
PHYSICAL REVIEW FLUIDS 4, 084202 (2019)

Thermal effect on drainage flow of a viscous gas from
a semisealed narrow channel

Wei Huang and Kang Ping Chen *

School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe,
Arizona 85287-6106, USA

(Received 15 April 2019; published 12 August 2019)

Drainage flow of a viscous compressible gas from a semisealed narrow conduit is a
pore-scale model for studying the fundamental flow physics of fluid recovery from a
porous reservoir without fluid injection. The drainage flow is driven by the volumetric
expansion of the gas and its mass flow rate has been found previously to be sliplike and
proportional to the kinematic viscosity of the gas. Thermal effect on such a drainage flow
is studied here by simultaneously solving the linearized continuity, momentum, and energy
equations for a semisealed narrow channel with adiabatic walls. It is shown that even in the
absence of an imposed temperature drop, gas expansion induces a transient temperature
decrease inside the channel, which slows down the drainage process compared to the
isothermal model and Lighthill’s model. For a given density drop, gas drains out faster
as the initial-to-final temperature ratio increases; the transient density can undershoot the
final equilibrium value. It is concluded that thermal effect should be carefully considered
in order to accurately predict the drainage rate.

DOI: 10.1103/PhysRevFluids.4.084202

I. INTRODUCTION

During the early stage of fluid recovery from a petroleum reservoir, volumetric expansion of the
sedimentary rock is negligible due to its large bulk modulus and a small drawdown in the pressure
of the in situ fluid. If no fresh fluid is injected into the reservoir to displace the in situ fluid, fluid
recovery then relies entirely on the volumetric expansion of the in situ fluid and this so-called
primary recovery period can last up to several years [1,2]. A fundamental pore-scale prototype
problem for such a recovery process is the drainage flow of a viscous compressible gas from a long
and narrow semisealed capillary or channel: the capillary or channel is initially filled with a gas of
high density ρi and the unsealed end is opened at t = 0 with a prescribed lower density ρe at the exit
(Fig. 1). As demonstrated by Chen and Shen [3–5], the solution to this volumetric-expansion-driven
pore-scale drainage flow provides intriguing insights into the physics of the drainage process. Chen
and Shen [3–5] solved the linearized compressible Navier-Stokes equations subject to the no-slip
condition. Their results show that at large times relative to the period of acoustic oscillation, the
mass production rate from a very narrow conduit is proportional to the kinematic viscosity of the
gas. The mass production rate of this no-slip flow is also sliplike, as it is proportional to the square
of the capillary radius (or linearly proportional to the channel gap). These pore-scale results differ
fundamentally from those for the familiar Poiseuille type of flow, which produces a mass flow
rate inversely proportional to the fluid’s kinematic viscosity but proportional to the quartic of the
pore radius (or the cubic of the channel gap). The Poiseuille flow mechanism of pushing a fluid
through a conduit (displacement type) is completely absent in a semisealed conduit. The reason that
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FIG. 1. Schematic for drainage flow from a semisealed microchannel with adiabatic walls. The end at
x = L is opened at t = 0 with the exit maintained at a density lower than the initial density.

the mass flow rate is proportional to the kinematic viscosity is that in the limit of a very narrow
tube (channel), the flow is dominated by the self-diffusion effect of the viscous compressible gas
and the self-diffusion coefficient is proportional to the kinematic viscosity [3,5–7]. Thermal effect,
however, has been completely neglected in these studies despite the fact that the flow is solely driven
by the density change of the gas. For a compressible gas, a temperature change always accompanies
a density change; these changes can be of the same order of magnitude. Therefore, the thermal
effect should be expected to have a significant influence on the drainage rate. Furthermore, in shale
formations, as much as 75% of the total gas in place is adsorbed gas on the surface of organic pores
[8]. Since the gas desorption rate is sensitive to temperature change, harvesting this large amount of
adsorbed gas from shale requires a good understanding of the temperature change at the pore scale
during the drainage process.

It is noted that there are many recent studies on microscale gas flows such as [9–11], some of
which have included the thermal effect. These works as well as many others (the list is too long to
be referenced here), however, deal with the displacement type of flow, which differs fundamentally
from the volumetric-expansion-driven drainage flow as discussed above. The objective of the current
work is to study the thermal effect on the volumetric-expansion-driven pore-scale drainage flow
of a viscous compressible gas from a semisealed narrow channel by simultaneously solving the
continuity, momentum, and energy equations. For small perturbations of an equilibrium state,
we linearize the governing equations and utilize the Helmholtz decomposition theorem to split
the perturbations to the longitudinal, thermal, and transverse modes. Since drainage flow from a
semisealed channel is driven by the volumetric expansion of the gas, the longitudinal and thermal
modes control the drainage process, while the role of the solenoidal transverse mode is to ensure
that the overall velocity satisfies the no-slip condition on the channel walls [3–5]. In theory, a variety
of thermal conditions on the conduit wall can be considered. In the present study, however, we only
focus on the adiabatic wall condition for the following reason: Density change in the semisealed
channel completely determines the drainage rate at the exit. In the studies neglecting the thermal
effect [3–5], the solution for the density is a plane wave (independent of the transverse coordinate);
thus, an initial assessment on the thermal effect would be to consider also a plane-wave solution
that includes the thermal effect. Such a plane-wave solution in the presence of the thermal effect is
only possible when the walls are adiabatic. Thus, due to the complexity of the thermal coupling, as
a first step, we only study the nontrivial features brought out by the thermal effect for this particular
class of solution and defer consideration of other thermal boundary conditions to a follow-up study.
For adiabatic walls, an analytical solution for the nonisothermal drainage flow is obtained for the
longitudinal and thermal modes, while the transverse mode is obtained numerically. It will be shown
that, even when there is no imposed temperature drop, the transient temperature inside the channel
falls below the equilibrium temperature due to gas expansion during the drainage process. On
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the other hand, for any imposed temperature drop, the transient temperature inside the channel
stays above the final equilibrium temperature, but the transient density can undershoot the final
equilibrium value when the initial-to-final temperature ratio is large. The results for the excess mass
inside the channel indicate that the isothermal model and the phenomenological model of Lighthill
[9] are likely to provide inaccurate predictions of the mass flow rate for this class of nonisothermal
drainage flow.

II. GOVERNINING EQUATIONS FOR THE NONISOTHERMAL DRAINAGE
FLOWS OF AN IDEAL GAS

The continuity, momentum, and energy equations for a viscous compressible Newtonian fluid
obeying Fourier’s law of heat conduction are [12]

∂ρ

∂t
+ ∇ · (ρv) = 0, (2.1)

ρ
Dv
Dt

= −∇p + (μb + μ/3)∇(∇ · v) + μ∇2v, (2.2)

ρcp
DT

Dt
= ∇ · (κ∇T ) + βT

Dp

Dt
+ �d , (2.3)

where D/Dt is the material derivative; v, p, ρ are the velocity, pressure, and density; μ,μb, cp, κ

are the shear viscosity, bulk viscosity, constant-pressure specific heat, and thermal conductivity of
the fluid, respectively; all of these fluid properties are assumed to be constants. β is the thermal
expansion coefficient and �d is the viscous dissipation function. For simplicity, the gas is assumed
to obey the ideal gas law, although the final results can be readily extended to a real gas with suitable
modifications. The equation of state is then

p = ρR̃T, (2.4)

with R̃ being the gas constant. For an ideal gas, βT = 1 in Eq. (2.3).
Petroleum fluid recovery is generally conducted under stepwise small pressure drops in order

to maintain the mechanical integrity of the sedimentary rocks. Thus, the pore-scale flow generally
falls into the low Mach number and low Reynolds number regime. Therefore, a linearized theory is
commonly used. For perturbation of the final equilibrium state (v, ρ, T ) = (0, ρe, Te), which is the
state specified at the channel exit (Fig. 1), the linearized continuity and momentum equations for
the perturbations are

∂ρ ′

∂t
+ ρe∇ · v′ = 0, (2.5)

ρe
∂v′

∂t
= −∇p′ + (μb + μ/3)∇(∇ · v′) + μ∇2v′, (2.6)

where ρ ′ = ρ − ρe, v′ = v are the density and velocity perturbations. Klainerman and Majda [14]
have rigorously proved that, for given initial data, the linearized acoustics is a uniformly valid
principal correction in the deviation of the compressible flow solution from the incompressible
solution as the global Mach number M → 0 [in the present problem, the global Mach number can
be conveniently defined as M = √

(ρi − ρe)/ρe]. This result has been extended by Klein [15] to
nonisentropic flows and by Munz et al. [16,17] to the general heat conducting viscous compressible
Navier-Stokes equations. For drainage flow from a semisealed conduit, the limiting incompressible
velocity is identically zero [3,4,5,18]. Then, to the leading order, the velocity is entirely due to the
linear acoustic field. From the Helmholtz decomposition theorem [12,19,20], this acoustic velocity
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v′, which is induced by compressible effect, can be decomposed into the sum of an irrotational part
and a rotational part,

v′ = v′
IR + v′

RT , (2.7)

where the irrotational part is a potential flow and the rotational part is solenoidal (divergence free):

∇ × v′
IR = 0, v′

IR = ∇�, (2.8)

∇ · v′
RT = 0. (2.9)

In the above, � is the scalar velocity potential for the irrotational part of the velocity. A key
result from Klainerman and Majda [14] is that the pressure can be decomposed into the sum of
a hydrodynamic pressure and a thermodynamic pressure,

p′ = p′
hy + p′

th, (2.10)

where the hydrodynamic pressure p′
hy is a Lagrange multiplier for the incompressible part of the

velocity v′
RT , and the thermodynamic pressure p′

th satisfies the equation of state for an ideal gas,
which for the perturbed quantities becomes

p′
th

pe
= T ′

Te
+ ρ ′

ρe
, (2.11)

where the temperature perturbation T ′ = T − Te.
After using the vector identity

∇2a = ∇(∇ · a) − ∇ × (∇ × a), (2.12)

the continuity equation and the momentum equations for the two parts of the velocity field become
[18]

∂ρ ′

∂t
+ ρe∇ · v′

IR = 0, (2.13)

ρe
∂v′

IR

∂t
= −∇p′

th + (μb + 4μ/3)∇2v′
IR, (2.14)

∇ · v′
RT = 0, (2.15)

ρe
∂v′

RT

∂t
= −∇phy

′ + μ∇2v′
RT . (2.16)

In the above, we have used the identity

∇2v′
IR = ∇(∇ · v′

IR) − ∇ × (∇ × v′
IR) = ∇(∇ · v′

IR). (2.17)

The pressure in the energy equation (2.3) is the thermodynamic pressure, as the thermal
expansion coefficient must come from the thermodynamic pressure. Thus, the linearized energy
equation is

ρecp
∂T ′

∂t
= κ∇2T ′ + ∂ p′

th

∂t
. (2.18)

Clearly, in the linearized theory perturbing a state of equilibrium, the governing equations for
the field (v′

IR, p′
th, T ′) are decoupled from the equations for the solenoidal field (v′

RT , p′
hy ); the latter

is also called the transverse mode in the acoustic literature. The two modes from (v′
IR, p′

th, T ′)
are called the longitudinal mode and the thermal (or entropy) mode, respectively. However, the
transverse mode is coupled on the boundary to the longitudinal mode and the thermal mode through
the no-slip condition for the overall velocity [21]. In fact, in the drainage flow problem considered in
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this study, the transverse mode is entirely induced by the longitudinal mode via the no-slip boundary
condition.

From Eqs. (2.11), (2.13), (2.14), and (2.18), it can be shown that the density perturbation satisfies
the following single equation:(

κ

ρeR̃

μb + 4μ/3

ρe

∂

∂t
+ κTe

ρe

)
∇2∇2ρ ′ −

[
cpTe

∂

∂t
+ (cp/R̃ − 1)

μb + 4μ/3

ρe

∂2

∂t2
+ κ

ρeR̃

∂2

∂t2

]
∇2ρ ′

+ (cp/R̃ − 1)
∂3ρ ′

∂t3
= 0. (2.19)

Beltman [22] has also derived Eq. (2.19) for the temperature perturbation in the frequency domain.
A dimensionless form for Eq. (2.19) is

∂

∂ t̃

(
ξ

Re
∇̃2 − ∂

∂ t̃

)(
γ

Pe
∇̃2 − ∂

∂ t̃

)
ρ̃ ′ + ∇̄2

(
1

Pe
∇̃2 − ∂

∂ t̃

)
ρ̃ ′ = 0, (2.20)

where γ = cp/cv, cv being the constant-volume specific heat; ξ = μb/μ + 4/3, c =
√

γ R̃Te,
ρ̃ ′ = ρ ′/ρe, ∇̃ = L∇, t̃ = tc/L; the acoustic Reynolds number Re = ρecL/μ; the acoustic Péclet
number Pe = ρecpcL/κ . L is the length of the channel. The Péclet number Pe = Pr Re, with
Pr = μcp/κ being the Prandtl number. In contrast, when the thermal effect is neglected entirely
from the onset (isothermal flow), density change obeys the damped wave equation [3,4,23,24]:

∂2ρ ′

∂t2
=

(
c2 + μb + 4μ/3

ρe

∂

∂t

)
∇2ρ ′. (2.21)

Equation (2.20) recovers to the isothermal equation (2.21) in the limit of negligible thermal
diffusion when the Péclet number Pe → ∞.

It is noted that, in order to model the thermal effect without solving the temperature equation,
Lighthill [13] has modified the isothermal equation (2.21) to

∂2ρ ′

∂t2
=

(
c2 + δ

∂

∂t

)
∇2ρ ′, (2.22)

with

δ = δv + δc + δl , (2.23)

δv = 4

3

μ

ρe
, (2.24)

δc = (1 − γ −1)
κ

ρecv
= γ − 1

Pr
, (2.25)

δl = (γ − 1)2 c2

γ

∑
Fnτn, (2.26)

where δl results from the nontranslational components of the internal energy (i.e., rotational or
vibrational modes), with τn being the time lag. Clearly, Lighthill’s model equation (2.22) is much
simpler than Eq. (2.19), but only the latter has fully considered the thermal effect as it is derived
from the full governing equations. Furthermore, Eq. (2.19) is of higher order than Eq. (2.22) in both
time and space, reflecting the full coupling between the density and the temperature, both of which
are required for a truly nonisothermal flow. The model equation (2.22) does not include the full
thermal coupling, as it is of lower order in both time and space. A solution to Eq. (2.19) requires
the boundary conditions on the temperature. A solution to Eq. (2.22), however, does not require
additional boundary conditions other than the boundary conditions on the density. Crighton [25]
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had pointed out that Lighthill’s equation (2.22) is appropriate only when the temperature boundary
conditions can be ignored.

It can be shown that each of the quantities associated with the longitudinal and thermal modes
(ρ ′, v′

IR, p′
th, T ′) satisfies the same equation (2.19), and they can be solved simultaneously subject

to suitable boundary and initial conditions.

III. SOLUTION OF NONISOTHERMAL DRAINAGE FLOW WITH ADIABATIC WALLS

Consider nonisothermal drainage flow from a semisealed channel with adiabatic walls. We first
solve the longitudinal and the thermal modes (ρ ′, v′

IR, p′
th, T ′). For the irrotational velocity, only

the no-penetration condition is required on the walls. Thus, the boundary conditions on the channel
walls are

y = ±h : v′
IR,y = 0;

∂T ′

∂y
= 0. (3.1)

It can be shown that the density and the thermodynamic pressure also satisfy the same Neumann
condition on the walls,

y = ±h :
∂ρ ′

∂y
= ∂ p′

th

∂y
= 0. (3.2)

The boundary conditions in the flow direction are

x = 0 : v′
IR,x = 0;

∂ρ ′

∂x
= 0;

∂T ′

∂x
= 0,

x = L : ρ ′ = 0; T ′ = 0. (3.3)

In the above, the no-penetration or symmetry condition on the sealed end x = 0 is used; at the exit
x = L, density and temperature are prescribed as ρ = ρe, T = Te, but the velocity v′

IR,x is to be
determined from the solutions. The initial conditions are

t = 0 : ρ ′ = ρi − ρe,

∂ρ ′

∂t
= 0, (3.4)

T ′ = Ti − Te.

Equation (2.19) is solved analytically by the method of separation of variables subject to the
boundary and initial conditions for the density. The temperature field is then obtained in terms of
the density field and the third initial condition in (3.4) for the temperature is thereafter enforced. The
fields (ρ ′, v′

IR, p′
th, T ′) (longitudinal mode and thermal mode) are then completely determined. The

longitudinal mode and the thermal mode turn out to be independent of the transverse coordinate y
(plane-wave solution) under the given boundary conditions; they are given by

ρ ′ =
∞∑

n=0

(
cos

2n + 1

2L
πx

)
[Bn,1eγ̃n,1t + Bn,2eγ̃n,2t + Bn,3eγ̃n,3t ], (3.5)

p′
th =

∞∑
n=0

(
cos

2n + 1

2L
πx

)[
Bn,1

(
γ̃ 2

n,1

αn
− μb + 4μ/3

ρe
γ̃n,1

)
eγ̃n,1t

+Bn,2

(
γ̃ 2

n,2

αn
− μb + 4μ/3

ρe
γ̃n,2

)
eγ̃n,2t + Bn,3

(
γ̃ 2

n,3

αn
− μb + 4μ/3

ρe
γ̃n,3

)
eγ̃n,3t

]
, (3.6)
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T ′ =
∞∑

n=0

(
cos

2n + 1

2L
πx

){
Bn,1

[
Te

pe

(
γ̃ 2

n,1

αn
− μb + 4μ/3

ρe
γ̃n,1

)
− Te

ρe

]
eγ̃n,1t

+ Bn,2

[
Te

pe

(
γ̃ 2

n,2

αn
− μb + 4μ/3

ρe
γ̃n,2

)
− Te

ρe

]
eγ̃n,2t

+ Bn,3

[
Te

pe

(
γ̃ 2

n,3

αn
− μb + 4μ/3

ρe
γ̃n,3

)
− Te

ρe

]
eγ̃n,3t

}
, (3.7)

v′
IR,x =

∞∑
n=0

2n + 1

2L
π

(
sin

2n + 1

2L
πx

)
1

ρeαn
(Bn,1γ̃n,1eγ̃n,1t + Bn,2γ̃n,2eγ̃n,2t + Bn,3γ̃n,3eγ̃n,3t ), (3.8)

v′
IR,y = 0, (3.9)

where Te/pe = 1/(ρeR̃),

αn = −
(

2n + 1

2L
π

)2

, n = 0, 1, 2, 3 · · · , (3.10)

and γ̃n,1, γ̃n,2,γ̃n,3 are the roots of the cubic equation

anγ̃
3 + bnγ̃

2 + cnγ̃ + dn = 0, (3.11)

with

an = cp

R̃
− 1, (3.12)

bn = −
[
αn

(
cp

R̃
− 1

)
μb + 4μ/3

ρe
+ αn

κ

ρeR̃

]
, (3.13)

cn = α2
n

κ

ρeR̃

μb + 4μ/3

ρe
− αncpTe (3.14)

dn = α2
n

κTe

ρe
. (3.15)

It is noted that the pair γ̃2, γ̃3 are complex conjugates and they correspond to the oscillatory motion
of the damped waves, while γ̃1 is real and negative (purely diffusive and associated with thermal
diffusion). The coefficients Bn,1, Bn,2, Bn,3 are listed in Appendix A.

The solenoidal field (transverse mode) (v′
RT , p′

hy ) are induced by the irrotational field via the
no-slip condition for the overall velocity on the walls,

y = ±h : v′ = v′
IR + v′

RT = 0, (3.16)

and they are obtained numerically. For drainage from a semisealed channel, however, the solenoidal
velocity v′

RT does not contribute to the mass flux, as integration of the solenoidality condition ∇ ·
v′

RT = 0 over the entire domain leads to the corresponding volumetric flow rate,

QRT (x) =
∫

Cross section
n · v′

RT da = 0, (3.17)

since the end at x = 0 is sealed. The solenoidal field is two dimensional and an example of the
solenoidal solution is shown in Appendix B.

The analytical solution to the longitudinal and thermal modes is validated by the numerical
solution of the initial-boundary-value problem (IBVP) for the corresponding system of linear
equations. After a simple manipulation to yield a coupled system in terms of only the perturbed
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FIG. 2. The difference between the analytical solution and the numerical solution at the end of one period
for ethylene. ρe = 52.15 kg/m3, Te = 375 K, ρi/ρe = 1.02, Ti/Te = 1.02. (a) Normalized excess density in the
channel; (b) normalized excess temperature in the channel.

temperature T ′ and the perturbed density ρ ′, the IBVP is then solved numerically using the built-in
partial differential equation package CFPDE in COMSOL [26]. In all numerical calculations reported
in this study, the time step used is 1/1024 of the period of the acoustic wave oscillation, 4L/c,
which ensures full and accurate resolution of the acoustic oscillation. Convergence tests have been
conducted by increasing the number of elements used. When using the analytical solution, care
is taken to ensure that enough terms are retained in the infinite series to give a convergent result.
For the purpose of comparison, ethylene is used as the gas, with its physical property listed in
Table I in Appendix C. The microchannel has a gap 200 nm, length 10 μm; and ρe = 52.15 kg/m3,
Te = 375 K, and ρi/ρe = 1.02, Ti/Te = 1.02. The period of oscillation is 1.095 × 10−7 s. In the text
below, we have designated the final equilibrium state (ρe, Te) as (ρ∞, T∞). The normalized excess
density ρ ′/ρ∞ in the channel from the analytical solution is compared to the numerically computed
values for the first oscillatory period. Figure 2(a) shows the differences of the analytically obtained
and the numerically computed normalized excess density ρ ′/ρ∞ at the end of the period for the
entire channel. The differences are no more than 2 × 10−4. A similarly satisfactory comparison is
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FIG. 3. Normalized excess temperature at the midchannel location x = L/2 as a function of time normal-
ized by the oscillation period for ethylene. ρe = 52.15 kg/m3, Te = 375 K, ρi/ρe = 1.02, Ti/Te = 1.02. The
analytical solution captures the oscillation and it agrees very well with the numerical solution.

achieved for the normalized excess temperature T ′/T∞ in the channel: Figure 2(b) shows that the
analytical solution and the numerical solution for the normalized excess temperature differ less than
3 × 10−5. Figure 3 shows the normalized excess temperature at the midchannel x = L/2 for longer
times, where t̄ is the time normalized by the oscillation period. The analytical solution accurately
captures the oscillations and it agrees very well with the numerical solution.

The excess mass inside the channel is the difference between the instantaneous mass and the
final equilibrium mass, m(t ) − m∞, with m∞ = 2ρehL. Figure 4 shows the normalized excess mass
(m − m∞)/m∞ inside the channel as a function of the normalized time t̄ . Clearly, the analytical
solution resolves the short time oscillations and it agrees with the numerical solution. From Fig. 4,
it is also observed that the excess mass not only oscillates in time, but also can become negative,
indicating that the density inside the tube can actually drop below the exit density. It will be shown

FIG. 4. Excess mass inside the channel plotted for long times for ethylene. ρe = 52.15 kg/m3, Te = 375 K,
ρi/ρe = 1.02, Ti/Te = 1.02. Negative value implies that the mass in the channel is below the final equilibrium
value and fluid will be drawn from the reservoir into the channel.
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FIG. 5. Transient temperature distribution inside the channel for ethylene for the nonisothermal model with
ρi/ρe = 1.02, ρe = 52.15 kg/m3, Ti = Te = T∞ at instants t̄ = 20, 100, 1000. Temperature deceases from the
initial condition T = Ti first; it then recovers at larger times, and eventually returns to T = Ti. Temperature
stays above the final equilibrium temperature at all times.

later that the excess mass can even stay negative for a prolonged period of time due to thermal
effects.

IV. THERMAL EFFECT ON THE MASS DRAINAGE RATE

Since the channel is semisealed and the solution for the density is independent of the transverse
coordinate y for adiabatic walls (plane-wave solution), integration of the continuity equation (2.1)
over the volume of the entire channel gives the mass flow rate at the channel exit (drainage rate) as

ṁe = −
∫

channel

∂ρ

∂t
dV = −A

∂

∂t

∫
length

ρdx, (4.1)

where A is the cross-sectional area of the channel. Equation (4.1) indicates that the mass flow rate
is linearly proportional to the channel height. Therefore, the mass flow rate is sliplike, even though
the overall velocity, v′ = v′

IR + v′
RT , satisfies the no-slip condition on the channel walls.

The thermal effect on the fluid recovery process can be examined by comparing the instantaneous
excess mass inside the channel for the present nonisothermal model to that of the isothermal model
with the same density drop ρ = ρi − ρ∞. We first consider the case of zero imposed temperature
change, Ti = Te. The classical approach would have argued that such a flow is isothermal with
uniform temperature inside the channel, justifying the use of the isothermal model. However, if
we use the full nonisothermal equation (2.19), there are nonzero transient temperature variations
inside the channel even for Ti = Te. An example of this is shown in Fig. 5 for ethylene with
ρe = 52.15 kg/m3, Te = 375 K, ρi/ρe = 1.02, Ti = Te for the time instants t̄ = 20, 100, 1000.
The temperature is initially uniform inside the channel, T = Ti. Once the motion commences, the
temperature dips below Ti everywhere due to the expansion of the gas and it continues to drop in
time, such as at t̄ = 20 and t̄ = 100. The temperature then begins to recover at larger times (e.g.,
t̄ = 1000) and it eventually recovers back to T = Ti. This nontrivial behavior for the case of zero
imposed temperature drop Ti = Te can be inferred from the temperature equation (2.18): after the
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FIG. 6. Comparison of excess mass between isothermal model and nonisothermal model with Ti = Te for
ethylene. For both cases, ρi/ρe = 1.02, ρe = 52.15 kg/m3.

pressure time derivative term is eliminated by using Eq. (2.11), Eq. (2.18) becomes

ρeR̃

γ − 1

∂T ′

∂t
= κ∇2T ′ + R̃Te

∂ρ ′

∂t
. (4.2)

Thus, even when Ti = Te, the time rate of change in the density [the last term on the right-hand
side of Eq. (4.2)] can cause a nonzero transient temperature change inside the channel. Such a
result is completely absent in an incompressible flow or when a low Mach number compressible
flow is approximated as an incompressible flow. The nontrivial solution is also evident from the

FIG. 7. Excess mass inside the channel for draiange of ethelyne for the isothermal model and the present
nonisothermal model. ρi/ρe = 1.02, ρe = 52.15 kg/m3. For the nonisothermal model, Te = 375 K, Ti/Te =
1.02. When t̄ > 10, the excess mass stays negative, indicating an undershoot of the mass below the final
equilibrium mass.
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FIG. 8. Excess temperature distribution at t̄ = 100 when oscillations in the density disappear for the
nonisothermal case of ρi/ρe = 1.02, ρe = 52.15 kg/m3, Te = 375 K,Ti/Te = 1.02. The temperature inside the
channel is everywhere above the exit temperature.

analytical solution for T ′, Eq. (3.7): When Ti = Te, the coefficients for the three time-exponential
terms eγ̃n,it (i = 1, 2, 3) do not vanish.

Figure 6 compares the excess mass for the nonisothermal model with Ti = Te and the isothermal
model. The gas expansion induced transient drop in temperature hinders the drainage process, as it
takes longer for the mass inside the channel to drop to the final equilibrium value when compared
to the isothermal model. Clearly, setting Ti = Te does not give rise to the isothermal model as one
would have expected for an incompressible fluid [for which the last term on the right-hand side

FIG. 9. The envelope of the excess mass inside the channel for ethylene for the isothermal model and the
nonisothermal model. Te = 375 K, ρe = 52.15 kg/m3, ρi/ρe = 1.02. The nonisothermal model with Ti/Te =
1.004 coincides with the isothermal case. The excess mass from the nonisothermal model undershoots the final
equlibrium value when Ti/Te > 1.004.
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FIG. 10. Envelope of the excess mass for ethylene for the nonisothermal model with Te = 375 K, ρe =
52.15 kg/m3, ρi/ρe = 1.02. (a) No imposed temperature drop, Ti/Te = 1. (b) Imposed temperature drop
Ti/Te = 1.02. The thermal energy diffusion contribution to the envelope m′

enve,T is always positive for (a) but
always negative for (b), indicating hindrance and enhancement of the drainage process by thermal energy
diffusion effect, respectively.

of Eq. (4.2) vanishes] or from a traditional scaling analysis. The isothermal flow solution for a
compressible gas is only achievable when thermal energy diffusion is negligible, or in the limit of
the Péclet number Pe → ∞, as discussed in Sec. II.

For nonisothermal flows, there are two independent state variables such as ρ, T . For fixed
ρi, ρe, when Ti/Te is increased past unity, the thermal energy diffusion effect can enhance the
drainage process when Ti/Te is large enough. For example, for ρi/ρe = 1.02, Ti/Te = 1.02, ρe =
52.15 kg/m3, Te = 375 K, Fig. 7 shows the normalized excess mass inside the channel as a function
of the normalized time for the isothermal and the nonisothermal drianage flows. For isothermal
drianage, the excess mass oscilates symmetrically about the final equilibrium value (zero) with
a time-decaying amplitude. Each period of oscillation produces a small amount of fluid due to
the ampltiude decay. For the nonisothermal drianage model, the oscillation in the mass becomes
asymmetrical about the final equilibrium value; the magnitude of oscillation is greater than that
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FIG. 11. Mass flow rates for ethylene for the isothermal model and the nonisothermal model with Ti/Te = 1
and Ti/Te = 1.02. ρi/ρe = 1.02. The noniosthermal model can give a mass flow rate either higher or lower than
that for the iosthermal model depending on the magnitude of Ti/Te.

for the isothermal model. As time progresses, the excess mass for the nonisothermal driange flow
becomes and stays negative during the entire oscillation period at large times, indicating that the
denisty inside the channel has fallen below and remains below the exit density. This shows that
the thermal effect significantly speeds up the drainage process and it leads to an undershoot of the
density below the final equilibrium denisty when Ti/Te = 1.02. However, there is no undershoot
of the temperature (see Fig. 3). The oscillations in the excess mass for both models, however,
disappear at the same time instant, roughly after 100 cycles. For the isothermal model, the final
equilibrium state is reached at this time instant, while for the nonisothermal model, it has to recover
from the undershoot of the final equilibrium. This recovery process is nonoscillatory and dominated
by thermal energy diffusion, which eventually brings the excess mass from negative values to the
final equilibrium value of zero. During this final nonoscillatory period, the density inside the channel
stays below the final equilibrium value, while the temperature stays above the final equilibrium
temperature (Fig. 8). This final nonoscillatory portion of the process is to draw fluid from the
outside back into the channel, because the density inside the channel is below the exit density and
the temperature is higher than the exit temperature.

Another way to characterize the drainage process is to plot the excess mass at the end of each
oscillation period, which corresponds to the envelope of the excess mass curves in Figs. 6 and
7. The envelopes, shown in Fig. 9 for the isothermal and nonisothermal models with Ti/Te =
1.0, 1.004, 1.01, 1.02, all with ρi/ρe = 1.02, Te = 375 K, allow us to ignore the details of acoustic
oscillations and focus on the mass change over a large time scale. The nonisothermal model
with Ti/Te = 1.004 coincides with the isothermal case. For a small imposed temperature change
in the range 1 � Ti/Te < 1.004, the isothermal flow drains faster. For nonisothermal flow with
Ti/Te > 1.004, the excess mass is reduced to zero more quickly and it goes on to undershoot
the final equilibrium value (zero) by staying in the negative territory before it recovers to zero.
Thus, compared to isothermal draiange, the thermal effect accelerates the drainage process for a
larger temperature drop, Ti/Te > 1.004, as the excess mass is brought to zero quickly before the
undershoot. It is interesting to observe that the final equilibrium state is reached at the same time
instant for all nonisothermal cases Ti/Te � 1.

Further insights can be gained by analyzing the envelope equation for the excess mass, which is
derived by integrating the analytical solution for the excess density equation (3.5) over the volume
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FIG. 12. Comparison of the excess mass inside the channel between Lighthill’s model and the nonisother-
mal model with different Ti/Te for nitrogen. (a) Ti/Te = 1.02; (b) Ti/Te = 1.

of the channel and then evaluated at the end of each period,

m′
enve =

∞∑
n=0

2(−1)nLH

(2n + 1)π
[Bn,1eγ̃n,1t + 2Re(Bn,2)eRe(γ̃n,2 )t ], (4.3)

where Re stands for the real part. This envelope solution is validated by the numerical solution using
COMSOL. As we commented previously, γ̃n,1 is real and negative, corresponding to thermal energy
diffusion, while Re(γ̃n,2) is negative and it corresponds to the damping rate of the acoustic waves.
Thus, the envelope equation for the excess mass can be expressed as

m′
enve = m′

enve,T + m′
enve,W , (4.4)

with m′
enve,T , m′

enve,W corresponding to the contributions from the thermal energy diffusion and the
acoustic wave, respectively. Figure 10 shows m′

enve, m′
enve,T , and m′

enve,W for the case of zero imposed
temperature drop Ti/Te = 1 and the case of nonzero imposed temperature drop Ti/Te = 1.02. When
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FIG. 13. Comparison of the envelope for the excess mass for the isothermal model, Lighthill’s model, and
the nonisothermal model with Ti/Te = 1.0, 1.02 for nitrogen.

no temperature drop is imposed, the thermal energy diffusion contribution to the excess envelope
m′

enve,T is always positive [Fig. 10(a)]. This indicates that thermal energy diffusion slows down
the decay of the excess mass, retarding the drainage process. This observation supports our earlier
conclusion that in the absence of an imposed temperature drop, the gas expansion induced transient
drop in temperature hinders the drainage process (Fig. 6). On the other hand, for an imposed
temperature drop of Ti/Te = 1.02, the thermal energy contribution m′

enve,T is always negative
[Fig. 10(b)], confirming that for a large imposed temperture drop, the thermal effect reduces the
excess mass and speeds up the drainage process (Fig. 7).

By taking the time derivative of the envelope equation for the mass inside the channel, we can
obtain the net mass flow rate over each period at the exit of the channel. This period-averaged mass
flow rate is plotted in Fig. 11 on a log-log scale for the isothermal case and the nonisothermal cases
with Ti/Te = 1 and Ti/Te = 1.02. It is observed that the mass flow rate obeys the negative one-half
power law in the early times for the isothermal as well as the nonisothermal drainage flows, followed
by an accelerated exponential drop-off to zero. Except for the final exponential decay, the mass
flow rate for nonisothermal drainage with Ti/Te = 1.02 is much greater than that for the isothermal
drainage. This fast drainage leads to a much shorter drain-out time for the nonisothermal drainage,
since the amount of producible fluid, solely determined by the density drop, is the same for all cases.
These results show that neglecting the thermal effect can lead to a significant underestimation of the
production rate. The opposite is true for the nonisothermal case with Ti/Te < 1.004.

V. COMPARISON WITH LIGHTHILL’S MODEL EQUATION

The solution to the nonisothermal drainage flow is also compared to the corresponding solution
to Lighthill’s model equation (2.22). To this end, nitrogen is used (Table II, Appendix C). For
nitrogen, only n = 1 is retained in δl [Eq. (2.26)]; and τ1 = 0.9 ns = 0.9 × 10−9 s and Fn = 1 [13].
The analytical solution of Eq. (2.22) subject to the same boundary and initial conditions for the
density as Eq. (2.19) is

ρ ′(r, x, t ) = 4(ρi − ρe)

π

Nd∑
n=0

(−1)n

2n + 1
e−γnt cos(ωnt ) cos

(2n + 1)πx

2L
, (5.1)
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FIG. 14. The mass flow rate curves corresponding to Fig. 12.

σn = (2n + 1)π

2L
; γn = δ

2
σ 2

n ; ωn = cσn

√
1 − δ2σ 2

n

4c2
≈ cσn, (5.2)

Nd = floor

[
2cL

πδ
− 1

2

]
, (5.3)

where the speed of sound is c =
√

R̃Te for isothermal flow; and the floor function gives the
maximum integer less than or equal to its argument. The channel has a length of 0.1 mm and gap
2 μm.

Figure 12 compares the excess mass computed from Lighthill’s model equation with those from
the full equation (2.19) for Ti/Te = 1.0, 1.02 for nitrogen. Lighthill’s model equation gives an
oscillatory excess mass symmetrical about zero, similar to that given by the isothermal damped
wave equation (2.21). The nonisothermal model with Ti/Te = 1.02 drains to zero faster than
Lighthill’s (before the undershoot), while the nonisothermal model with Ti/Te = 1 drains slower
than Lighthill’s.

In Fig. 13, we plot the envelopes of the excess mass for nitrogen for isothermal [i.e., the
damped wave equation (2.21)], nonisothermal, and Lighthill’s equations. The nonisothermal model
with Ti/Te = 1.02 has the shortest drain-out time (excluding the undershoot and recovery), while
the isothermal model and Lighthill’s equation have the second and third shortest drain-out time,
respectively. The nonisothermal case with Ti/Te = 1 always has the longest drain-out time. The
reason that Lighthill’s equation underperforms compared to the isothermal equation is that the bulk
viscosity contribution to the diffusion coefficient is included through the time-lag term δl in the
diffusion coefficient, which for nitrogen provides a smaller overall diffusion coefficient compared
to the isothermal equation with the diffusion coefficient computed directly using the bulk viscosity
value.

The corresponding mass flow rate comparisons are shown in Fig. 14. All the mass flow rate curves
obey the negative one-half power law initially before a rapid exponential drop. The nonisothermal
case with Ti/Te = 1.02 has the highest mass flow rate before a rapid descent as the excess mass
undershoots zero. For smaller temperature drops, the performance of the nonisothermal cases may
fall below the isothermal case, even below that from Lighthill’s equation.
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VI. CONCLUSIONS

This study shows that volumetric-expansion-driven drainage flow of a viscous gas from a
semisealed narrow channel with adiabatic walls is strongly influenced by the thermal diffusion
effect. Even when the temperature at the exit is not lowered, there is still a transient temperature
drop inside the channel due to gas expansion. The commonly adopted isothermal assumption can
only be achieved in the limit of infinite Péclet number. For a given density drop, the drain-out time
predicted from the isothermal equation or Lighthill’s equation is shorter than the nonisothermal case
for small temperature ratio Ti/Te, but longer than the nonisothermal case for large Ti/Te. Therefore,
thermal effect must be taken into consideration for accurate prediction of the drainage process.

APPENDIX A: COEFFICIENTS Bn,1, Bn,2, Bn,3

Bn,1 = −
(−Xn,3γ̃2 + Xn,2γ̃3

) 4(ρi−ρe )
π

(−1)n

2n+1 + (γ̃2 − γ̃3) 4(Ti−Te )
π

(−1)n

2n+1

Xn,2γ̃1 − Xn,3γ̃1 − Xn,1γ̃2 + Xn,3γ̃2 + Xn,1γ̃3 − Xn,2γ̃3
, (A1)

Bn,2 = − (Xn,3γ̃1 − Xn,1γ̃3) 4(ρi−ρe )
π

(−1)n

2n+1 + (−γ̃1 + γ̃3) 4(Ti−Te )
π

(−1)n

2n+1

Xn,2γ̃1 − Xn,3γ̃1 − Xn,1γ̃2 + Xn,3γ̃2 + Xn,1γ̃3 − Xn,2γ̃3
, (A2)

Bn,3 = − (−Xn,2γ̃1 + Xn,1γ̃2) 4(ρi−ρe )
π

(−1)n

2n+1 + (γ̃1 − γ̃2) 4(Ti−Te )
π

(−1)n

2n+1

Xn,2γ̃1 − Xn,3γ̃1 − Xn,1γ̃2 + Xn,3γ̃2 + Xn,1γ̃3 − Xn,2γ̃3
. (A3)

It is noted that Bn,1 is real, while Bn,2 and Bn,3 are complex conjugate as shown before.

Xn,i = 1

ρeR̃

(
γ̃ 2

i

αn
− μb + 4μ/3

ρe
γ̃i

)
− Te

ρe
, (i = 1, 2, 3). (A4)

APPENDIX B: SOLUTION FOR THE SOLENOIDAL MODE

The solenoidal velocity field is governed by the incompressible equations (2.15) and (2.16).
The solenoidal velocity field is driven by the irrotational field on the channel wall via the no-slip
condition, vIR + vRT = 0. As shown by Chen and Shen [3,4], for drainage flows, the solenoidal field
does not generate any mass flow rate and its role is to enforce the no-slip condition for the overall
velocity. At the exit (x = L), the perturbation of the pressure for the solenoidal velocity field is
zero. At the left boundary (x = 0), the irrotational velocity is zero, vIR = 0. A numerical approach
is adopted in calculating the solenoidal field, as an analytical solution for the solenoidal field is
difficult to obtain, even when the irrotational velocity field is a plane-wave solution. The software
package COMSOL [26] is used for the calculations. The PARDISO direct solver is employed, with the
above boundary conditions. The generalized alpha time stepping method is used with maximum
time step: 17sol;500 of the oscillation period. Quad elements are set up in the entire computing
domain by using a mapped mesh tool. The height of each mesh element is 1/8 of the half height of
the channel. The width of the mesh is 1/512 of the channel length (in our computational example
for ethylene below, h/L = 1/100, Appendix C, Table I). As mentioned in Eqs. (3.55) and (3.56),
the two eigenvalues γ2 and γ3 are complex conjugate which make the solution oscillatory in time.
Figures 15(a)–15(h) show the solenoidal velocity field in each 1/8 period, where the period T =
1.094 × 10−7 s. The velocity magnitude becomes quite small at the time of half period and then the
velocity vector reverses its direction.

APPENDIX C: GAS PROPERTIES

See Tables I and II for gas properties used in the calculations.

084202-18



THERMAL EFFECT ON DRAINAGE FLOW OF A VISCOUS …

FIG. 15. The solenoidal velocity field in each 1/8 period for ethylene, where the period T = 1.094 ×
10−7 s. (a) t = T/8; (b) t = T/4; (c) t = 3T/8; (d) t = T/2; (e) t = 5T/8; (f) t = 3T/4; (g) t = 7T/8; (h) t =
T . The channel conduit half height is 1 × 10−7 m, the length is 1 × 10−5 m. ρe = 52.15 kg/m3, Te = 375 K,
ρi/ρe = 1.02, Ti/Te = 1.02.
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TABLE I. Ethylene properties used in calculations.

Cp J/(kg K) 1.799 × 103

Cv J/(kg K) 1.502 × 103

γ Ratio of heat capacity 1.198
κ Thermal conductivity W/(m K) 0.0355
μ Shear viscosity Pa s 1.429 × 10−5

μb Shear viscosity Pa s 2.700 × 10−3

Te Exit temperature K 375
pe Exit pressure Pa 5.807 × 106

ρe Exit density kg/m3 52.15
c Speed of sound m/s 365.2
h Half channel height m 10−7

L Channel length m 10−5

TABLE II. Nitrogen properties used in calculations.

Cp J/(kg K) 1.042 × 103

Cv J/(kg K) 7.44 × 102

γ Ratio of heat capacity 1.40
κ Thermal conductivity W/(m K) 0.0354
μ Shear viscosity Pa s 3.19 × 10−5

μb Shear viscosity Pa s 6.1 × 10−3

Te Exit temperature K 400
pe Exit pressure Pa 6 × 106

ρe Exit density kg/m3 50
c Speed of sound m/s 344.63
h Half channel height m 10−6

L Channel length m 10−4
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