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Thinning dynamics in spin coating of viscous films is influenced by many physical pro-
cesses. Temperature gradients are known to affect thin liquid films through their influence
on the local fluid surface tension as Marangoni stresses. We show here experimentally
and numerically that adding a static temperature gradient has a significant effect on the
equilibrium film thickness and height profile reached in spin coating. Most notably, we
find that the thickness of the resulting thin film in spin coating scales linearly with the
strength of the thermal surface tension gradient. Once equilibrated, the thin film height
profile is controlled by the temperature profile. For small but nonnegligible Marangoni
number (Ma) the surface has a negative curvature at the center and reaching equilibrium
takes progressively longer with smaller Ma. In this limit, the steady state reached is set by
competition between Marangoni effects and the disjoining pressure.
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I. INTRODUCTION

Thin layers of fluids on solid substrates display surprisingly rich dynamics due to the interplay
of a variety of forces [1–5]. Much progress has been achieved on the study of thin fluid films. For
low Reynolds number flows, they are well characterized by the lubrication approximation of the
Navier-Stokes equations. This useful reduction allows for tractable analysis of a wide range of fluid
dynamics problems, such as liquids spreading on flat surfaces [6], inclined surfaces [7], convergent
viscous gravity currents [8], spin-coating applications [9–11], flow of granular suspensions [12],
and geophysical [13] contexts, with “thin” here meaning that the height h of the film is small with
relative to the typical lateral length scale. The spatiotemporal evolution of the height field h(x, y, t )
is of a very general form, essentially a nonlinear conservation equation, describing how a profile for
h evolves in time. The evolution is driven by various forces, including gravitational, surface tension
and, in a rotating system, centrifugal forces. If all the forces are sustained at constant levels, then
the film may approach a steady-state profile.

In a rotating container, the free surface of a fluid will develop a parabolic free-surface profile
to balance gravitational pressure and centrifugal forces with the amplitude of the profile increasing
with the rotation rate [8,14–16]. For sufficiently large rotation rates, � > �c, the profile will be
truncated by the bottom of the container [8,14]. Related flows are observed in other studies using a
stationary container with a rotating bottom plate [17,18]. For a fluid that wets the container walls,
a thin film of fluid will remain in the center of the container, we call this the central thin film
(CTF), whose radius depends on the rotation rate [8]. Away from the center, the height profile of the
surrounding layer will be parabolic. After sufficient time, the full height profile h will converge
to an equilibrium, due to conservation of mass in the container. The CTF drains progressively
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FIG. 1. (a) Schematic drawing of the container with the interferometry setup and all the relevant parame-
ters: the rotation speed � in radians per second, the initial filling height H0, the radius of the container R, the
dynamic viscosity and surface tension of the fluid, η, γ , respectively. (b) The location of the heating element
underneath the container, and double-walled rotating axis that doubles as a cooling tube.

slowly, which makes spin coating of engineering interest: spin coating allows for the deposition of
thin layers of well-defined thickness on the order of micrometers. The region connecting the outer
parabolic solution and the CTF (effectively a circular contact line) is in fact quite nontrivial as we
will see, which hinders precisely defining the edge of the CTF. In engineering applications, the wall
of the container is usually omitted, allowing for the fluid to drain from the outer edge of the plate.

The thinning dynamics of the film is described in the classic work of Emslie, Bonner, and Peck
[19] (EBP), who considered the simplest case of centrifugal forcing of a viscous fluid. From the
balance of viscous and centrifugal forcing, they derived that h(t ) ∝ t−1/2, a progressively slowing
down thinning behavior. This behavior has been confirmed and expanded by many [20–24] and is
of fundamental importance in all spin-coating techniques, for example, in lithographic microchip
production and in making the next generation of photovoltaics [25].

Here we show that the addition of a surface tension gradient stress also known as a Marangoni
stress drives nontrivial spatiotemporal dynamics in a thin fluid film generated by spin coating. The
inward Marangoni stress we create produces an accumulation of mass in the center of the film. We
quantify how the thinning dynamics is affected by Marangoni stresses, and how the equilibrium
profile is determined by the balance of Marangoni forcing with the various other forces acting on
the thin film. We observe that Marangoni driving can even qualitatively change the structure of the
surface at the edge of the CTF.

The paper first describes the experimental (Sec. II) and theoretical approach (Sec. III) used, and
then presents the results in four main divisions: Sec. IV A shows how we can recover the classic EBP
scaling dynamics; Sec. IV B describes how Marangoni forcing changes the EBP scaling. We also
obtain results on the final equilibrium profile of the thin film spot after thinning has ceased: For the
isothermal case, these results are described in Sec. IV C; the Marangoni effects on the equilibrium
profile are described in Sec. IV D.

II. EXPERIMENTAL SETUP

The experimental system consists of an initially uniform layer of fluid of thickness ∼3 mm in
a shallow cylindrical container—see Fig. 1. The container is spun-up using a stepper motor to
rotation speed � = 2π radians per second (rps) unless otherwise noted. The container measures
13 cm in diameter and 2 cm in height. On the bottom of the container, a 4-inch-diameter silicon
wafer (University Wafers) is placed; the wafer is fixed to the base through the deposition of a small
(�1 ml) amount of fluid between wafer and the bottom of the container. The suction force that keeps
the wafer stuck to the container relies on the hydrodynamic drag on the thin film between wafer and
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FIG. 2. Fringe pattern of the CTF after steady rotation for 1 hour at � = 2π at isothermal conditions
(leftmost panel). At t = 0 min, heating/cooling is turned on. Even though the CTF has not equilibrated to
its steady state, the Marangoni forcing immediately induces strong height variations in the CTF. Image crop
measures about 4.6 cm in width.

container and remains even after complete submersion of the wafer. The container is filled with
a volume V of fluid, which gives an initial filling height H0 = V/(πR2) with R the radius of the
container. We use polydimethylsiloxane (PDMS) for all experiments described in this work; this
fluid completely wets the silicon wafer. The fluid wetting, combined with the fact that the thin films
explored in this work are never thinner than several microns eliminates the necessity of extreme
wafer cleanliness. The properties of PDMS are density ρ = 965 kg/m3 [26] and γ = 0.02 N/m. The
thermal sensitivity of the surface tension for PDMS is dγ /d� ≈ 6 × 10−5N/(◦C m) [27,28]. We
use a range of dynamic viscosities of 10–10,000 mPa s; in all cases the viscosity and rotation rates
used ensure that Coriolis forces do not play a role, since the Ekman number Ek = η/(ρ�h2) � 1
is large in our experiments [19]. The transparency of the PDMS and reflectivity of the silicon wafer
allows for a laser-assisted alignment of the gravity-leveled fluid surface and the silicon wafer in
the container, whose orientation can be tuned by set screws. Interferometry provides access to the
spatiotemporal features of the thin film dynamics [29]—see Fig. 1(a). Wafer illumination is provided
with a uniform sodium light via a beam splitter. The spatial structure of the interference pattern of
reflected and incoming light waves is recorded with a digital camera. In particular, height dynamics
at any location can be measured through the rate at which interferometric fringes evolve. The fringe
succession rate can be measured with the varying intensity of the interference pattern, which we
record by camera. The magnitude of the interference signal (the pixel values in the recording) is
irrelevant, but the periodicity of the signal indicates the passing of fringes, which represent a height
reduction (or increase) of known amplitude. Here we use this technique to measure the thin film
dynamics in the center of the container at r = 0. We will neglect the weak temperature dependence
of the index of refraction (required for the fringe-based height measurements) of PDMS.

In isothermal experiments, the container is uniformly heated to a temperature of 24 ◦C to fix
the temperature-dependent viscosity η and surface tension γ of the fluid. Temperature control
is implemented by running water at a set temperature through the double-walled rotating axis.
To establish Marangoni forcing, we cool the center of the container by running cooling water
through the double-walled rotating axis while heating the outside ring of the container with a foil
heater (Minco), positioned underneath the container [Fig. 1(b)]. The Marangoni forcing has a very
significant effect on h(r). To show the qualitative effect of the initiation of heating on an almost flat
CTF, see Fig. 2. After isothermal spin-up of about 1 h, we turn on Marangoni forcing. While the
container is establishing its equilibrium radial temperature profile, we see strong evolution of the
fringes in the CTF region.

The power for the foil heater is supplied through a slip ring (Moog) on the rotating axis. In the
thermal gradient experiments, the level of cooling, set by the thermal bath that circulates the water
(Neslab RTE7), is always run at maximum capacity. The maximum thermal gradient is then achieved
at the largest heating power we can provide, which is 100 W. The edge temperature at 100 W heating
is about 60 ◦C. For a complete description of the setup, see [30]. This heating mechanism gives a
azimuthally symmetric thermal profile in the bottom of the container, and hence on the silicon
wafer, as shown in Fig. 3(a). The temperature gradient is opposite in direction compared to the
thermal profile considered in Ref. [31].

084103-3



JOSHUA A. DIJKSMAN et al.

0 0.4

radius [units of R]

(a)

te
m

p
e

ra
tu

re
  [

o
C

]

(b)

60

50

40

30

20

0.8

Eq. 3
Eq. 2

IR image

60

50

40

30

20
-0.8 -0.4

IR tem
perature profile

1.0-1.0 0.6-0.6 -0.2 0.2

FIG. 3. (a) Infrared (IR) false color top view of the container showing the temperature profile of the base
obtained at the largest thermal gradient possible. Color indicates temperature, ranging from 20 ◦C to 60 ◦C. The
temperature profile on the dashed line is shown in (b) for the entire wafer, as a function of the radial position in
units of the container radius R (blue solid line). The black short-long dashes line indicates a linear fit with slope
7.4 ◦C/cm. The actual thermal profile is well fitted to a smooth profile based on a Gaussian (red dash-dotted
curve; see text) that approximates the piecewise-defined steady-state solution (green solid curve). The arrow
and dashed vertical line indicate the radius of the cooling tubes at the base of the container.

Figure 3(b) shows the temperature profile on a silicon wafer at maximum heating/cooling
capacity in an empty container. We measure the profile with an infrared (IR) camera (FLIR A325).
The infrared measurements require a known emissivity for the substrate, and low reflectivity of
spurious infrared radiation into the camera. The measurements are thus performed with a layer of
spray paint (Krylon flat white 1502) on the silicon wafer and in an empty container. We determined
the infrared emissivity of the spray painted silicon wafer by calibrating the response at known
temperature, similar to Ref. [32]. The spray painted wafer was subsequently placed in the container
in the same way an uncoated wafer would be mounted in an experiment with an actual fluid present.
The IR data is available only up to the edge of the silicon wafer, at approximately 0.8R.

III. GOVERNING MODEL

A. Temperature profile

Due to the high thermal conductivity of the wafer, we expect the temperature profile to be
maintained in the steady state set by the balance of the outer heating and central cooling. In the
circular geometry, the temperature difference does not yield a uniform temperature gradient over
the whole domain, so some attention is needed to the form of the temperature profile. We discuss
an idealized profile with prescribed boundary conditions, but then make use of an empirical fit that
proves to be more convenient.

At the outer edge, the heating effectively sets the temperature at the boundary, r = R. On the
interior, the temperature should satisfy the steady axisymmetric heat equation, with a heat sink, q,
for the influence of the cooling. To represent the idealized conditions, we write the steady-state heat
equation in cylindrical coordinates,

0 = κ

r

∂

∂r

(
r
∂�

∂r

)
− q, (1)

in which κ is the thermal conductivity. We model the cooling as being a uniform constant value over
a small inner region, 0 � r � r1, and zero outside. Consequently, the temperature distribution can
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be described over the central and outer annular regions in terms of a parabolic profile and the classic
axisymmetric steady-state solution,

�(r) = �0 + q

4κ

{
r2 0 � r � r1

r2
1 + 2r2

1 log(r/r1) r1 � r � R
, (2)

where �0 is the temperature at the origin. Figure 3 shows that Eq. (2) matches the experimental
profile well. Over a significant portion of the domain, the profile has a nearly uniform radial
temperature gradient of about 7.4 ◦C/cm. For PDMS [27,28], this translates to a maximum surface
tension gradient of about 4.4 × 10−2 N/m2. It is important to note that it is not appropriate to
approximate �(r) by a linear profile because this would yield an unphysical gradient in the solution
at the origin which can produce spurious behaviors.

Fitting Eq. (2) to the actual temperature profile data as shown in Fig. 3, we obtain an inner region
where the parabolic profile applied with r1 ≈ 1.95 cm (r1 ≈ 0.3R, scaled relative to R). This radius
is much larger than the width of the tubing ri ≈ 0.17R indicated in Fig. 3(b). We conclude that
the assumption of uniform central cooling is not exactly satisfied and will replace Eq. (2) with a
qualitatively equivalent but less restrictive empirical profile.

The qualitative form of the temperature profile given by Eq. (2) should be mostly insensitive to
variations in the properties of the central cooling, but we have not attempted to calibrate those values
precisely. It will be convenient to replace this with an empirical fit to a single smooth function on
0 � r � R, given by

�(r) = �0 + B[1 − exp(−Cr2)], (3)

which has �′(0) = 0 at the origin. Here B,C are dimensional fitting constants: C relates to the
effective width of the central cooling, while B scales with overall temperature rise to the outer edge
of the container. The product BC corresponds to the ratio of the source strength to conductivity from
Eq. (2), BC = q/(4κ ), and the effective linear temperature gradient is given by the maximum slope,
�′

max = B
√

2C/e. This profile fits the experimental measurements well and is very close to Eq. (2)
over most of the domain [see Fig. 3(b)]. For our experimental setup, by fitting to the profile in Fig. 3
we determined C ≈ 0.0935 cm−2.

B. Lubrication model

The time-dependent film height h(r, t ) in the rotating container is described with a the time-
dependent axisymmetric lubrication approximation that includes surface tension, surface tension
gradients, gravity, centrifugal force, and disjoining pressure [9,10,30,33,34],

− 1

3r

∂

∂r

{
1

η(�)

(
ρ�2r2h3 + 3rh2

2

dγ

dr
− rh3 ∂

∂r

[
ρgh − A

h3

]
+ rh3 ∂

∂r

[
γ

r

∂

∂r

(
r
∂h

∂r

)])}
= ∂h

∂t
,

(4)
where h is the height of the axisymmetric surface depending on the radial coordinate, r, and time, t .
In the influence of the wetting properties of the container’s base is given by the contribution of the
disjoining pressure, 
 = A/h3, with negative Hamaker constant for complete wetting.

To incorporate thermal Marangoni stresses, we use the temperature profile �(r) to write

dγ

dr
= dγ

d�

d�

dr
= −τ

d�

dr
, (5)

with τ being a material parameter that captures the temperature dependence of the surface tension
of PDMS. We assume a linear dependence of the surface tension γ on the temperature � [6,35];
the literature suggests τ ≈ 6 × 10−5 N/K m [27,28,35]. The viscosity of PDMS also depends on
temperature through Arrhenius-like behavior [36]. For the 100 mPa s fluid in the experiments, we
use η(�) = 10750/�−0.5168 with � in Kelvin from Ref. [36] and note that the activation energy
in the Arrhenius behavior is relatively independent of the chain length in this regime of PDMS
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composition [36]. Note that since the viscosity is r-dependent, its form could be important for the
time-dependent evolution of the film [24]. Below we will show that the dependence of η on spatially
varying temperature has only weak effects on the dynamics. In contrast, the temperature dependence
of the surface tension will be important for generating Marangoni stresses.

The temperature dependence of the PDMS density is only about 5% over the explored temper-
ature range [37,38] and will hence be neglected. Similarly, γ drops by only 10% from the value at
the center of the container over the explored temperature range [35]. Our computational results for
Eq. (4) using γ = γ0 − τ (� − �0) show that this variation in surface tension can be neglected in
the capillarity term and that γ can be treated as a constant (γ0) for that term.

We nondimensionalize Eq. (4) with h(r, t ) = H0h̃(r̃, t̃ ), r = Rr̃, t = T t̃ with the timescale T =
η0R2/(ρgH3

0 ) based on the balance between viscous and gravity-driven effects, where the viscosity
η0 is based on the temperature at the origin, η = η0η̄(r̃). With these choices and after dropping the
tildes on all nondimensionalized variables, the scaled equation is

− 1

3r

∂

∂r

(
1

η̄(r)

{
Fr2 r2h3 − Ma

3rh2

2
φ(r) − rh3 ∂h

∂r
− Ha

3r

h

∂h

∂r
+ rh3

Bo

∂

∂r

[
1

r

∂

∂r

(
r
∂h

∂r

)]})
= ∂h

∂t
,

(6)
where the nondimensionalized temperature gradient function is

φ(r) = 2cre−cr2
with c = 3.95, (7)

where c = CR2 (analogous to a Damkohler or Thiele parameter for the dimensionless ratio of a
reaction rate to a diffusivity) and other dimensionless parameters being

Fr2 = �2R2

gH0
, Ma = τB

ρgH2
0

, Ha = |A|
ρgH4

0

, Bo = ρgR2

γ0
, (8)

respectively: a rotational Froude number, a modified Marangoni number (the ratio of thermally
driven surface tension gradients to gravity), a dimensionless Hamaker parameter, and a Bond
number based on the size of the container.

We use a second-order-accurate implicit finite difference scheme to solve the time-dependent
axisymmetric lubrication Eq. (6) subject to no-flux boundary conditions, which maintains a fixed
fluid volume. In addition, we also solve for the steady-state profiles with a different quad-precision
numerical code to give an independent check on the accuracy of the computational results for
large times. We use values consistent with PDMS; ρ = 965 kg/m3 and A = −7.6 × 10−21J for a
numerically convenient Ha = 10−14.

IV. RESULTS

A. Isothermal thinning dynamics

We study the thinning dynamics for the system with H0 = 2.9 mm, � = 2π rps, and PDMS oil
with viscosities in the range η = 10–10 000 mPa s with the fringe-passing technique described in
Fig. 4 and via solving Eq. (4). Under steady rotation the thickness of the central film h(r = 0, t )
will decrease until an equilibrium state is reached. Due to the thinning of the CTF during rotation,
viscous forces increase progressively as the shear rates increase in the thinning layer, while the
centrifugal force remains constant. The equilibrium solution is thus approached only very slowly.
In our rotating container, we track the evolution of the thin film by recording the succession of
fringes at r = 0, the center of the container. Each successive fringe implies a thinning of the central
thin film by h f = λ/2n = 210 nm with λ being the wavelength of the sodium light (λ ≈ 588 nm)
and n the index of refraction of PDMS (n ≈ 1.4). A typical intensity profile for the center of the
container is shown in Fig. 4(a): clearly the fringe succession period T = tk+1 − tk , corresponding
to h(0, tk+1) = h(0, tk ) − h f , grows over time. Solving Eq. (4) gives the expected EBP thinning
dynamics with a scaling of h(r = 0, t ) ∝ t−1/2 in the CTF as shown in Fig. 4(b). Eventually
the numerical solution reaches a steady-state profile in which the final equilibrium height is set
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FIG. 4. (a) Typical interferometric signal at r = 0 for a thinning experiment. The increasing period length
of the intensity modulation in the interferometric signal signifies a decreasing thinning rate. (b) The result
of numerically solving Eq. (4) with the parameters from a 1 Pa s spinning experiment. The solid black line
has a slope corresponding to the EBP scaling of t−1/2. The arrow points to the plateau in h(r = 0, t ) when
the equilibrium profile was reached. (c) Experimental data on the fringe succession time increase with time
measured for various fluid viscosities, in units of mPa s: (10, red 	), (100, indigo +), (1 000, green ◦), (10 000,
light blue ×) at � = 2π rps. The green line corresponds to the data is the same as shown in panel (b), in
the fringe succession time representation. The dashed line indicates the experimental bound where the fringe
passing takes more time than the duration of the experiment. (d) Rescaling the time axis with the EBP scaling
of η−1/3, we can collapse all data from panel (c). In the fringe succession representation, the expected EBP
scaling corresponds to t3/2 (see text) as observed (black line).

by the disjoining pressure. Numerical data shown in the aforementioned panel is obtained for
the experimental conditions of a thinning experiment with a 1 Pa s fluid. We perform equivalent
experiments for a range of different viscosities by counting the number of fringe successions as
a function of time to obtain scaling of h(r = 0, t ). All experiments are done at a rotation rate of
2π rps.

We cannot track all the passing fringes, as recording the entire experiment on video would result
in prohibitively large data sets. Instead, we record short periods of the thinning process at several
stages during the thinning process. Each recording is long enough to observe the length of a fringe
passing period, so from every recording we can estimate the thinning rate. However, as we do not
record the total number of passed fringes, we cannot get an accurate measure of the total change
in the height profile; we can only record the thinning rate. The minimum fringe passing time is
of the order of several frames in the 30 frames per second video imaging, limiting the thinning
rate measurements in the early stages of the thinning process. The manual recording of thinning
dynamics make the thinning rate measurements irregularly spaced in time at later times. Our
experimental method yields a small error on both fringe passing duration and time, which is relevant.
of extracting data from videos by making intensity plots as in Fig. 4(a) of the video data obtained in
the three experiments. after which we manually measured the length of one period centered around a
given time point. Because all T are much larger than the frame rate, the error in the determination

084103-7



JOSHUA A. DIJKSMAN et al.

time [sec] 

ΔT
/Δ

h
f [

se
c] 102

100

10-1

101

103

104103102

3/2

time [sec] 

104103102

102

10-4

100

10-2

Δh
f 
/Δ

T
 [

1
/s

e
c]

(a) (b)
ΔT = t

FIG. 5. (a) Experimental (symbols) and numerical (solid curves) data on thin film height dynamics at r = 0
during spinning with � = 2π rps and subject to different thermal gradients: (7.4 ◦C/cm, red ◦), (6 ◦C/cm,
indigo +), (1.8 ◦C/cm, green 	). For the numerics, we used B = 39, 13, 3.25 corresponding to a maximum
thermal gradient of: (6 ◦C/cm, red), (2 ◦C/cm, blue), and (0.5 ◦C/cm, green) to obtain best fits. Inset: digital
image data, showing the circular fringes of the fluid hump in the center. Image width is approximately 3 mm.
The dashed line indicates the experimental bound where the fringe passing takes more time than the duration of
the experiment. The error on the experimental is of the order of the symbol size and explicitly shown only for
the last data point of each set. (b) Same data as in (a), now plotted as a thinning rate to show that the divergence
of T represents a slow down.

of T is certainly always much smaller than the symbol size used in our figures, especially when
shown on a logarithmic scale. However, our data extraction method couples the uncertainty in t to
the length of the period T , which gives a natural bound for the error t − T � t � t + T . We
include this bound visually and in error bars on data points where this error becomes of the order of
the symbol size, which is only in Fig. 5.

Results are shown in Fig. 4(c). The slowdown in thinning is clearly observed by the gradual
increase in T/h f . The numerical solution shown in Fig. 4(b), from which we compute the
derivative T/h f from the h(r = 0, t ) data, also coincides with the corresponding experimental
data without any free fitting parameters. Experimental data for fluids with different viscosities can
be collapsed by rescaling the time axis with η−1/3 as shown in Fig 4(d), also consistent with
EBP scaling. The rescaling shows clearly that the time between a fringe succession T ∝ t3/2,
which implies that h(t ) ∝ t−1/2, also consistent with the EBP scaling. These results show that our
experimental and numerical methods in the rotating container geometry are effective in capturing
the classic thinning dynamics. Interestingly, they indicate that the accumulation of fluid at the edge
of the container during its rotation do not noticeably affect the EBP scaling for the thinning of the
CTF.

B. Marangoni effect in thinning dynamics

We can now determine the effect of adding thermal Marangoni forces to spin-coating appli-
cations. We probe the thinning dynamics for a η = 100 mPa s silicone oil spun at � = 2π rps
with H0 = 2.9 mm. In three different experiments, we provided an equilibrated, steady thermal
gradient profiles of 7.4, 6, and 1.8 ◦C/cm. The thinning dynamics in representation T/h f

are shown in Fig. 5(a). The early time thinning behavior displays the classic EBP scaling with
T/h f ∝ t3/2, corresponding to h ∝ t−1/2. After some time however, the thinning dynamics
slows down substantially, leading to what looks like a divergence of T/h f . We check that
our numerical simulations provide the same perspective. We can indeed quantitatively capture the
experimental observations with the numerics even if we remove the temperature dependence of the
viscosity; we will justify this simplification below—see Fig. 5(a).
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FIG. 6. (a) Numerical profiles h(r, t ) from Eq. (6). Dash-dotted lines assume a constant η; for the solid
lines we have η(�). Dashed black curves give predictions of the steady-state profile described in Secs. IV C
and IV D and the semi-parabolic profile attained near the outer wall as described in Sec. IV C. (b) Numerically
computed evolution of the film thickness h̄(t ); again solid lines are with temperature-dependent viscosity and
dash-dotted lines assume constant viscosity. The scaled curvature h1(t ) at the origin is shown with (red) and
without (blue) the temperature dependence of the viscosity. The form of the viscosity is significant for the
central curvature but negligible for the film thickness. h̄(t ) and h1(t ) are shown on the same scale. The gray
area in (b) indicates the same vertical range as shown in (a).

Note that given our experimental setting, we allow for a small variation in the numerical value of
the thermal stress gradient strength B, as we can only image the thermal profile at the base and have
to assume a homogeneous temperature in the thin fluid layer. The divergence in the thinning time
is accompanied by the appearance of a set of rings in the center of the rotating container [Fig. 5(a)
inset]. This suggests that the thermal Marangoni stress, which is directed towards the center of the
container, draws fluid inward and serves to increase the height in the center of the container. The
numerical simulations again confirm the physical understanding of the experimental behavior. In
Fig. 6(a) we show computed h(r, t ) profiles at several times in the dynamics subject to a thermal
gradient of approximately 2 K/cm. After approximately 104 time units, the profile has effectively
reached a steady shape with a central fluid hump. With the appearance of the hump, deviation with
respect to EBP dynamics and indeed convergence to a finite-thickness steady state is expected.

The influence of Marangoni effects on the thinning behavior can be understood from a simplified
version of Eq. (6). Similar to approaches used in Refs. [24,34] we will consider the evolution of the
height profile near the center of the container,

h(r, t ) ∼ h̄(t ) + h1(t )r2 + h2(t )r4 r → 0, (9)

where the scaled viscosity is likewise expanded as η̄(r) ∼ 1 + η̄1r2 + η̄2r4 yielding the equations
for the evolution of the film thickness and curvature at the center of the container,

dh̄

dt
= −2

3
Fr2 h̄3 + 2cMa h̄2 + 4

3
h̄3h1 + 4Ha

h1

h̄
− 64

3Bo
h̄3h2, (10)

dh1

dt
= −4c2Ma h̄2 + 2η̄1

(
2

3
Fr2 h̄3 − 2cMa h̄2

)
+ O(h1) + O(h2), (11)

where for an initially flat film, the starting state will be h̄(0) = 1, h1(0) = h2(0) = · · · = 0. For
systems subject to moderate thermal and rotational forcing, the Froude and Marangoni terms will
dominate the evolution of the thickness. For short times (when h̄ ≈ 1 and h1, h2 are small), the
central curvature grows linearly, and the temperature-dependence of the viscosity (represented
by the η̄1 term) can make the central hump noticeably more prominent; see Fig. 6. Neglecting
this effect, by taking the viscosity to be a constant, η̄ ≡ 1 yields a nearly flat central film with
h(r, t ) ≈ h̄(t ) almost until the equilibrium profile is reached; see Figs. 6(a) and 6(b). We will use
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this simplification for the remainder of the paper; note that at equilibrium, the height profile is
independent of the form of the viscosity since η̄(r) factors out of the flux.

Assuming the curvature to be small, we can drop the influence of capillarity including any
temperature dependence in γ , as was numerically show earlier to be insignificant. We will also
neglect disjoining pressure for short to moderate times while the CTF remaining relatively thick.
Consequently, the r → 0 limit yields the leading order equation

dh̄

dt
= −2

3
Fr2h̄3

(
1 − 3cMa

Fr2 h̄

)
, (12)

where c is the parameter from Eq. (7) relating to the variance of the temperature profile about the
origin. If the curvature were retained, it would give only a small increase in the coefficient for this
thinning rate, Fr2 → Fr2 + 2|h1|. When h̄ is relatively large, the factor in parentheses will be close
to unity and the solution will be

h̄(t ) ∼ (
1 + 4

3 Fr2 t
)−1/2

, (13)

which corresponds to the EBP scaling; see Fig. 7(a). For longer times, as h̄ becomes smaller, the
influence of the Marangoni stress is to slow the EBP thinning rate and to establish an equilibrium
film thickness where Marangoni stresses and centrifugal forcing balance,

h̄∗ = 3cMa

Fr2 , (14)

see Fig. 7. Consequently, Eq. (13) gives an estimate of the (dimensionless) time when a near-
equilibrium thickness has been reached, t∗ = 3(h−2

∗ − 1)/(4Fr2), for small Ma, yielding h̄∗  1,
this yields t∗ ∼ Fr2/(12c2Ma2). For our experimental settings at relatively large Ma, this yields
dimensionless t∗ ∼ 104 and larger; as the timescale T = η0R2/(ρgH3

0 ) is approximately 1.65 s, this
equilibration estimate consistent with Fig. 5(a). Since the timescales needed to explore the thinning
dynamics become prohibitively large for smaller Ma, and experimental control of the temperature
gradient is not ideal with smaller temperature gradients, we will explore the long time behavior only
numerically.
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FIG. 7. Numerical simulations for (a) the time-dependent height profile dynamics in the center h(r = 0, t )
for a range of Marangoni stresses; the color coding is the same as in (b). The standard EBP scaling of −0.5
is satisfied initially [black line, Eq. (13)]; eventually an equilibrium height heq is reached as indicated by the
plateaus [Eq. (14)]. (b) The equilibrium heights heq(r = 0) for a range of Marangoni strengths Ma/Fr2; the
indicated linear scaling in Ma is consistent with the prediction from Eq. (14).
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FIG. 8. Numerically computed properties of the isothermal equilibrium solutions of Eq. (6) on log-log
plots: (a) Thickness of the film at the center, h(r = 0), showing excellent agreement with the predicted
dependence on rotation rate, h(0) = 1 − Fr2/4 for Fr < 2 from Eq. (15) (red curve) and a fit to an empirical fit
(dashed) for higher rotation rates. (b) The curvature at the center of the container, h′′(r = 0), with analytically
predicted behaviors for low rotation rate [h′′(0) = Fr2] and Eq. (19) for larger Fr.

Note that Fig. 7(b) shows deviations from the linear scaling with respect to (Ma/Fr2) for small h
(and very small Ma); we will see that this occurs when the disjoining pressure is no longer negligible
compared to Ma and establishes a minimum thickness for the CTF layer.

C. Isothermal equilibrium profiles

To better frame the influences of the Marangoni stresses on the steady CTF profile, we first review
behaviors for the isothermal free surface fluids in rotating containers [14]. Assuming h = O(1),
allowing us to neglect disjoining pressure effects, for small rotation rates the steady free surface
will have a central depression that is paraboloidal,

h(r) = 1 + Fr2

2

(
r2 − 1

2

)
+ Fr2

[
2

Bo
− I0(r

√
Bo )√

Bo I1(
√

Bo )

]
. (15)

This result incorporates the contribution of surface tension through a term involving the ratio of
modified Bessel functions Ii. Surface tension has a weak influence on the form of the solution,
yielding a boundary layer of width O(

√
Bo) → 0 at the outer wall of the container to satisfy a

contact angle condition, here taken to be h′(1) = 0.
For higher rotation rates [14], a central bare spot will form,

h(r) ≈
{

0 0 � r < rc
1
2 Fr2

(
r2 − r2

c

)
rc < r < 1

, (16)

where the radius of the bare spot is given by

rc ≈
√

1 − 2

Fr
� 0 for Fr � 2. (17)

Note that for large rotation rates, this shows that the fluid volume becomes forced into a narrow layer
at the outer walls of the container, of width 1 − rc ∼ 1/Fr = O(�−2) → 0 as � → ∞. Similar
expressions for a “fluid hole” were derived in Ref. [16], but there the influence of gravity was
neglected. This expression for the radius of the hole gives a very good estimate of the critical Froude
number corresponding to the maximum rotation rate for the onset of formation of a hole, Frc = 2,
or equivalently, �c = 2

√
gH0/R.

In reality, on a completely wetting substrate, the “bare spot” will not be dry and will retain
an adsorbed thin film due the intermolecular forces with the substrate, this describes our CTF.
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FIG. 9. (a) Computed heq(r) for a range of Marangoni strengths equivalent to Fig. 7. The color scale is the
same in all panels. Panel (b) shows a close-up on the CTF region for small heights (and small Ma) from the
profiles in panel (a). We observe that the curvature at r = 0 changes sign as the limit Ma → 0 is approached.

Neglecting the influences of capillarity and gravity for very thin films, by balancing the effects
of the centrifugal effects with the disjoining pressure, we can obtain an approximate steady height
profile for the CTF region,

Fr2r2h3 − Ha
3r

h

dh

dr
= 0 → h(r) =

(
h−3

0 − Fr2

2Ha
r2

)−1/3

, (18)

where h0 = h(0) is the height at the origin. This solution can be used to produce a scaling relation
for the curvature of equilibrium solutions at r = 0,

h′′(0) = Fr2

3Ha
h(0)4 > 0. (19)

The scaling for h(0) for Fr > 2 is not clear, based on the numerical simulations we have fit the
data to an empirical relation like h(0) ∝ (Fr − 2)−0.25/ ln(Fr)0.72; see Fig. 8(a). In summary, when
Marangoni forcing is absent, the curvature of the film at the origin is positive for all rotation rates,
but above the critical Froude number, the central curvature becomes much smaller and depends
sensitively on the wetting properties of the substrate [see Fig. 8(b)]. While Fig. 8(a) shows that the
simplified prediction for the critical Froude number agrees very well with the full simulations, Fig. 9
shows that neglecting capillary effects and the disjoining pressure does affect the profile near the
predicted CTF radius given by Eq. (17).

D. Marangoni effects on the equilibrium profile

To explore the equilibrium profile dynamics at finite Marangoni number, we again use the
experimental values for all parameters in the numerical exploration and pick 100 mPas for viscosity
and 2π rps for the spinning rate. Depending on the strength of the Marangoni stresses, we observe
that the thinning in the center of the container initially follows the standard EBP scaling and reaches
a minimum equilibrium thickness for the entire range of Marangoni strengths explored; see Fig. 7(a).

As described earlier, centrifugal effects scaled by the Froude number work to force fluid out of
the central region, with the disjoining pressure and gravity opposing this outflow. Thermocapillary
effects due to the imposed temperature gradients will promote opposing inwards flows. To explore
the full range of behaviors that can occur from different balances of these effects, we use numerical
simulations to compute the steady-state solutions of Eq. (4) over a range of Marangoni numbers.

Figure 9 shows steady profiles in the central thin film region for a range of Marangoni numbers,
with other parameters fixed in the regime with Fr > 2. Figure 9 shows that for very small Ma,
the central thin film will have positive curvature; this is to be expected from the result Eq. (19) for
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FIG. 10. (a) The absolute value of the curvature of the steady-state film height at the origin, h′′
eq(r = 0).

Diamonds indicate positive value (a local minimum); filled circles represent negative curvature (a central hump)
obtained from long-time runs of the dynamic problem Eq. (6). The solid line was obtained by solving the
steady-state version of the equation over a range of Ma values. Scaling regimes are indicated with the thin
solid lines and accompanying scaling exponents. The green, blue and red vertical line indicate the experiments
at low, intermediate and high Ma respectively from Fig. 5. (b) Zoomed-in view on a linear scale of the small
Ma regime, showing how the curvature switches from positive to negative.

Ma = 0. However, we observe that for stronger thermal forcings, Marangoni stresses are sufficiently
strong to draw in fluid to form a central “hump” with a local maximum, h′′(0) < 0.

When the film is thin, smooth and slowly varying, for large Bond numbers we can neglect surface
tension in the central region to approximate Eq. (4) by a first order equation for the steady CTF
profile with no flux through the origin,

dh

dr
=

(
rFr2 − 3Ma

2h
φ(r)

)/(
1 + 3Ha

h4

)
. (20)

This equation on 0 � r < rc must be asymptotically matched to an interior layer at rc that captures
capillary effects at the contact line and allows for matching to the outer solution Eq. (16) on
rc < r � 1. In general, determining the value of h(0) will depend on this matching process, but
we will show that over a range of larger Ma, a simpler solution can be obtained.

Figure 7(b) shows that for Ma → 0, a minimum film thickness will be set as a function of Ha
via the influence of the disjoining pressure. While the curvature of the CTF changes sign with
Ma, the central height h(0), is always monotone increasing with Ma. Equation (20) gives a good
approximation of the CTF profile up to a transitional range in Ma where surface tension starts to
play a more important role in setting the structure of the film at rc; see Fig. 9(b).

For Ma above this range, surface tension is still important locally at rc, but in the CTF region,
the centrifugal and thermocapillary influences dominate in Eq. (20) to balance and give an explicit
leading order estimate of the height profile in terms of the scaled gradient of the temperature profile,

h(r) = 3Ma

2Fr2

φ(r)

r
on 0 � r < rc. (21)

This well defined hump profile gives h(0) ∼ 3c(Ma/Fr2) and h′′(0) ∼ 3c2(Ma/Fr2) yielding the
linear scaling regimes seen in Figs. 7(b) and 10(a). For even larger Marangoni numbers, this scaling
ends when the thermal stresses are able to pull in the fluid from the outer region, to significantly
degrade the semi-parabolic profile in Eq. (16).

As suggested by the variation in forms of the height profiles for small Ma shown in Fig. 9(b),
Fig. 10(b) indicates that the central curvature has a nontrivial dependence on the system parameters
in Eq. (20) and capillarity to yield the nonuniform behavior shown. In computations of the steady
solutions with higher rotation rates, it was found that h′′(0) could become nonmonotone with respect
to Ma at the transition of Ha to Ma dominated behavior occurring near Ma/Fr2 ≈ 10−5.
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V. DISCUSSION

We have seen that Marangoni forces significantly affect the height profile in the CTF of a
spin-coating application context. We expect that this feature can be used in various applications. The
dramatic changes for small Ma shown in Figs. 9 and 10 will be observable in experimental fringe
patterns for the CTF. We expect that this can developed further to yield a method for determining
properties of the disjoining pressure (and characterize wetting properties of the substrate) by tuning
the Marangoni number of a small range. The slow thinning dynamics need not be prohibitive: spin
coating is done with rotation speeds that are orders of magnitude larger than used in this study, and
the viscosity of the PDMS liquids (used for their low volatility) can also be orders of magnitude
lower. Note that at much larger � and much smaller η, the Ekman number becomes so small
that Coriolis forces cannot be neglected anymore, certainly in the transient case, where h is still
appreciable. Extending the current work into this limit is an interesting avenue for future work. In
general we expect to see more interesting change-overs such as observed in Fig. 9, depending on
the relative strengths of gravity, disjoining pressure, and capillarity.

The sensitivity of the spatiotemporal thin film dynamics to surface tension gradients can be
of great interest in fields where functional nanometer thin films are produced with spin-coating
techniques [39]. Even thin film fluid deposition methods used in 3D printing can be improved
with thermal gradient technology to design features smaller than a thickness of the fluid layer. If
a temperature field is not the most natural control method, surface tension gradients can also be
induced with other modes of forcing like electric fields [40] or light [41].

Fundamentally, there is also interest in exploring whether the competing centrifugal versus
thermocapillarity influences can give rise to undercompressive shocks and fingering instabilities,
as in the studies by Bertozzi and collaborators for planar thin films [42–44].

VI. CONCLUSIONS

We performed experiments and examined numerical solutions on thin film dynamics and
steady-state profiles in a rotating container in the presence of a thermal surface tension gradient
force. Using interferometry, we compared a pointwise experimental test for ∂h/∂t at the origin
with the performance of the numerical model and found it to be in quantitative agreement. Our
numerical results for the entire profile shape h(r, t ) indicate that such thermal Marangoni forces
can significantly affect the profile thickness and spatial height variations of the central thin film
that develops at large enough rotation rates. Most notably, we find that the equilibration CTF height
scales linearly with Ma. Once equilibrated, the CTF height profile follows the temperature profile. In
the limit of small Ma, reaching equilibrium takes progressively longer and the steady state reached
is set by competition between Marangoni and disjoining pressure.
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