17), where the asymptotic value
of β as T → 0 is 4.76. The consequence of this is that our equation would underestimate the value
of Stc for thin coatings.

In the next sections, we propose an effective elasticity parameter that combines both thickness
and elasticity parameters to predict Stc. The rationale is that a coating of some thickness and
elasticity parameters might behave similarly to a different coating with another set of thickness
and elasticity parameters. The linearity of Eq. (15) allows us to solve for different pairs of elasticity
and coating thickness that yield the same critical Stokes number. As long as α(T ) is nonzero, then
for every Stc, there are infinitely many pairs of ε and T that will satisfy the equation. For the unique
case that the coating is a half space (T ∼ ∞), we define the elasticity that yields that specific Stc to
be the “effective” elasticity ε′. The effective elasticity is defined such that a soft coating with some
finite thickness and elasticity will have the same critical Stokes number as a half space of that given
effective elasticity. It is important to remember that other than the Stc, the finite coating thickness
system and the effective elasticity half-space system will not share similar deformation profiles,
drainage time, separation, or other variables. However, there is still merit to relying on an effective
elasticity for the Stc since for large-scale collision models and simulations, Stc is one of the most
important parameters as it can be used to calculate the postcollision rebound velocity of particles
rapidly.

To solve for the effective elasticity for any pair of ε and T, we rearrange Eq. (15) as

ε′ = εα′(T ) exp[β ′(T )], (18)

where α′(T ) = α(T )/α(∞) and β ′(T ) = [β(∞) − β(T )]/α(∞). As noted previously, for a half
space, the slope α(∞) and intercept β(∞) are 0.64 and –0.89, respectively. The same limitations
for Eqs. (16) and (17) also hold here, specifically the loss of accuracy for T < 0.1.

Figure 8(a) shows a contour plot that shows pairs of the thickness and elasticity parameters that
yield the same effective elasticity parameter based on Eq. (18). The effective elasticity increases
with coating thickness or elasticity. Note that above a certain coating thickness, around T ∼ 10 or
so, the effective elasticity no longer changes with T . Beyond that point, ε′ ∼ ε, and the thickness
parameter is large enough to be equivalent to a half space. However, the exact value of T past which
the effective elasticity no longer changes is not constant. As shown in Fig. 8(a), as the elasticity
parameter increases, that half-space approximation T threshold increases as well. This changing
threshold would be of significance to determine whether it is valid to assume that a given coating is
thick enough to be treated as an elastic half space.

We verify our equation for the effective elasticity against data from 250 simulations with different
Stokes number, elasticity, and coating thickness parameters. For each unique triplet St, ε′, and T ,
we calculate the effective elasticity ε′ and verify if the rebound velocity is above the threshold for
bouncing. First, since the elasticity of a half space is equivalent to its effective elasticity, Eq. (18)
below shows the critical Stokes number as a function of effective elasticity.

Stc = 0.64 ln

(
1

ε′

)
− 0.89. (19)

Figure 8(b) includes this line to separate the bouncing and sticking outcomes. Then in Fig. 8(b),
we assign a different marker depending on whether or not the results of the simulation for the
(St, ε′) pair matched the rebound criterion. If the result matched the criterion, a red circular marker
was assigned, with a filled marker indicating a sticking outcome, and an empty marker indicating a
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FIG. 8. (a) Contour plot showing the effective elasticity (ε′) for different T and ε values. Every point on the
same contours indicates that this combination of T and ε yields the same effective elasticity value, indicated
in red at the upper portion of the figure. (b) Verification of proposed effective elasticity formula. Results from
trials with different combinations of Stokes number and effective elasticity are shown with different markers.
The red filled circular markers and the red empty circular markers denote sticking and rebound outcomes,
respectively, in the data sets, both of which match our rebound criterion. The blue “×” markers denote data
that do not fit the stick-rebound criterion proposed.

rebound outcome. On the other hand, if the result did not match the criterion, a blue “×” marker was
assigned to the data point. From Fig. 8(b), for most combinations of (St, ε′), Eq. (19) separates the
sticking cases and the bouncing cases successfully, meaning that it can be used directly to determine
whether the particle will stick or rebound. For an experimental design with combination of coating
thickness and material property, one can simply use Eq. (18) to calculate the effective elasticity, and
use Eq. (19) to find the critical Stokes number—the minimum Stokes number needed for a rebound
to occur. However, we observe that a large cluster of data points on the upper-right corner did not
match the stick-rebound criterion. In fact, when ln(1/ε′) > 10, all the data points indicate that the
particle did not rebound. The cluster of data points not captured by the effective elasticity is due
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to the choice of β(T ). In the limit of T → 0, β(T ) should approach infinity so that the effective
elasticity approaches zero (equivalent to a rigid half space). However, since our arbitrary choice of
β(T ) does not reach infinity, the effective elasticity is less accurate when T < 0.1. To address this,
we can modify the stick-rebound criterion in Eq. (19) to also include this additional restriction.

IV. CONCLUSIONS

We rescaled the equations governing the elastohydrodynamic collision of a rigid sphere against
a rigid, planar substrate with a soft incompressible coating of finite thickness. The rescaling showed
that an additional thickness parameter is also necessary to describe the collisions (besides the
Stokes number and elasticity parameter that were already previously employed). The thickness
parameter was shown to affect the degree to which the compliance of the soft coating was similar
to that of the rigid substrate. We then developed bouncing criteria for the stratified substrate,
characterized by the critical Stokes number (Stc). We find that Stc decreases when either the
thickness parameter increases, or the elasticity parameter decreases. We then obtain a closed form
correction for an effective elasticity that accounts for the effect of stratification for the Stc. The
correction can be employed along existing classic scaling of Stc, without the need of full numerical
simulations. By coupling thickness and elasticity parameters into effective elasticity, the original
elastohydrodynamic bouncing problem is simplified as the dependency on three dimensionless
parameters is reduced to only two (St and ε). The method we developed in this article can be used
to improve the accuracy of large-scale multiparticle simulations, which are currently limited to the
dichotomous “hard sphere” or “soft sphere” types of particles, with no option for stratified materials.
We also provide regime maps that can be employed to predict rebound or sticking after normal
collisions. These different regimes are crucial for understanding some non-Newtonian behavior of
highly concentrated particulate systems [42,43].
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potential studies of colloid, polyelectrolyte and protein deposition, Adv. Colloid Interface Sci. 153, 1
(2010).

[2] C. B. Solnordal, Y. W. Chong, and J. Boulanger, An experimental and numerical analysis of erosion
caused by sand pneumatically conveyed through a standard pipe elbow, Wear 336-337, 43 (2015).

[3] R. A. Bagnold, Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under
shear, Proc. R. Soc. London 225, 49 (1954).

[4] H. M. Jaeger, S. R. Nagel, and R. P. Behringer, Granular solids, liquids, and gases, Rev. Mod. Phys. 68,
1259 (1996).

[5] Y. M. Chen, Recent advances in FCC technology, Powder Technol. 163, 2 (2006).
[6] M. P. Dudukovic, Frontiers in reactor engineering, Science 325, 698 (2009).
[7] C. T. Yavuz, A. Prakash, J. T. Mayo, and V. L. Colvin, Magnetic separations: From steel plants to

biotechnology, Chem. Eng. Sci. 64, 2510 (2009).

084305-20

https://doi.org/10.1016/j.cis.2009.09.004
https://doi.org/10.1016/j.cis.2009.09.004
https://doi.org/10.1016/j.cis.2009.09.004
https://doi.org/10.1016/j.cis.2009.09.004
https://doi.org/10.1016/j.wear.2015.04.017
https://doi.org/10.1016/j.wear.2015.04.017
https://doi.org/10.1016/j.wear.2015.04.017
https://doi.org/10.1016/j.wear.2015.04.017
https://doi.org/10.1098/rspa.1954.0186
https://doi.org/10.1098/rspa.1954.0186
https://doi.org/10.1098/rspa.1954.0186
https://doi.org/10.1098/rspa.1954.0186
https://doi.org/10.1103/RevModPhys.68.1259
https://doi.org/10.1103/RevModPhys.68.1259
https://doi.org/10.1103/RevModPhys.68.1259
https://doi.org/10.1103/RevModPhys.68.1259
https://doi.org/10.1016/j.powtec.2006.01.001
https://doi.org/10.1016/j.powtec.2006.01.001
https://doi.org/10.1016/j.powtec.2006.01.001
https://doi.org/10.1016/j.powtec.2006.01.001
https://doi.org/10.1126/science.1174274
https://doi.org/10.1126/science.1174274
https://doi.org/10.1126/science.1174274
https://doi.org/10.1126/science.1174274
https://doi.org/10.1016/j.ces.2008.11.018
https://doi.org/10.1016/j.ces.2008.11.018
https://doi.org/10.1016/j.ces.2008.11.018
https://doi.org/10.1016/j.ces.2008.11.018


CRITERION FOR PARTICLE REBOUND DURING WET …

[8] Y. Lu, Z. Huang, R. Hoffmann, L. Amundsen, and H. S. Fogler, Counterintuitive effects of the oil flow
rate on wax deposition, Energy Fuels 26, 4091 (2012).

[9] K. S. Soppimath, T. M. Aminabhavi, A. R. Kulkarni, and W. E. Rudzinski, Biodegradable polymeric
nanoparticles as drug delivery devices, J. Controlled Release 70, 1 (2001).

[10] D. A. Fedosov, W. Pan, B. Caswell, G. Gompper, and G. E. Karniadakis, Predicting human blood viscosity
in silico, Proc. Natl. Acad. Sci. USA 108, 11772 (2011).

[11] Y. Li and E. Kumacheva, Hydrogel microenvironments for cancer spheroid growth and drug screening,
Sci. Adv. 4, eaas8998 (2018).

[12] F. Wu, S. Chen, B. Chen, M. Wang, L. Min, J. Alvarenga, J. Ju, A. Khademhosseini, Y. Yao, Y. S. Zhang
et al., Bioinspired universal flexible elastomer-based microchannels, Small 14, 1702170 (2018).

[13] A. Pandey, S. Karpitschka, C. H. Venner, and J. H. Snoeijer, Lubrication of soft viscoelastic solids,
J. Fluid Mech. 799, 433 (2016).

[14] J. H. Snoeijer, Analogies between elastic and capillary interfaces, Phys. Rev. Fluids 1, 060506 (2016).
[15] Y. Wang, G. A. Pilkington, C. Dhong, and J. Frechette, Elastic deformation during dynamic force

measurements in viscous fluids, Curr. Opin. Colloid Interface Sci. 27, 43 (2017).
[16] Y. Wang, C. Dhong, and J. Frechette, Out-of-Contact Elastohydrodynamic Deformation Due to Lubrica-

tion Forces, Phys. Rev. Lett. 115, 248302 (2015).
[17] P. Gondret, M. Lance, and L. Petit, Bouncing motion of spherical particles in fluids, Phys. Fluids 14, 643

(2002).
[18] R. H. Davis, J.-M. Serayssol, and E. J. Hinch, The elastohydrodynamic collision of two spheres, J. Fluid

Mech. 163, 479 (1986).
[19] G. Barnocky and R. H. Davis, Elastohydrodynamic collision and rebound of spheres: Experimental

verification, Phys. Fluids 31, 1324 (1988).
[20] R. H. Davis, D. A. Rager, and B. T. Good, Elastohydrodynamic rebound of spheres from coated surfaces,

J. Fluid Mech. 468, 107 (2002).
[21] K. Apostolou and A. N. Hrymak, Discrete element simulation of liquid-particle flows, Comput. Chem.

Eng. 32, 841 (2008).
[22] H. P. Zhu, Z. Y. Zhou, R. Y. Yang, and A. B. Yu, Discrete particle simulation of particulate systems: A

review of major applications and findings, Chem. Eng. Sci. 63, 5728 (2008).
[23] P. Gondret, E. Hallouin, M. Lance, and L. Petit, Experiments on the motion of a solid sphere toward a

wall: From viscous dissipation to elastohydrodynamic bouncing, Phys. Fluids 11, 2803 (1999).
[24] G. G. Joseph, R. Zenit, M. L. Hunt, and A. M. Rosenwinkel, Particle–wall collisions in a viscous fluid,

J. Fluid Mech. 433, 329 (2001).
[25] G. G. Joseph and M. L. Hunt, Oblique particle-wall collisions in a liquid, J. Fluid Mech. 510, 71 (2004).
[26] R. Zenit and M. L. Hunt, Mechanics of immersed particle collisions, J. Fluids Eng. 121, 179 (1999).
[27] T. Müller and K. Huang, Influence of the liquid film thickness on the coefficient of restitution for wet

particles, Phys. Rev. E 93, 042904 (2016).
[28] T. Chastel, P. Gondret, and A. Mongruel, Texture-driven elastohydrodynamic bouncing, J. Fluid Mech.

805, 577 (2016).
[29] H. Ow, D. R. Larson, M. Srivastava, B. A. Baird, W. W. Webb, and U. Wiesner, Bright and stable core-

shell fluorescent silica nanoparticles, Nano Lett. 5, 113 (2005).
[30] K. Volk, J. P. S. Fitzgerald, M. Retsch, and M. Karg, Time-controlled colloidal superstructures: Long-

range plasmon resonance coupling in particle monolayers, Adv. Mater. 27, 7332 (2016).
[31] T. J. Baudouin Saintyves, T. Salez, and L. Mahadevan, Self-sustained lift and low friction via soft

lubrication, Proc. Natl. Acad. Sci. USA 113, 5847 (2016).
[32] S. Leroy and E. Charlaix, Hydrodynamic interactions for the measurement of thin film elastic properties,

J. Fluid Mech. 674, 389 (2011).
[33] F. Restagno, E. Martinot, R. Villey, S. Leroy, C. Poulard, E. Charlaix, and L. Léger, Sensing the

mechanical properties of supported micro-to nano-elastic films, in Handbook of Nanomaterials Properties
(Springer, Berlin, Heidelberg, 2014), pp. 575–614.

[34] N. Balmforth, C. Cawthorn, and R. Craster, Contact in a viscous fluid. Part 2. A compressible fluid and
an elastic solid, J. Fluid Mech. 646, 339 (2010).

084305-21

https://doi.org/10.1021/ef3002789
https://doi.org/10.1021/ef3002789
https://doi.org/10.1021/ef3002789
https://doi.org/10.1021/ef3002789
https://doi.org/10.1016/S0168-3659(00)00339-4
https://doi.org/10.1016/S0168-3659(00)00339-4
https://doi.org/10.1016/S0168-3659(00)00339-4
https://doi.org/10.1016/S0168-3659(00)00339-4
https://doi.org/10.1073/pnas.1101210108
https://doi.org/10.1073/pnas.1101210108
https://doi.org/10.1073/pnas.1101210108
https://doi.org/10.1073/pnas.1101210108
https://doi.org/10.1126/sciadv.aas8998
https://doi.org/10.1126/sciadv.aas8998
https://doi.org/10.1126/sciadv.aas8998
https://doi.org/10.1126/sciadv.aas8998
https://doi.org/10.1002/smll.201702170
https://doi.org/10.1002/smll.201702170
https://doi.org/10.1002/smll.201702170
https://doi.org/10.1002/smll.201702170
https://doi.org/10.1017/jfm.2016.375
https://doi.org/10.1017/jfm.2016.375
https://doi.org/10.1017/jfm.2016.375
https://doi.org/10.1017/jfm.2016.375
https://doi.org/10.1103/PhysRevFluids.1.060506
https://doi.org/10.1103/PhysRevFluids.1.060506
https://doi.org/10.1103/PhysRevFluids.1.060506
https://doi.org/10.1103/PhysRevFluids.1.060506
https://doi.org/10.1016/j.cocis.2016.09.009
https://doi.org/10.1016/j.cocis.2016.09.009
https://doi.org/10.1016/j.cocis.2016.09.009
https://doi.org/10.1016/j.cocis.2016.09.009
https://doi.org/10.1103/PhysRevLett.115.248302
https://doi.org/10.1103/PhysRevLett.115.248302
https://doi.org/10.1103/PhysRevLett.115.248302
https://doi.org/10.1103/PhysRevLett.115.248302
https://doi.org/10.1063/1.1427920
https://doi.org/10.1063/1.1427920
https://doi.org/10.1063/1.1427920
https://doi.org/10.1063/1.1427920
https://doi.org/10.1017/S0022112086002392
https://doi.org/10.1017/S0022112086002392
https://doi.org/10.1017/S0022112086002392
https://doi.org/10.1017/S0022112086002392
https://doi.org/10.1063/1.866725
https://doi.org/10.1063/1.866725
https://doi.org/10.1063/1.866725
https://doi.org/10.1063/1.866725
https://doi.org/10.1017/S0022112002001489
https://doi.org/10.1017/S0022112002001489
https://doi.org/10.1017/S0022112002001489
https://doi.org/10.1017/S0022112002001489
https://doi.org/10.1016/j.compchemeng.2007.03.018
https://doi.org/10.1016/j.compchemeng.2007.03.018
https://doi.org/10.1016/j.compchemeng.2007.03.018
https://doi.org/10.1016/j.compchemeng.2007.03.018
https://doi.org/10.1016/j.ces.2008.08.006
https://doi.org/10.1016/j.ces.2008.08.006
https://doi.org/10.1016/j.ces.2008.08.006
https://doi.org/10.1016/j.ces.2008.08.006
https://doi.org/10.1063/1.870109
https://doi.org/10.1063/1.870109
https://doi.org/10.1063/1.870109
https://doi.org/10.1063/1.870109
https://doi.org/10.1017/S0022112001003470
https://doi.org/10.1017/S0022112001003470
https://doi.org/10.1017/S0022112001003470
https://doi.org/10.1017/S0022112001003470
https://doi.org/10.1017/S002211200400919X
https://doi.org/10.1017/S002211200400919X
https://doi.org/10.1017/S002211200400919X
https://doi.org/10.1017/S002211200400919X
https://doi.org/10.1115/1.2821999
https://doi.org/10.1115/1.2821999
https://doi.org/10.1115/1.2821999
https://doi.org/10.1115/1.2821999
https://doi.org/10.1103/PhysRevE.93.042904
https://doi.org/10.1103/PhysRevE.93.042904
https://doi.org/10.1103/PhysRevE.93.042904
https://doi.org/10.1103/PhysRevE.93.042904
https://doi.org/10.1017/jfm.2016.580
https://doi.org/10.1017/jfm.2016.580
https://doi.org/10.1017/jfm.2016.580
https://doi.org/10.1017/jfm.2016.580
https://doi.org/10.1021/nl0482478
https://doi.org/10.1021/nl0482478
https://doi.org/10.1021/nl0482478
https://doi.org/10.1021/nl0482478
https://doi.org/10.1002/adma.201503672
https://doi.org/10.1002/adma.201503672
https://doi.org/10.1002/adma.201503672
https://doi.org/10.1002/adma.201503672
https://doi.org/10.1073/pnas.1525462113
https://doi.org/10.1073/pnas.1525462113
https://doi.org/10.1073/pnas.1525462113
https://doi.org/10.1073/pnas.1525462113
https://doi.org/10.1017/S0022112010006555
https://doi.org/10.1017/S0022112010006555
https://doi.org/10.1017/S0022112010006555
https://doi.org/10.1017/S0022112010006555
https://doi.org/10.1017/S0022112009993168
https://doi.org/10.1017/S0022112009993168
https://doi.org/10.1017/S0022112009993168
https://doi.org/10.1017/S0022112009993168


TAN, WANG, AND FRECHETTE

[35] Y. Wang, M. R. Tan, and J. Frechette, Elastic deformation of soft coatings due to lubrication forces, Soft
Matter 13, 6718 (2017).

[36] Y. Wang and J. Frechette, Morphology of soft and rough contact via fluid drainage, Soft Matter 14, 7605
(2018).

[37] J. Li and T.-W. Chou, Elastic field of a thin-film/substrate system under an axisymmetric loading, Int. J.
Solids Struct. 34, 4463 (1997).

[38] T. Nogi and T. Kato, Influence of a hard surface layer on the limit of elastic contact—Part I: Analysis
using a real surface model, J. Tribol. 119, 493 (1997).

[39] G. Lian, M. J. Adams, and C. Thornton, Elastohydrodynamic collisions of solid spheres, J. Fluid Mech.
311, 141 (1996).

[40] E. Izard, T. Bonometti, and L. Lacaze, Modelling the dynamics of a sphere approaching and bouncing on
a wall in a viscous fluid, J. Fluid Mech. 747, 422 (2014).

[41] L. C. Hsiao, S. Jamali, E. Glynos, P. F. Green, R. G. Larson, and M. J. Solomon, Rheological State
Diagrams for Rough Colloids in Shear Flow, Phys. Rev. Lett. 119, 158001 (2017).

[42] X. Cheng, J. H. McCoy, J. N. Israelachvili, and I. Cohen, Imaging the microscopic structure of shear
thinning and thickening colloidal suspensions, Science 333, 1276 (2011).

[43] N. J. Wagner and J. F. Brady, Shear thickening in colloidal dispersions, Phys. Today 62(10), 27 (2009).
[44] C. B. Holmes, M. E. Cates, M. Fuchs, and P. Sollich, Glass transitions and shear thickening suspension

rheology, J. Rheol. 49, 237 (2005).
[45] E. Gacoin, C. Fretigny, A. Chateauminois, A. Perriot, and E. Barthel, Measurement of the mechanical

properties of thin films mechanically confined within contacts, Tribol. Lett. 21, 245 (2006).
[46] S. Pathak and S. R. Kalidindi, Spherical nanoindentation stress–strain curves, Mater. Sci. Eng., R 91, 1

(2015).
[47] F. Gollwitzer, I. Rehberg, C. A. Kruelle, and K. Huang, Coefficient of restitution for wet particles, Phys.

Rev. E 86, 011303 (2012).
[48] A. Gopinath and L. Mahadevan, Elastohydrodynamics of wet bristles, carpets and brushes, Proc. R. Soc.

A 467, 1665 (2011).
[49] G. N. Greaves, A. Greer, R. Lakes, and T. Rouxel, Poisson’s ratio and modern materials, Nat. Mater. 10,

823 (2011).
[50] See Supplemental Material at http://link.aps.org/supplemental/10.1103/PhysRevFluids.4.084305 for ani-

mation that compares the approach, deformation, and rebound for the four particular thickness parameters:
T = 0.05, 0.5, 5, and 50.

[51] V. M. Kulik, S. V. Rodyakin, I. Lee, and H. H. Chun, Deformation of a viscoelastic coating under the
action of convective pressure fluctuations, Exp. Fluids 38, 648 (2005).

[52] T. Salez and L. Mahadevan, Elastohydrodynamics of a sliding, spinning and sedimenting cylinder near a
soft wall, J. Fluid Mech. 779, 181 (2015).

[53] J. R. Smart and D. T. Leighton, Measurement of the hydrodynamic surface roughness of noncolloidal
spheres, Phys. Fluids 1, 52 (1989).

[54] S. K. Birwa, G. Rajalakshmi, R. Govindarajan, and N. Menon, Solid-on-solid contact in a sphere-wall
collision in a viscous fluid, Phys. Rev. Fluids 3, 044302 (2018).

084305-22

https://doi.org/10.1039/C7SM01061C
https://doi.org/10.1039/C7SM01061C
https://doi.org/10.1039/C7SM01061C
https://doi.org/10.1039/C7SM01061C
https://doi.org/10.1039/C8SM00884A
https://doi.org/10.1039/C8SM00884A
https://doi.org/10.1039/C8SM00884A
https://doi.org/10.1039/C8SM00884A
https://doi.org/10.1016/S0020-7683(97)00053-X
https://doi.org/10.1016/S0020-7683(97)00053-X
https://doi.org/10.1016/S0020-7683(97)00053-X
https://doi.org/10.1016/S0020-7683(97)00053-X
https://doi.org/10.1115/1.2833525
https://doi.org/10.1115/1.2833525
https://doi.org/10.1115/1.2833525
https://doi.org/10.1115/1.2833525
https://doi.org/10.1017/S0022112096002534
https://doi.org/10.1017/S0022112096002534
https://doi.org/10.1017/S0022112096002534
https://doi.org/10.1017/S0022112096002534
https://doi.org/10.1017/jfm.2014.145
https://doi.org/10.1017/jfm.2014.145
https://doi.org/10.1017/jfm.2014.145
https://doi.org/10.1017/jfm.2014.145
https://doi.org/10.1103/PhysRevLett.119.158001
https://doi.org/10.1103/PhysRevLett.119.158001
https://doi.org/10.1103/PhysRevLett.119.158001
https://doi.org/10.1103/PhysRevLett.119.158001
https://doi.org/10.1126/science.1207032
https://doi.org/10.1126/science.1207032
https://doi.org/10.1126/science.1207032
https://doi.org/10.1126/science.1207032
https://doi.org/10.1063/1.3248476
https://doi.org/10.1063/1.3248476
https://doi.org/10.1063/1.3248476
https://doi.org/10.1063/1.3248476
https://doi.org/10.1063/1.3248476
https://doi.org/10.1122/1.1814114
https://doi.org/10.1122/1.1814114
https://doi.org/10.1122/1.1814114
https://doi.org/10.1122/1.1814114
https://doi.org/10.1007/s11249-006-9030-y
https://doi.org/10.1007/s11249-006-9030-y
https://doi.org/10.1007/s11249-006-9030-y
https://doi.org/10.1007/s11249-006-9030-y
https://doi.org/10.1016/j.mser.2015.02.001
https://doi.org/10.1016/j.mser.2015.02.001
https://doi.org/10.1016/j.mser.2015.02.001
https://doi.org/10.1016/j.mser.2015.02.001
https://doi.org/10.1103/PhysRevE.86.011303
https://doi.org/10.1103/PhysRevE.86.011303
https://doi.org/10.1103/PhysRevE.86.011303
https://doi.org/10.1103/PhysRevE.86.011303
https://doi.org/10.1098/rspa.2010.0228
https://doi.org/10.1098/rspa.2010.0228
https://doi.org/10.1098/rspa.2010.0228
https://doi.org/10.1098/rspa.2010.0228
https://doi.org/10.1038/nmat3134
https://doi.org/10.1038/nmat3134
https://doi.org/10.1038/nmat3134
https://doi.org/10.1038/nmat3134
http://link.aps.org/supplemental/10.1103/PhysRevFluids.4.084305
https://doi.org/10.1007/s00348-005-0947-y
https://doi.org/10.1007/s00348-005-0947-y
https://doi.org/10.1007/s00348-005-0947-y
https://doi.org/10.1007/s00348-005-0947-y
https://doi.org/10.1017/jfm.2015.425
https://doi.org/10.1017/jfm.2015.425
https://doi.org/10.1017/jfm.2015.425
https://doi.org/10.1017/jfm.2015.425
https://doi.org/10.1063/1.857523
https://doi.org/10.1063/1.857523
https://doi.org/10.1063/1.857523
https://doi.org/10.1063/1.857523
https://doi.org/10.1103/PhysRevFluids.3.044302
https://doi.org/10.1103/PhysRevFluids.3.044302
https://doi.org/10.1103/PhysRevFluids.3.044302
https://doi.org/10.1103/PhysRevFluids.3.044302

