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Self-propulsion of a helical swimmer in granular matter
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The motion of helicoidal swimmers moving in a pool filled with a granular medium is
studied experimentally. The horizontal displacement through granular beads is measured
considering geometrical modifications of the swimmer, the size, and frictional properties of
the media. We found three main parameters which affect the swimming performance: the
diameter, the wavelength, and the angle of the helix. The swimming speed scales with the
rotation speed, ωR. The size of particles does not affect the swimming speed significantly;
the swimming speed is reduced when the particle’s angle of repose increases. It was found
that a maximum swimming speed is achieved when the helix angle is close to 55◦. The
experimental data are compared with predictions of the granular resistive force theory,
which was extended to be applicable for a swimmer with a rigid helical tail, leading to
good agreement.
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I. INTRODUCTION

The locomotion of living organisms has been extensively studied in the fluid mechanics
community for centuries [1]. The interaction of moving body parts and a fluid environment gives
rise to both thrust and drag forces which, under the correct conditions, produce locomotion. While
flying and swimming (both at low and large Reynolds numbers) are well understood for the case
of Newtonian fluids [2], locomotion in more complex media has not been studied extensively
and, in consequence, remains poorly understood. In particular, digging through granular materials
is a frequently observed strategy in nature [3]: it is used by many animals to feed, move, and
escape predators. The challenge to understand motion in such complex media is that granular
matter can behave in significantly different manners, as a solid or as a fluid [4], even in the same
flow. Therefore, a general constitutive equation does not exist. There have been significant recent
advances, in particular for the case of dense granular flows [5,6]; however, wide acceptance and
validation are still needed.

Locomotion in granular media has drawn significant attention by the community. Goldman and
collaborators, in a series of seminal contributions [7–12], have studied the undulatory motion of
organisms in sand, such as the sandfish lizard (Scincus scincus). Using a state-of-the-art x-ray
camera, they were able to visualize the motion of the lizard as it burrowed itself into a bed of
particles. The organism performed a very distinct motion: while displacing into sand, it moved in a
sideways undulatory motion with constant frequency and amplitude. With these observations they
conjectured that the motion resembled that of microorganisms at low Reynolds numbers. Hence,
they took the classical resistive force theory (RFT) for low Reynolds locomotion [13] and adapted
it to be compatible with the physics of granular matter [7]. They found good agreement between
the observations and the predictions of the granular resistive force theory [8]. However, further
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validation of the theory could not be tested in the biological case because the organisms could not
be made to change their swimming strategy.

Following these studies, more recent investigations have addressed the other related issues
of locomotion in granular matter. Peng et al. [11] extended the granular RFT for the case of
a flexible filament; they considered different shapes of the filament and addressed issues such
as maneuverability, change of direction, and changes in the filament size and geometry. In a
subsequent study, the same group of researchers considered locomotion via the actuation of a
flexible flapper [12]. Darbois Texier et al. [14] studied the motion of a rigid helix in granular media.
In their case, the helix was driven by a shaft and it was possible to apply an external force to help
or hamper the motion. They found the conditions for a force-free swim and proposed a model,
also based on resistive force theory ideas but considering a simple Coulomb friction law. Given its
similarity with the present study, some direct comparisons are drawn. The granular resistive force
theory was recently shown to be amenable for proper scaling [15] and has also been proposed
to model locomotion in granular media [16]. These recent findings are clear indications of the
robustness of the granular RFT.

In this paper, inspired by the recent progress in the subject, we conduct experiments with helical
swimmers in granular media to fully characterize this swimming strategy. In particular, the helical
configuration allows us to simplify, somewhat, the swimming mechanics because the body shape
remains fixed during the motion. Helical propulsion is used by bacteria such as Escherichia coli [17].
These organisms use the action of a rotatory helix to propel themselves in Newtonian fluids at low
Reynolds numbers. This type of locomotion is relatively well predicted by the classical viscous RFT
but there are more accurate methods such as the regularized Stokestlet method and Lighthill slender
body theory [18]. These models indicate that the geometry of the helix is one of the most important
parameters that affect the motion [19–23]. For the case of E. coli, the motion takes place at Reynolds
numbers ranging between 10−5 and 10−4, for which the inertial forces are negligible and viscous
effects are dominant. For the case of dense granular matter the inertial force is also insignificant
but, in turn, the frictional forces dominate. This fact is the basis for a fair comparison for swimming
in these two media, despite the largely different scale of the swimmers. It is important to note that
RFT has recently been shown to be more precise for granular materials than for Newtonian viscous
fluids [16].

In a previous study, we used magnetically driven swimmers with helical tails in other complex
fluids [24]. We use, essentially, the same system to produce self-locomotion of helical swimmers
inside a bed of grains. In addition to varying the rotation speed of the helix, we widely vary its
geometry. We also test the influence of particle size and roughness. The study is completed by
adapting the granular RFT for helical swimmers, which leads to the identification of normalized
variables. The results in this paper could be used to guide the design of autonomous robots capable
of swimming in granular media. We envision that such devices could be used to tackle the problem
of jamming in grain silos. The clogging of industrial silos is often resolved by sending workers
inside these structures to manually clear the clogged regions in the silo. In many cases, the granular
material can collapse on top of the workers, leading to severe injury or death. This is a serious
industrial hazard, which has led to nearly 800 fatal and nonfatal accidents since 1964 in the United
States alone [25]. Sending a robotic device instead would essentially eliminate the hazard.

II. EXPERIMENTAL SETUP AND PROCEDURE

To study swimming dynamics in sand we considered the self-propulsion of a magnetic robot.
The swimmer, which consists of a magnetic head and a helical tail, was placed in a pool filled with
particles located in the middle of rotating magnetic field. A rotating magnetic field device, designed
by Godinez et al. [26], was used to impose a controlled rotation on the swimmer. Resulting from
the interaction of the rotating helix with the granular media, the robot propelled itself without being
attached to a shaft or any other external structure.
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FIG. 1. (a) The head, where a permanent magnet is enclosed, has a diameter and length Dh and Lh,
respectively. The helix can be characterized by its wavelength (λ), diameter (2R), helix angle (θ ), and the
thickness the spring (2a). (b) Scheme of the experimental setup. The work space is 70 × 70 × 140 mm3.
(c) Configuration of the swimmer inside the granular matter with an acrylic plate on the top.

Several helical swimmers were designed and built inspired by geometry of the bacterium E.
coli [17,27]. Figure 1(a) shows the schematic representation and the geometrical characteristics
of the helical swimmer employed in the experiments. The swimmers were built with a cylindrical
magnetic head with a diameter Dh = 3.1 mm and length Lh = 7.0 mm. The helix was made with
stainless steel wire of thickness 2a = 0.51 mm. In order to study the effect of the helix shape on the
swimmer performance, several cases were considered by independently varying the helix angle (θ ),
the wavelength (λ), and the diameter (2R). Note that these geometrical properties of the helix are
not fully independent since they are related by the relation tan θ = 2πR/λ.

As explained below, most experiments were conducted for the case for which the helix diameter
was fixed, and the wavelength, λ, is varied (consequently, the pitch angle θ changes too). Table I
shows the values of the geometric parameters of the first seven swimmers that were considered,
which is referred to as case (i). Figure 2 shows a schematic view of these different helices. It is

TABLE I. Geometric parameters of the swimmers. Case (i): swimmers have the same diameter 2R.

Swimmer 2R (mm) λ (mm) θ (deg) LT (mm) Lw (mm)

D11P6 11 ± 0.3 5.6 81.04 16.51 106.00
D11P12 11 ± 0.1 11.4 71.74 33.21 106.00
D11P20 11 ± 0.1 19.9 60.06 52.90 106.00
D11P29 11 ± 0.3 26.7 53.05 63.72 106.00
D11P41 11 ± 2.5 40.2 33.59 88.30 106.00
D11P60 11 ± 0.5 60.1 28.76 92.92 106.00
D11P95 11 ± 2.7 95.0 15.35 102.21 106.00

084302-3



VALDÉS, ANGELES, DE LA CALLEJA, AND ZENIT

D11P6 D11P12 D11P20 D11P29 D11P41 D11P60 D11P95

FIG. 2. The schematic representation for the seven swimmers employed in all experiments: case (i),
constant 2R. Note that the wire length in the helix, Lw = Lt/ cos θ , is the same for all swimmers.

important to note that, to ensure a fair comparison among the swimmers, the total length of the tail,
Lw = LT / cos θ , was kept constant. This means that the same length of wire was used in all cases.
The main results of this investigation were obtained for this set of swimmers.

To complete our study and to validate the proposed scaling (see Sec. III), we considered two
additional groups of swimmers. In addition to case (i) presented above, we designed a group of
swimmers with a fixed value of λ, but allowed θ and 2R to change [case (ii)]. A third group of
swimmers [case (iii)] considered swimmers with a constant angle θ , allowing λ and 2R to change.
The results for these additional cases are presented and discussed in Appendix B.

Granular media

The main set of experiments, where all the helical geometries were tested, was conducted with
glass beads with a diameter of 0.375 ± 0.125 mm. The properties of this material are shown
in Table II. The particles were relatively smooth, with an angle of repose γo = 24.5◦ ± 1.5◦.
Figure 3(a) shows a typical image of the glass particles. The swimmer was placed on the surface of
the medium and pushed down until it was completely covered by the beads reaching a depth of 2R,
as shown schematically in Fig. 1(c). To keep the swimmer immersed in the medium, an acrylic plate
was placed on top of the granular pool. We did not find a significant influence of the plate on the
swimming speed. Measurements with or without the plate and with plates with different roughness
resulted in swimming speeds within the uncertainty of the measurement. Interestingly, when the
plate was not used, the swimmer would tend to emerge from the granular bed. We attribute this
flotation-like tendency to the static pressure gradient within the granular bed, but this behavior was
not investigated further.

TABLE II. Properties of the granular media used in the experiments.

Type Diameter (mm) Angle of repose, γo (deg) Density, ρp (kg/m3) Packing fraction

Glass 0.375 ± 0.125 24.5 ± 1.5 2500 0.60
Glass 0.6 ± 0.15 23.4 ± 1.8 2500 0.60
Glass 1.5 ± 0.15 23.8 ± 2.0 2500 0.59
Glass 2.0 ± 0.2 24.9 ± 1.8 2500 0.59
Glass 3.0 ± 0.25 25 ± 1.2 2500 0.58
Mustard 2.2 ± 0.29 32.4 ± 1.7 242.2 0.65
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FIG. 3. Photos of the particles used in this investigation as granular matter: (a) glass beads, 2.0 mm mean
diameter; (b) mustard seeds, 2.2 mm mean diameter.

Once the swimmer was placed inside the granular matter, the coil was energized and rotated.
When the magnetic field was strong enough, the swimmer rotated at the same rate as the coil and
forward locomotion was observed. The horizontal displacement of the swimmer was recorded with
a high-definition video camera and the images were analyzed with the software TRACKER 4.95.
Experiments in which the rotation of the swimmer was not constant, and equal to the rotation rate
of the external magnetic field, were discarded.

Two additional experimental campaigns were conducted. To test the influence of particle size,
the swimmers of case (i) were tested with glass beads of four additional diameters: 0.6, 1.5, 2.0,
and 3.0 mm (see Table II). A typical image of the glass particles is shown in Fig. 3(a). The angle
of repose of these particle ensembles was approximately the same as for the 0.375 mm particles,
indicating that they all had similar frictional properties.

To explore the influence of the material internal friction, a set of experiments was conducted
using mustard seeds (see Table II), also with the case (i) swimmers. These particles had spheroidal
shape and a very uniform size distribution. Figure 3(b) shows a typical image of the mustard seeds.
Most notably, they have a larger angle of repose (γo = 32.4◦ ± 1.7◦), which results from having a
rougher surface.

III. PREDICTIONS FROM GRANULAR RFT

As described in the introduction, Goldman and co-workers proposed a modified RFT model to
calculate the speed of undulatory swimmers in a granular medium [7]. For this paper, we extend this
idea for helical swimmers where the tail is a rigid helix that rotates at an imposed fixed rate.

The functional forms for the tangential FT and normal forces FN (per unit length) for a cylinder
with radius a are

FN = 2a(CS sin β0 + CF sin ψ ) and FT = 2aCF cos ψ, (1)

where ψ is the angle between the cylinder and the velocity vector. The angle β0 relates the
inclination of the cylinder with the frictional properties of the media by tan β0 = cot γ0 sin ψ , where
γ0 is the angle of repose of the particulate media. The particle volume fraction φ, defined as the
ratio of the volume occupied by grains to total volume, significantly affects the behavior of granular
materials. The response of granular media to intrusion depends importantly on φ. Therefore, both CS

and CF depend on φ [8]. In other words, CS and CF capture the compactness of the media, quantified
by φ, and the internal slip angle, γ0. Note that CS and CF have units of kg/s2.

The shape of the helix can be expressed as r = [x + Vxt, R cos(kx − ωt ), R sin(kx − ωt )], where
R is the outer radius of the helix, k is the wave number, ω is the rotational speed, and Vx is the
helix velocity along the x direction. Considering that the inclination of the cylinder, ψ , is given by

084302-5



VALDÉS, ANGELES, DE LA CALLEJA, AND ZENIT

sin ψ = VN/‖V ‖, we can rewrite the normal and tangential forces as

FN = 2a√
V 2

x + R2ω2

(
CS√

sin2 ψ + tan2 γ0

+ CF

)
VN ,

FT = 2aCF√
V 2

x + R2ω2
VT , (2)

where VN and VT are the normal and tangential velocities at the cylinder. Now, if we consider the
helix to be composed of infinitesimal cylinders, we can project Eqs. (2) along the x direction. To
obtain the total x force on the helix, we integrate

Fx =
∫ LT

0
(FT t̂ · êx + FN n̂ · êx) ds, (3)

where LT is the length of the helix, and ds = dx/cos θ , where θ is the helix angle. If we consider
a self-propelled helix without a head, the speed, Vx, is found by setting the total force, Fx, to zero
and solving the integral in Eq. (3). After some algebra, the normalized swimming velocity, V∗ =
Vx/(ωR), is expressed, in an implicit form, by

V 4
∗ [�2 tan4 θ − tan2 θ sec2 θ − sec4 θ tan2 γ0]

−2V 3
∗ [�2 tan3 θ + tan θ sec2 θ ]

+V 2
∗ [�2 tan2 θ sec2 θ − sec2 θ − sec4 θ tan2 γ0]

− 2V∗[�2 tan3 θ ] + �2 tan2 θ = 0, (4)

where � = CS/CF . This equation can be solved numerically, for given values of R, ω, and θ ,
assuming that CS and CF are known. We used the two sets of values reported in Ref. [8],
corresponding to low and high packing fractions. The predictions of this expression are shown
below and contrasted with the experimental measurements. However, as shown in Fig. 1, the helices
have a cylindrical head (through which the magnetic torque is applied) that is perpendicularly
aligned to the mean motion. The head only adds drag and its effect can be readily incorporated into
the expression above. The procedure is described in detail in Appendix A. Again, a fourth-order
polynomial equation is found, similar to Eq. (4) but with additional terms corresponding to the drag
on the head. Both predictions (with and without the head) are contrasted with the experimental
measurements in the next section.

IV. EXPERIMENTAL RESULTS

The speed of helical swimmers, with different shapes inside different granular media, was
measured experimentally. The behavior of the velocity for each swimmer for case (i) is presented in
this section; results for cases (ii) and (iii) are shown in Appendix B.

A. The influence of helical geometry

We first present the experimental measurements, where the shape of the helix is varied but the
particle type remains fixed. The experimental results of the swimming velocity are shown as a
function of angular frequency, ω, and helix angle, θ , left and right, respectively, in Fig. 4.

Figures 4(a) and 4(b) show the swimming speed for the helical swimmers for which 2R is the
same. For this case, the influence of the helix geometry can be observed clearly. The speed of the
swimmer increases with ω. Since 2R is constant, the influence of θ and λ can be readily discerned.
The robots D11P20 and D11P29 swam faster than the others, with values for λ of 19.9 and 26.7 mm,
and for θ of 60.06◦ and 53.05◦, respectively. This values correspond to the middle of the range. This,
therefore, represents the optimal geometrical conditions to produce swimming. It is interesting to
note that the robots D11P6 and D11P95 were the slowest ones: these two swimmers have opposite
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FIG. 4. Swimming speed for case (i) with glass particles of 0.325 mm in diameter. (a) Swimming speed
as a function of rotational speed, ω. (b) Swimming speed as a function of helix angle, θ (also as a function of
wavelength, λ). All data for swimmers with 2R constant.

values of the geometrical parameters (see Table I), having the largest and smallest θ values of this
group, respectively. In Fig. 4(b), the influence of the helix angle is clearly shown. For a given
rotational speed, a swimmer with an angle of about θ ≈ 55◦ swims fastest. This value is close to the
middle of the range of the helix angle.

It is important to note that the swimmers with the smallest value of angle (swimmer D11P95,
θ = 15.35◦) hardly swam for any rotational speeds. It rotated freely but its forward motion was
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FIG. 5. Swimming speed as a function of rotational speed for different particle sizes. Each panel shows the
results for different swimmers (see Table I): (a) D11P6, (b) D11P20, (c) D11P41, and (d) D11P60.

not significant even for long observation times. For the limiting cases (small or large θ ), we do not
expect to observe swimming. When the helix angle is close to 0◦, the helix is essentially a straight
cylinder; on the other hand, when the angle is close to 90◦ the helix becomes a hollow rod. For
both of these cases, no net forward thrust can be produced. Two additional cases, which consider
variations of the helix shape, were tested. The results were essentially the same as those presented
above when considering normalized variables (see Sec. V). These data are shown in Appendix B.

B. Influence of particle size

The particle size has been recently identified as an important parameter in the generation of
granular drag [6]. To evaluate the effect of particle size on the swimming speed, experiments were
conducted with some of the swimmers for case (i) with glass particles of several sizes (see Table II).
The results are shown in Fig. 5, where the swimming speed is shown as a function of rotational
speed for five different glass particle sizes, with similar frictional properties. Despite the fact that
the particle size is larger that the thickness of the coil, a, and even the size of the coil, R, the
measured swimming speed is not significantly affected by the particle size. A slight increase in the
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swimming speed is observed as particle diameter increases for all cases. For an increase of particle
size of up to eight times, the swimming speed increases only 40% approximately.

C. Influence of grain internal friction

Since the internal friction of the material is a parameter that appears explicitly in the RFT model
for swimming speed [Eq. (4)], it is interesting to conduct experiments for grains with different
values of the angle of repose. The swimmers of case (i) were tested in mustard seeds. As shown in
Table II, this material has a mean particle diameter of 2.2 mm, which is close to one of the glass
particles used. Most importantly, since mustard seeds are rougher [see Fig. 3(b)], their angle of
repose is larger than that of glass spheres.

These results appear in Fig. 6, where the swimming speed is shown as a function of the angular
rotation speed (on the left) and as a function of the helix angle (on the right). Since the particle
size did not have a significant influence on the swimming speed (as shown in the previous section),
these speeds can be directly contrasted with those shown in Figs. 4(a) and 4(b). The same qualitative
trend is observed with the mustard seeds: the speed increases with angular frequency and there is
an optimal angle of the helix that maximizes speed (around 50◦). One important difference found
for this type of grain is that the swimming speed is smaller (in comparison with the glass beads),
for all cases. The reduction is approximately 40% with respect to the glass sphere tests. Clearly, the
swimming speed decreases as the angle of repose increases.

V. DISCUSSION

From the results shown above, we can attempt to find scalings and identify the parameters
that affect the swimming speed. From classical resistive force theory, and also from its granular
form described in Sec. III, the forward thrust arises from the rotation of the helix. Specifically, the
swimming speed increases linearly with ωR. For clarity, only the results from case (i) are discussed
since the other two cases essentially convey the same information.

Figures 7(a) and 7(c) show the speed measurements for case (i) normalized by ωR, for glass
beads and mustard seeds, respectively. The data clearly collapse into a single band, indicating that
the speed indeed scales with ωR. Presented in this manner, it is clear that there is an angle at which
the speed is maximized, at around 55◦ for both particle types. The value Vx/ωR represents the
relationship between the forward speed and the tangential speed at the edge of the helix. Note
that the normalized results of cases (ii) and (iii) also fall into the same band of data (shown in
Appendix B), which further demonstrates the robustness of the scaling.

Another way to analyze the results is to calculate the wave efficiency [13]. Essentially, the
swimming speed is compared with the wave speed ωλ. A value of Vx/(ωλ) close to 1 would indicate
the motion of a screw penetrating perfectly through an undeformable media. In other words, the
swimmer would move as fast as the wave induced by the helical shape. Figures 7(b) and 7(d) show
the normalized speeds considering ωλ for the glass particles and mustard seeds, respectively. The
results also collapse nicely into a single band of data. This is not surprising since it was shown
that the speed scaled with ω (since R is fixed in this case). The new scaling does show a more
robust scaling of the data since λ does vary for each swimmer. The swimming wave efficiency for
all experiments is below 15%, slightly smaller for the case of mustard seeds. More importantly, the
normalization with ωλ shows a maximum value at a different angle, in comparison with the ωR
normalization. In this case, the angle at which the wave efficiency has a maximum value is close to
70◦ for both types of particles.

Comparison with predictions from RFT

As discussed above, it is possible to find an implicit equation to determine the swimming speed of
a helical swimmer in a granular medium. The model essentially takes the ideas described in Ref. [7]
to calculate both thrust and drag over the swimmer. We extend this idea for the case of a rigid
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FIG. 6. Swimming speed for mustard seeds. On (a), the speed is plotted as a function of rotational speed;
on (b), the swimming speed is shown as a function of helix angle. Case (i) swimmers are tested. The properties
of the grains are shown in Table II.

helical tail. The model indicates that, in agreement with the experimental results, the swimming
speed scales with ωR. Additionally, the swimming speed is also affected by the helix angle, θ , the
angle of repose of the material, γo, and the ratio �, as shown by Eq. (4).

Figure 8 shows the direct comparison between the measured velocities for swimmers of case
(i) for both glass particles and mustard seeds. Note that the model predictions do consider the
effect of the head [Eq. (A2)]. A value of � = 1.82 was used considering the low packing fraction
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FIG. 7. Normalized speed as a function of the angle for all swimmers in case (i). On the left [(a) and (c)] the
speed is normalized with ωR, while on the right [(b) and (d)] the normalization is done with ωλ. The lines are
the predictions from granular resistive force theory: the solid lines show the model with the head [Eq. (A2)];
the dashed lines show the predictions without the effect of the head [Eq. (4)]. The dotted line in (a) shows the
model prediction from Ref. [14]. (a) and (b) Glass particles and (c) and (d) Mustard seeds.

condition from Ref. [8]. The experimental measurements and the predictions agree very well, both
qualitatively and quantitatively. They both show a linear increase of speed with ω and the existence
of an angle for which the speed is a maximum. The prediction underestimates the experimental
results, for about 30% but only for large helix angles, for glass spheres. Another important difference
between the measurements and the predictions is that the angle for maximum speed is different.
While experimentally, the angle is around 55◦, for the model the angle is about 30◦. The model also
does predict that the swimming speed is smaller for a higher angle of repose, in accordance with
experiments.

For the lines shown in Fig. 8 we used the values of � reported in Ref. [8]. By considering � to
be a free fitting parameter we can make the predictions match the experiments more closely. For the
glass beads and mustard seeds we found that � = 0.989 and � = 2.454, respectively, give the best
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FIG. 8. Speed as a function of helix angle, θ , and wavelength, λ, for different rotation speeds. The lines
show the predictions from Eq. (A2), which does account for the presence of the head. Each color, both symbols
and lines, corresponds to different values of the angular speed, ω. (a) Glass particles and (b) Mustard seeds.

fit. For clarity these lines are not shown. These values are different from those reported in Ref. [8]
but retain the same order.

Since the scaling with ωR (or ωλ) shows a good collapse of the experimental results, it is natural
to conduct comparisons with normalized variables. The model, as shown in Eqs. (4) and (A2),
scales with ωR. The lines in Fig. 7 show the predictions from the models with and without the head
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FIG. 9. (a) Speed as function of helix angle, θ , and (b) wavelength, λ. Predictions from the RFT model
[Eqs. (4) and (A2)]. Predictions for two values of �, low packing (dashed lines) and high packing (solid lines),
and for three values of the angle of repose.

[Eqs. (A2) and (4), respectively]. When the effect of the head is not accounted for, the prediction
is slightly above the experimental measurements, as expected. When the effect of the head is
considered, the difference between the measurements and predictions is within 15%. The main
difference between the experiments and the model predictions (for the normalization with ωR) is
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the angle at which the maximum speed is attained. For the normalization with ωλ, the experimental
measurements do show a maximum but the model seems to predict a nonzero value for θ = 90◦. For
the wave efficiency, the predictions of the model are slightly above the experimental measurement
but they do capture the progressive increase of wave efficiency as the angle increases. The angle
for which the maximum wave efficiency is observed experimentally is not reproduced by the model
predictions.

We can also compare our results with the model predictions from Darbois Texier et al. [14], for
the case of a force-free swimmer. In such a case, the normalized speed is given by

Vx

ωR
= Cn/Ct − 1

tan θ + Cn/Ct

tan θ

, (5)

where Cn and Ct are normal and tangential drag coefficients. Considering that Cn/Ct = 1.6 (obtained
by following their calculation method for the parameters in our experiment), a prediction can
be readily obtained and contrasted with the present results. The dotted line in Fig. 7(a) shows
the prediction from this model. Although their model agrees with several features of the present
results, the value of the normalized speed is smaller, despite the fact that the drag on the head
is not accounted for. Including the effect of the head would lead to an even smaller prediction.
Nevertheless, the prediction is relatively close to the experimental measurements. One important
aspect of the prediction in Ref. [14] is that the angle of the helix at which the maximum velocity
is obtained appears to be closer (in comparison with our RFT model prediction) to that obtained
experimentally. Considering a ratio of Cn/Ct = 2.7 the model predictions match the experiments
well. Again, this value is different from that reported in Ref. [14] but the difference is not large.

Finally, given the good agreement between the model and the experiments, we can now vary
the value of different parameters in the model to investigate their effect on the prediction. In fact,
an explicit solution can be obtained for Eq. (4) by analytically solving the fourth-order polynomial
equation; however, its solution is rather impractical. Therefore, we opted to obtain the solution
using the software MATHEMATICA. One disadvantage of this strategy is that the effect of the different
parameters is not evident. In Fig. 9 the predictions of the model are shown in terms of Vx/ωR and
the wave efficiency (left and right, respectively). There are several groups of lines: the thick and thin
lines correspond to the cases when the head is accounted for or neglected, respectively. Clearly, the
general behavior is the same: since the head only adds drag, the normalized speeds decrease when
the effect of the head is accounted for. The continuous lines (of three different colors) show the effect
of varying the angle of repose of the material. The model predicts a decrease of the swimming speed
for an increasing angle of repose, γo, which agrees with the experimental trend shown above. Last,
since the model is constructed from the fact that the values CS and CF are known and constant, it is
interesting to change their value. We considered the measurements of Maladen et al. [7] for the low
and high packing fraction of grains, leading to two values of �LP = 1.85 and �HP = 1.05. When the
value of � is decreased, corresponding to a more compacted state, the swimming speed is reduced.
Note that a smaller value of � indicates less drag anisotropy, which reduces the ability of the helix to
produce thrust, leading to a reduced speed. The value of packing was not varied in the experiments
performed here; hence, it is not possible to draw comparisons.

VI. CONCLUSIONS

The motility of free helical swimmers in granular media is studied experimentally. The geo-
metrical characteristics of the swimmer robots, which represent an advantage in swimming ability,
were obtained. In addition to the rotational speed, ω, the swimming speed is affected by the values
of λ and θ (or R). The particle roughness was found to reduce the swimming speed, but this
parameter was not varied widely. In contrast, changing the particle size widely did not seem to
affect the swimming speed significantly. The extension of the granular RFT theory to consider
the rigid helical tail produced a model for which predictions showed a good agreement with our
experimental data. The model only had a free parameter, �. The model also captured several
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other features of the experiments, but two important aspects were not captured. The first aspect
involves the minimum conditions for motion and the angle at which the velocity is a maximum.
We found that, for small angles of the helix, the swimmer rotates around its axis, but does not
move forward. It appears that an angle threshold should exist. Second, the experiments showed
that a helix angle of approximately 55◦ results in a maximum normalized speed; in contrast, the
granular RFT predicts a smaller angle for the fastest swimming (about 30◦). The wave efficiency
appears to reach a maximum experimentally, at around 70◦, but the model prediction does not show
such maximum efficiency. The reasons for these differences remain to be resolved. The present
experimental campaign contributes to the current discussion on locomotion in granular media and
further validates the granular RFT modeling.
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APPENDIX A: MODEL FOR A SWIMMER WITH A CYLINDRICAL HEAD

To compare the prediction with the experiments in a quantitative manner, the effect of the
swimmer’s head needs to be included. The swimmer, as shown in Fig. 1, has a cylindrical head
(through which the magnetic torque is imposed) that is perpendicular to the mean motion. Therefore,
the force balance, Eq. (3), is modified by adding the drag force on the head, Fh, as

Fx =
∫ LT

0
(FT t̂ · êx + FN n̂ · êx)ds +

∫ Lh

0
Fhdx, (A1)

where Fh = FN sin θh − FT cos θh. In our case, the head is a cylinder of length Lh with its axis aligned
perpendicular to the swimmer’s main movement, in x; hence, θh = 90◦. RFT considers that the
flagellum is, in fact, a collection of small cylinders. For this reason we can use the similar modeling
to account for the drag on the head considering an additional contribution of FN and FT accounting
for the differences in size. Therefore, the main differences to model the head drag are that the
diameter of the cylinder is Dh/2 (instead of 2a) and the length is Lh. Also, the inclination angle of
the head cylinder, θh, is 90◦. Considering the new force balance [Eq. (A1)] and expressions for the
tangential and normal forces (2), an implicit expression for Vx, including the effect of the head, can
be written as

V 4
∗ {�2 tan4 θ − tan2 θ sec2 θ − sec4 θ tan2 γ0

− 2L∗ sec θ [�2 tan3 θ − tan2 θ − sec2 θ tan2 γ0] − L2
∗[tan2 θ − �2 sec2 θ + sec2 θ tan2 γ0]}

− 2V 3
∗ {�2 tan3 θ + sec2 θ tan θ − L∗ tan θ sec θ [2 + �2] + L2

∗ tan θ}
+V 2

∗ {�2 tan2 θ sec2 θ − sec2 θ − sec4 θ tan2 γ0

− 2L∗ sec θ [�2 tan2 θ + 1 + sec2 θ tan2 γ0] + L2
∗[�2 sec2 θ − sec2 θ tan2 γ0 − 1]}

− 2V∗[�2 tan3 θ + L∗�2 tan θ sec θ ] + �2 tan2 θ = 0, (A2)

where

L∗ = Lh

LT

Dh

2a
. (A3)

It is important to note that Eq. (4) is recovered if L∗ is set to zero.
Equation (A2) is also solved numerically using MATHEMATICA to obtain the the speed Vx,

following the same procedure as for Eq. (4).
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TABLE III. Geometric parameters of the swimmers: case (ii), swimmers have constant λ; case (iii),
swimmers have the same helix angle θ .

Swimmer 2R (mm) λ (mm) θ (deg) LT (mm) Lw(mm)

D5P20 4.2 20 ± 0.3 33.2 100.00 127.15
D8P20 8.2 20 ± 0.1 51.76 78.70 127.15Case (ii) D11P20 10.5 20 ± 0.3 58.39 66.64 127.15
D17P20 16.6 20 ± 0.01 68.73 46.13 127.15
D5P6 5.5 6.6 70 ± 0.91 18.88 52.90
D7P8 7.0 7.7 70 ± 0.70 17.48 52.90

Case (iii) D9P10 11.0 12.2 70 ± 0.49 17.66 52.90
D11P13 12.0 11.9 70 ± 2.45 15.92 52.90
D15P14 14.9 14.1 70 ± 3.22 15.26 52.90

APPENDIX B: EXPERIMENTAL RESULTS FOR CASES (ii) AND (iii)

Two additional cases were tested to observe the influence of helix geometry on the locomotion.
Case (i), presented above, considers the situation when 2R is approximately constant at 11 ± 2.7 mm
but λ and θ change. For case (ii) we consider a fixed value of λ = 20 ± 0.3 mm, but θ and 2R change.
Finally, for case (iii), the angle θ is kept constant, at around 70◦ ± 3.2◦. For these two additional
cases the total wire length (LT / cos θ ) was also kept constant to ensure a fair comparison among

Case ii

Case iii

D5P20 D8P20 D11P20 D17P20

D5P6 D7P8 D9P10 D11P13 D15P14

FIG. 10. The schematic representation for the nine swimmers employed in all experiments. Case (ii),
constant λ; case (iii), constant θ . Note that the wire length is the tail; Lw = Lt/ cos θ , is constant for each
case.
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FIG. 11. Swimming speed for cases (ii) and (iii) with glass particles of 0.325 mm in diameter. On the left
and right columns, the swimming speed is shown as a function of the rotational speed, ω, and the helix angle,
θ (or alternatively as a function of wavelength λ or helix size 2R). (a) and (b) Case (ii) λ is constant and (c) and
(d) Case (iii) θ is constant.

the swimmers. The values of the parameters used for the swimmers are shown in Table III and a
schematic view is shown in Fig. 10.

1. Case (ii): Constant λ

Figures 11(a) and 11(b) show the velocity of swimmers for which λ is constant, but θ and 2R
change, as shown in Table I. For a given shape (a given robot), the swimming speed increases with
rotational speed, ω. For a given rotational frequency, the swimming speed increases with helix angle,
θ . Note that in this case, the helix angle spans only from 35◦ to 70◦.

The swimmer D17P20, which has the largest angle and the largest radius (see Fig. 2), swam
faster than the others. In contrast, the swimmer D5P20 had the smallest velocity of this group of
swimmers. This behavior can be related to the values of θ and 2R. For large values of the angle and
the radius, the robot swims faster.

084302-17



VALDÉS, ANGELES, DE LA CALLEJA, AND ZENIT

2. Case (iii): Constant θ

Figures 11(c) and 11(d) show the swimming speed of five different swimmers inside the granular
medium with conditions listed in Table I. In this case the helix angle is kept constant, but R and λ

change. This case is interesting because, since the helix angle is fixed, the shape of the helix is simply
scaled in size. As in case (i), the swimming speed increases with ω. It can be seen in Fig. 11(c) that
the swimming speed increases with R. The speed increased progressively from robot D5P6 to robot
D15P14 (the smallest and largest values of R, respectively). Since the angle is constant, Fig. 11(d)
does not convey any significant information.
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