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We present results from an experimental investigation of a viscous fluid driven through
and around porous disks at low and moderate Reynolds number conditions: Re = O(10−4–
10−3) and Re = O(1–10). Specifically, we quantify the hydrodynamic drag that these thin
circular disks exhibit as a function of their size and the shape of their voids, while keeping
their porosity fixed (void fraction, φ = 0.69 ± 0.02). We characterize the hydrodynamic
loading using the drag ratio, which compares the magnitudes of drag experienced by a
porous disk versus that of an impermeable, but otherwise equivalent, reference disk. We
find that this drag ratio depends on the effective void radius, but not on the thickness of
the disk. During this analysis, great attention has been dedicated to properly account for
the effect of the wall confinement on the experimental data. Through scaling analysis,
we rationalize our results by comparing them to an existing analytical solution for flow
through and around porous disks. In particular, we find that an existing model based
on Darcy flow within the porous disk and on Stokes flow outside the disk can be used
in conjunction with a permeability model based on aperture flow to predict the forces
that porous disks experience, even though the disks have finite thickness. Ultimately,
we are able to combine these existing models to successfully predict the dependence
of our experimentally measured drag ratio as a function of the Brinkman parameter
of the perforated disks, at a fixed level of porosity. In contrast to the sedimentation
experiments that are typically employed to evaluate the geometrical effects on the drag
forces experienced by objects at low Re, our experiments were displacement controlled.

DOI: 10.1103/PhysRevFluids.4.084101

I. INTRODUCTION

Low Reynolds (Re) number flows through and around porous objects and conglomerates of
particles arise in a variety of natural and technological scenarios, in contexts ranging from marine
life and ecosystems [1–9] to wastewater treatment [10]. Being able to predict how the fluid flow
depends on the geometry, porosity, and permeability of these objects is a challenging endeavour
given the nontrivial and nonlinear couplings at play. Still, there are numerous biological examples
in low Re environments where these mechanisms are naturally exploited. For example, barnacles
alter the way they use their thin, featherlike thoracic appendages to capture food depending on
the fluid flow [3,8]. Spiny lobsters flick their hairy antennules at two different speeds to facilitate
olfaction by first holding water between their hairs long enough for sensing, and then releasing the
sample [1]. In terrestrial environments, wasps may be able to modulate the behavior of their porous,
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bristled wings to act like solid wings by decreasing the angle of attack [11]. In a different context,
the porous structures of pollen, both in the atmosphere [12] and underwater [13], must be taken into
account when analyzing how and how far these particles travel.

Beyond biological systems, developing an understanding of the behavior of thin, porous
structures has applications in a variety of other fields. For example, earlier efforts in this field
have enabled predictions for the time it takes for marine snow to settle in the ocean, an important
parameter used to model the Earth’s carbon cycle [4]. Moreover, many wastewater treatment
facilities rely on flocculation as one of several steps to reduce the turbidity of water and return it to
a clean condition; predicting the duration of this step is important in the design of the process [10].
Low Re number flow through and around porous objects is also relevant when the structures are thin
and planar, as is the case with snowflakes and ice crystals [14,15]. Predicting the forces that these
objects experience is critical to understand the terminal velocities of crystals in the atmosphere, a
metric which climatologists use to model radiative transfer in climate models [16,17].

To address this class of problems of low Re number flows through and around porous structures,
much work has been done through theory [18–23], computer simulations [24,25], and experiments
[26–28]. However, these studies are mainly focused on flows through spheres or spheroids, and little
attention has been given to the specific problem of flow through and around other slender, porous
objects. Since it is precisely in these low Re conditions that many terrestrial and aquatic organisms
exist [29,30], understanding how they function and how they influence their ecosystem requires
knowing how their environments influence their behavior. The degree to which a fluid can move both
around and through thin porous objects strongly affects the hydrodynamic drag, but in ways that are
challenging to predict. For example, the porous wings of some insects, such as the Mymaridae
(fairyfly) [31], comprise an intricate structure of bristles emanating from an inner core. Despite the
relatively large porosity of this structural layout, the wings can generate sufficient lift to sustain
the weight of the insect and enable a rich flight dynamics [32]. However, a predictive description
of this process is yet to be uncovered [11]. This is one of many examples where understanding
the locomotion of small-scale biological systems may, in the future, be informed by fundamental
studies of flow through porous structures, which is the focus of the present investigation.

When studying the effect of porosity on the drag that a porous object experiences while traveling
through a viscous fluid, at low Re numbers, it is customary to seek to establish a relationship between
the characteristic geometric parameters of the object (e.g., porosity or, equivalently, void fraction
φ; permeability k; and size l) and changes in the drag relative to the loading of an impermeable,
but otherwise equivalent (density, geometry) reference object. For a fixed porosity, the effect of the
geometric parameters is encapsulated in the Brinkman parameter [18], defined as

β =
√

l2

k
, (1)

where l2 represents a characteristic area of the object and k is its permeability, which describes
the nature (e.g., density, connectivity, and tortuosity) of the pore structure in the object. When k
is large, the network of pores offers little resistance to a fluid passing through them. In contrast,
when k is small, the resistance is high. In turn, when β is large, the porous object behaves as
if it were impermeable. For small β, the effect of the porosity of the object must be considered.
The determination of β is typically accomplished through approximations using empirical relations
between the porosity and structure of a substrate to its permeability such as the Davies correlation
[33] or the Carman-Kozeny equation [34–36], or inferred based on the pressure drop experienced
by a fluid across a sample of the porous material, measured in independent experiments [37].

The Brinkman parameter serves as the independent parameter in the drag ratio,

�(β ) = Fd (β )

Fr
, (2)
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which quantifies the ratio between the drag force experienced by the porous object, Fd , and that
by the reference object, Fr . We note that given that inertia is not relevant in the low Re regime, a
corresponding expression for the drag ratio can be defined using the ratio of the terminal velocity
of the reference object, Ur , to that of the porous object, Up, such that � = Ur/Up. In the low Re
numbers limit, the drag force is indeed proportional to the terminal velocity. Intuitively, when β is
high (k is small compared to l2), � should approach unity and the porous object behaves as if it
were impermeable. On the other hand, when β is small (k is large compared to l2), � should tend
to zero since the fluid can pass through the object almost unencumbered.

Analytical treatments of flow through porous objects tend to involve segmenting the flow into two
domains that are modeled separately: (1) the clear fluid around and (2) the fluid that flows through
the porous object. The solutions of the two domains are then related to each other via appropriate
interface conditions at the boundaries of the two regions.

In the outer domain, the dynamics of a Newtonian viscous fluid at low Re number is well
described by the incompressible Stokes equations,

∇P = μ∇2U , ∇ · U = 0, (3)

where the gradients of the pressure, P, are balanced by the diffusion of velocity, U , scaled with the
dynamic viscosity μ.

Throughout this paper, we shall refer to three classical analytical solutions of the system (3) for
the evaluation of the forces on impermeable bodies (hereafter called reference bodies), which are
reviewed next. (i) The first, the Stokes formula derived by Stokes himself in 1851 [38], provides a
prediction for the hydrodynamic drag Fs,∞ experienced by a sphere of radius r that is translating
with a velocity V through a fluid with viscosity μ:

Fs,∞ = −6πμrV . (4)

(ii) The second result is the drag force on a disk of radius r and with infinitesimal thickness, again
in motion with velocity V through a fluid with viscosity μ,

Fd,∞ = −16μ rV , (5)

which was first obtained by Sampson in 1891 [39] and then experimentally verified by Squires and
Squires [40]. (iii) The third case considers a flat annular disk of external radius r and internal radius
ri with infinitesimal thickness that translates with velocity V in a viscous fluid (see, for example,
[41]). In particular, following [42], for a small internal radius, i.e., ri � r, the drag of the annular
disk can be evaluated as

Fhole
a,∞ = −16μ rV

(
1 − 4r3

i /3π2r3
)
, (6)

whereas, in the limit of ri → r, the force can be approximated as

Fann
a,∞ = −16μ rV {π2/[(2 + ε) ln(32/ε) + ε]}, (7)

where ε = −1 + r/ri. It is interesting to note that the force Fann
a,∞ decreases weakly as the size of the

internal hole increases, owing to the fact that the drag is mainly due to the pressure jump in the outer
region of the annular disk. For example, if we consider a disk with ri = 0.8r, the corresponding drag
force is Fann

a,∞ ≈ 0.884 Fd,∞.
Modeling the flow within the porous domain is more nuanced and is typically accomplished using

models based on Darcy’s Law. This equation, initially developed by Darcy in 1856 to empirically
study the fluid flow through gravel at a local wastewater treatment plant [43], then subsequently
derived formally using a volume average scheme of the Stokes equations [44,45], has since become
the standard first-order model for flow through porous media in fields ranging from geology to
biology [37]. Darcy’s Law can be written as

−∇P = μ

k
〈U〉, ∇ · 〈U〉 = 0, (8)
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where the pressure drop ∇P across a statistically homogeneous and isotropic porous media is
related to the mean velocity of the fluid, 〈U〉, traveling through the porous media by way of a
proportionality constant μ/k. This constant reflects the resistance that the fluid experiences due to
the combined effect of the dynamic viscosity of the fluid, μ, and the permeability of the media,
k. This model has been largely studied and improved by including terms to take into account, for
example, the diffusion and the convection inside the porous media (see [45,46]). However, when
we consider the dynamics of thin objects in viscous fluids at low Reynolds numbers, these effects
can be considered negligible and Darcy’s approximation gives a good description of the flow inside
the porous media. Specifically, the solution for the flow past a porous disk of infinitesimal thickness
has been analytically derived by Vainshtein [22], by coupling the Stokes (3) and Darcy (8) systems,
leading to a formula for the drag ratio that can be written as

� = πβ2

πβ2 + 1
, (9)

where β = √
rt/k, for disk radius r and thickness t . This solution was calculated by analyzing the

flow around and through a porous spheroid in the limit of infinitesimal thickness [22], taking as
interface conditions at the fluid-solid boundaries the continuity of the velocity, as well as that of
pressure at the stagnation point alone—exploiting the symmetries of the spheroid [22].

In the present study, starting from Eq. (9), we now ask if it is possible to derive a more
practical relation that links the drag ratio � directly to the geometrical characteristics of the voids.
Specifically, instead of studying a generic homogeneous porous disk, we consider a disk whose
permeability is due to the presence of through-thickness circular holes. We seek to have a predictive
description for the drag ratio of the perforated disk, once the characteristics of the holes pattern
are given. Here, we address the above question experimentally by focusing on the hydrodynamic
drag exerted by a viscous fluid on broadwise translating perforated disks in the limit of low Re
numbers. Keeping the porosity constant, while varying the holes’ size and number, the experimental
measurements of the forces involved enable us to derive the behavior of the drag as a function
of permeability. Furthermore, we also carry out dedicated numerical simulations to support the
experimental activities, in particular to take into account the effect of wall confinement on the flow
behavior when permeable disks are considered. We highlight that our experiments are performed
under imposed displacement conditions, in contrast to past sedimentation studies. We argue that
displacement control is more amenable to precision systematic experimentation given that the
results do not depend on the relative densities of the solid and the fluid.

Our paper is outlined as follows. In Sec. II, we introduce our apparatus and present the
experimental protocol. The results of our study are then reported in Sec. III. First, we benchmark
our experiment with existing solutions by systematically measuring the forces experienced by
unperforated (reference) disks over a range of radii, at low and moderate Re numbers (Sec. III A).
The results of this experiment demonstrate that our experimental protocol and analysis methods
yield results consistent with those in the literature. Next, we shift to porous disks and quantify the
effect of void size on the drag ratio (Sec. III B). Then, the results of the numerical simulations are
described and discussed in comparison with the experimental ones in Sec. III C. In Sec. IV, we seek
to rationalize our results via a scaling analysis coupled with the theoretical result for flow through
and around a porous disk given in Eq. (9) by Ref. [22], demonstrating that our results are consistent
with this solution. Lastly, in Sec. V, we conclude by discussing the implications of our findings
and we detail paths for future work. In Appendices A and B, we detail the experimental protocol
used to measure the viscosity of the fluids and the calibration of the force on the supporting rods,
respectively.

II. EXPERIMENTS

In this section, we introduce the experimental apparatus and present the protocol followed to
measure the drag force that a perforated disk experiences while pushed through a bath of viscous
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FIG. 1. Experimental apparatus. (a) Photograph and (b) schematic of the experimental setup. An Instron
universal testing machine was used to drive disks with radius r and thickness t , with or without voids (Fig. 2),
through an oil bath. This oil had viscosity μ and was contained in a pipe with cylindrical radius R. The disks
were driven at a range of speeds, U , and the force the system experienced was recorded by a load cell on the
linear stage. The disks were supported by two slender vertical rods, melted to them and press fit into a holder
attached to the UTS. (c) Representative photograph of the detail of the joint between the support rod and the
disk specimen.

fluid, under imposed displacement conditions. We have systematically studied the dependence of the
drag ratio of a thin perforated disk of radius r and thickness t (with t < 0.025r) on the characteristic
size of its voids, a, while driving it through a cylindrical column of a viscous oil.

A. Experimental apparatus

In Fig. 1(a), we present a photograph of our experimental apparatus, comprising a cylindrical
column of oil through which a universal testing machine (Instron 5943, hereafter referred to as
UTS) drove the disk specimens. The samples were connected to the load cell (10 N, 2530 series,
Instron) of the UTS with two slender Nitinol rods (radius Rr = 0.28 mm, length l = 16.0 cm). The
oil container was a cast acrylic pipe (McMaster-Carr, Rp = 7.0 cm inner radius) sealed at its bottom
with a silicone-oil-based polymer (Vinyl Polysiloxane, Elite Double 32, Zhermack). Experiments
were conducted in two different viscous fluids: (1) mineral oil (Crystal Plus Food Grade 500FG,
STE Oil Company, Inc.) and (2) silicone oil (DMS-T51, Gelest). The characteristics of these fluids
(dynamic viscosity and density) are discussed in Appendix A. In short, the mineral and silicone
oils had viscosities of the order of 0.1 and 100 Pa s, respectively, the exact values of which were
temperature dependent [Fig. 11 and Eq. (A1)]. The corresponding densities were ρ1 = 868 kg/m3

(for the mineral oil) and ρ2 = 977 kg/m3 (for the silicone oil). A different container was used for
each of the two types of oil used and the heights of these containers were h1 = 26.0 cm (for the
mineral oil) and h2 = 51.0 cm (for the silicone oil).

The coordinate system used to describe our experiments has a vertical z direction that originates
at the free surface of the oil and is oriented downwards [Fig. 1(b)]. All experiments were conducted
within the region 30 � z � 180 mm, where the effects of the free surface and the floor were found
to be negligible. The disk specimens were set concentrically to within 0.07% of the radius of the
container.

The tips of two Nitinol rods that supported the disks [see Fig. 1(c)] were heated over the flame of a
disposable lighter up to approximately 300 ◦C, and were then pressed vertically into the disk, 180 ±
1◦ apart, and 0.2 ± 0.1 mm from the edge of the disk. Once the locally melted plastic solidified, the
rods were fixed vertically into the disk and a speck of superglue was applied to enforce clamping.
The opposite end of each Nitinol rod was press fit into a predrilled hole on a 6.35-mm-thick acrylic
plate that was itself rigidly attached to the load cell.
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The tilt of the disk was minimized by ensuring it was leveled with respect to the free surface
of the bath in two ways. First, the initial contact that the test sample made with the free surface as
it was lowered from above into the oil was monitored visually. With no tilt, the entire disk should
simultaneously touch the fluid. Second, the test sample was raised out of the oil bath and the disk
was deemed leveled if oil flowed off at the center of the disk (instead of from its edge). If the initial
contact occurred progressively from one side of the disk towards the other or the oil did not pool on
the surface of the disk, the support rods were reattached to the sample.

During an experimental test, the UTS drove the specimen through the fluid while its load cell
recorded the force experienced by the system. This force signal was acquired every 10−4 mm and at
every change in F = 10−4 N, corresponding to rates of approximately 20–80 Hz, depending on the
experiment. The tare force was referenced to the stationary force at z0 = z(t = 0) = 30 mm, so as
to account for the apparent weight of the disk and the rods at this starting position. No out-of-plane
disk oscillations were observed during the experiments.

B. Fabrication of the experimental samples: Continuous and perforated disks

The thin disks used in the experiments were fabricated by laser cutting sheets of either polyethy-
lene terephthalate glycol shim stock (PETG, the ARTUS Corporation) or cast acrylic (McMaster-
Carr). The thicknesses of the PETG sheets were t = {0.40, 0.50, 0.80, 1.30} ± 0.01 mm and the
thicknesses of the cast acrylic sheets were t = {1.55, 2.00, 3.00, 3.23} ± 0.01 mm. Continuous
disks with t = 0.80 ± 0.01 mm were fabricated with radii varying in the range 12.7 ± 0.1 � r �
52.5 ± 0.1 mm (11 values). The radii of all other disks were r = 32.5 ± 0.01 mm. We define the
void fraction of our perforated disks as

φ = Av

πr2
, (10)

where Av is the total area of voids, such that φ = 0 corresponds to a continuous (unperforated)
disk. Perforated disks were designed to have a constant porosity (void fraction), φ = 0.69 ± 0.02.
This value was found to be the highest porosity to which a disk could be readily fabricated using
the available laser-cutting machine. The porosity was fixed at this constant value to independently
quantify how the drag ratio � [Eq. (2)] of porous disks depends on the geometry of the perforations.
Had φ been left as a variable, it would have been difficult to discern variations in � that were
due solely to changes in perforation geometry. Perforations were laser cut at the same time as
the disk fabrication and comprised a hexagonal arrangement of circular voids within an uncut
annulus that provided rigidity and inhibited bending during experiments. The porosity was verified
postfabrication by comparing the masses of the perforated disks to those of unperforated reference
disks with the same thickness.

The patterns of all perforated disks were generated by fitting a hexagonal lattice with a motif of
small circles inside the annular border. Given the side length h of the unit cell associated with the
lattice, the radius of all circles was rc = 0.45h. Scanned images of representative disks are shown
in Fig. 2. In many of the configurations shown, voids near the thin uncut band at the edge of the
disk were not circular [see especially disks (vi) and (viii) in Fig. 2], so the voids had a distribution
of sizes. Thus, we characterized the void sizes of a disk using an effective hole radius a instead of
the radius of the circular voids. We computed a by dividing the total area of voids, Av = πr2φ, by
the number of voids n to find the radius of n equally sized effective circles as

a = r

√
φ

n
. (11)

C. Characterization of the hydrodynamic drag of the disks

Two types of experiments were performed: one using reference solid disks to confirm that
our force measurements corresponded to the theoretical predictions (Sec. III A) and the other to
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FIG. 2. Scanned images of the set of disks used in the experiments (thickness t = 0.80 ± 0.01 mm). Disk
(i) has no voids; disks (ii)–(ix) have constant void fractions (φ = 0.69 ± 0.02), and the size and number of
voids are varied. The effective void radius a is the idealized radius calculated for n equally sized voids whose
collective area is equal to the void area.

test the effect of the void size on the disks with set values of porosity (Sec. III B). For the first,
unperforated disks with a constant thickness t = 0.80 ± 0.01 mm but varying radii (11 values) from
12.7 � r � 52.5 mm were used. For the second, disks with a constant porosity φ = 0.69 ± 0.02
and r = 32.5 mm but varying thickness t (eight values) and a varying number of voids n (eight
values) were used. In addition, unperforated reference disks with r = 32.5 mm for each value of t
were tested to normalize the results for the porous ones. Despite the slenderness of the disks, no
deflection due to hydrodynamic loading was found in any of our experiments. As such, throughout,
we shall regard the disks as rigid.

Each experimental run comprised the following sequence of steps: (a) measuring the oil
temperature to determine the oil viscosity and avoid uncertainties due to thermal variations; (b)
mounting the disks onto the UTS and ensuring levelness; (c) finding the initial depth, z0 = 30 mm;
(d) driving the sample through the fluid at a set speed U = dz/dt ; and, finally, (e) returning the
sample to the starting depth and removing the excess oil on the Nitinol rods accumulated due to
viscous coating. The disks were driven through the oil starting at z = 30 mm until well before the
floor of the container started to have a non-negligible effect on the force signal (at about 30 mm
from the floor of the container). For statistical purposes, each characterization involved repeating
steps (d) and (e) at least 12 times for different speeds, in the range 0.7 � U � 3.0 cm/s in mineral
oil or 0.01 � U � 1.1 cm/s in silicone oil.

The raw data from each realization, for a given set of input parameters, consisted of a force
signal F (z), exhibiting an initial transient regime followed by a quasisteady regime (hereafter called
regimes I and II). Figure 3(a) shows the raw force signal F (z) as a function of the height z for a
representative reference case at the following parameter set: r = 32.5 mm, a = 0 mm, n = 0, t =
3.23 mm, μ = 0.237 Pa s, and U = 3.0 cm/s. Since we are interested exclusively in the steady-state
hydrodynamic behavior of the disks, we focused our analysis only on regime II. Multiple physical
mechanisms are included in the magnitude of the measured total force F (z), namely, the average
hydrodynamic load on the disk (which can be continuous or porous), Fd (U ); the hydrodynamic load
on the rods that support the disk, FR(z,U ); and the total buoyancy of the disk-rods system [part of
which we can readily remove from our analysis by subtracting a tare to the measured force at the
start of the experiments, and the other part due to the rods of which we account for with FR(z,U )].
In Appendix B, we present the systematic procedure that we developed to isolate the contribution
of the force on the disk Fd (U ) from the raw measurement F (z).

Once the average hydrodynamic load on the disk, Fd (U ), was obtained, a final correction had to
be considered to take into account the finite-size effects due to the presence of walls, as is common
in confined low Re viscous flows [47]. In particular, as described above, all the experiments were
performed in a cylindrical container of radius Rp = 70 mm, using a variety of disks with radii
in the range 12.7 � r � 52.5 mm, leading to a confinement ratio r/Rp ranging from 0.18 to 0.75,
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FIG. 3. The raw force signal from the load cell is plotted as a function of wetted length z, measured by the
UTS (black circles). Once the transient forces—highlighted region I in (a)—have subsided, the disk experiences
a steady force and the force on the rods increases: highlighted region II in (a), enlarged in (b). The steady-
state disk force signal Fss is isolated from the total force signal (see Fig. 12) and plotted as blue crosses. The
horizontal red line is the average Fd of the Fss signal. The procedure to obtain these force signals is detailed in
Appendix B.

suggesting that significant changes in the hydrodynamic load are expected. Specifically, the presence
of a boundary is known to increase the magnitude of the force experienced by an object moving
relative to a viscous fluid under low Re number conditions, which has been studied for a variety
of geometries [47]. For the specific case of an impervious disk of infinitesimal thickness moving
broadside with a constant velocity along the axis of a pipe, the wall effect has been analytically
predicted by Wakiya in 1957 [48] to increase by a factor α, i.e., α � 1, with the confinement r/Rp,
such that

Fd = αFd,∞, where α =
[

1 − 1.786

(
r

Rp

)
+ 1.128

(
r

Rp

)3
]−1

, (12)

and where Fd and Fd,∞ are the values of the drag forces in the presence of the container and in an
unbounded viscous fluid, respectively. Wakiya computed this wall-effect factor α numerically by
analyzing the viscous flow around a spheroid in the limit of zero thickness [48], as a generalization
of the analysis of a sphere moving through a viscous fluid between two plates [47,49].

The geometry of our experimental system is nearly identical to that treated in Wakiya’s theory,
except for the finite thickness of the disks. Considering the reference impermeable disks, the relation
in Eq. (12) can then be used indirectly to validate the experimental procedure described up to now,
as it will be discussed in Sec. III A. To the best of our knowledge, there is no corresponding work
in the literature to account for the wall effect when porous thin disks are considered; hence, in the
first instance, we will assume that Wakiya’s Eq. (12) remains valid for porous disks, checking a
posteriori the compatibility of the results with those available in the literature. These arguments
will be the core of our discussion in Secs. III B and III C.
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FIG. 4. Experiments were conducted with reference (unperforated) disks of varying radii to explore the
wall effect. The characteristic force derived from the analytical prediction for the force on a disk by Sampson
[39], shown with the green dashed line, does not account for the presence of the fluid boundary. The wall effect
is accounted for in the solution given by Wakiya [48], shown with the blue solid line. Uncertainty in the radius
measurements and the characteristic forces are much smaller than the size of the data points (red asterisks) and
are not shown here. The results of our numerical simulations are reported with the solid black circles. [Wakiya
eqn. = Eq. (12).]

III. RESULTS

In this section, the results of the experimental and numerical activities are described, starting
with the reference (unperforated) disks and then turning to the perforated disks.

A. The reference unperforated disks: Validation of the experimental procedure

In Fig. 4, we present the results from a systematic set of experiments designed to validate the
experimental procedure developed here to explore the effect of wall confinement, r/Rp, on the drag
force for the reference disks. The results are shown in terms of normalized mean characteristic force
F̃c, defined as the mean of Fd/μiUr from all the experimental runs, each normalized by the velocity
U , viscosity μ, and radius r. The subscripts i = {1, 2} for μ1 or μ2 are taken from Eq. (A1) and
correspond to the cases of mineral oil or silicone oil, respectively.

The normalized mean characteristic force F̃c was determined for 11 reference (unperforated)
disks of radii in the range 12.6 � r � 52.5 mm, all with the same thickness t = 0.80 mm, in mineral
oil, using the protocol described in Sec. II C. If the presence of the boundary had no effect on the
hydrodynamic loading of the disk, the normalized characteristic force of each of the disks tested
would be close to Sampson’s disk solution, F̃c = 16 [39], within experimental error. However, as
shown in Fig. 4, this is only the case for the smallest confinement ratio (r/Rp = 0.18). As r/Rp

increases, F̃c increases by up to a factor of 20, vis-à-vis Sampson’s solution, due to wall effects.
The results presented in Fig. 4 for disks with r/Rp � 0.5 (radii r � 35.0 mm) show excellent

agreement with Wakiya’s prediction, with no fitting parameters (all measurements of the relevant
quantities were done independently). Moreover, when the disk radius is small (r � 20 mm), the
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characteristic force is close to the unbound prediction (F̃c = 16). These findings point to the validity
of our procedure of isolating the disk force Fd (U ) from the total measured force F (z,U ) (see
Appendix B) for calculating F̃c. Had there been systematic errors in Fd , an offset in F̃c would have
been evident in Fig. 4, which is not the case. Furthermore, if significant hydrodynamic interactions
between the rods and the disks occurred, F̃c would likely not have followed Eq. (12) so closely.
Finally, the agreement between Wakiya’s theory and our experimental results provides evidence for
the following observations: (i) given that the theory was derived in the Stokes limit, classifying the
experimental conditions as low Re numbers is acceptable, even though the Reynolds numbers based
on the disk diameter are Re = O(1–10) and (ii) the thickness of the disks does not seem to have a
dominant effect, given that the theory assumes infinitesimally thin disks.

For r/Rp � 0.5, Eq. (12) underpredicts the magnitude of the force. This is likely due to the
fact that in Wakiya’s solution, only two reflections are considered in the underlying method of
images. Considering additional reflections would have likely performed better at higher values of
the confinement [47]. Furthermore, the theory is based on an expansion procedure, so for large
values of r/Rp, it is no longer expected to be appropriate. The solid black circles represent the
numerical solution for Stokes flow, which will be discussed in detail in Sec. III C.

B. Experimental results: The perforated disks

Having validated the experimental procedure in the previous section, we turn to present the
results for the case of perforated disks. We give particular attention to the drag ratio �, defined
as the experimentally measured drag force on the permeable disk, normalized with the drag on an
impervious reference disk of corresponding thickness [Eq. (2)].

We seek to characterize the dependence of � on, first, the thickness of the disks, t , and, then, on
the effective radius of the voids, a, defined in Eq. (11). We recall that throughout the experiments,
the porosity was kept at the constant value of φ = 0.69 ± 0.02 [see Eq. (10)] and that the wall
effect has been taken into account, at this stage of the discussion, considering the correction factors
derived from the Wakiya results [Eq. (12)] available for the case of the Stokes flow past a confined
impervious disk (see Sec. II C).

The experimental results are reported in Fig. 5 for disks with different values of thickness t (in the
range 0.40 � t � 3.23 mm) and various effective void radii a (in the range 1.7 � a � 26.6 mm).
In order to highlight the dependence of � on the two characteristic lengths t and a, the data are
presented as a function of the thickness t for fixed values of a [Fig. 5(a)] and, vice versa, showing
� as function of a for fixed values of t [Fig. 5(b)].

The experimental data show that within the experimental uncertainties, the drag ratio remains
approximately constant with thickness [Fig. 5(a)], whereas the effective void radius a has a marked
effect on � [Fig. 5(b)]. The fact that � is weakly dependent on t is surprising given that thicker disks
have larger “through-thickness” surfaces on which shear viscous forces can act, when compared to a
continuous (φ = 0) reference disk. Indeed, such an argument is made by Jensen et al. in [50] in the
context of solving for the flow rate given a pressure drop across microfilters. Adapted to the context
of this paper, the findings from Jensen et al. are that

	P =
[

3μ

a3
(1 − A) − 2.3

( a

L

)3
]

Q, A = 8t

3πa
, (13)

where A is, up to a scaling factor, the ratio between the membrane width t and the aperture radius a,
L is the average center-to-center distance between pores, and Q is the volumetric flow rate through
the microfilter. Within the brackets, the first and second terms account for the effects of aperture
and Poiseuille flows, respectively, and the third term accounts for pore-pore hydrodynamic coupling.
Consider the case of a = 1.7 mm in Fig. 5(a). In this subset of the data, the pore-pore hydrodynamic
coupling is constant and 0.25 � A � 1. The Poiseuille behavior of the pores, then, should be four
times as important for the thickest disk as it is for the thinnest disk. Yet, as is shown in Fig. 5(a),
this is not reflected in the drag ratio. Presumably, this could be because of the unconfined nature of
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FIG. 5. (a) The drag ratio is plotted as a function of thickness for different effective void radii (see
legend). Open and closed symbols correspond to experiments conducted in the lower Reynolds number
[Re = O(10−4–10−3)] and the higher Reynolds number [Re = O(1–10)] conditions, respectively. (b) The drag
ratio � decreases as the effective void radius a increases for disks with radius r = 3.25 cm (fixed porosity
φ = 0.69 ± 0.02). The roman numerals correspond to the scanned disks in Fig. 2. Open and closed symbols
correspond to experiments conducted in the lower Reynolds number [Re = O(10−4–10−3)] and the higher
Reynolds number [Re = O(1–10)] conditions, respectively. The analytical result (+ symbol) for the annular
disk is obtained from Eq. (7). In both (a) and (b), the error bars reflect uncertainty in � which propagates due
to uncertainty in F̃c. When the wall effects for porous disks are appropriately taken into account towards the
end of the paper, the drag ratio as a function of the void size is corrected.

the disk; fluid is permitted to travel not only within the porous structure, but also around it. Given
an effective void radius, the corresponding experimental drag ratios for different disk thicknesses,
t , are nearly constant, with typical deviations from the mean value of less than 6%. Lastly, we
also note that referring to Eq. (9), the negligible impact of the thickness on � suggests a possible
linear scaling of the permeability k with t , when a homogenized porous media is considered as an
appropriate model for the behavior of the flow past perforated disks. This point will be discussed
in more detail in Sec. IV, where we will also propose a possible scaling of the permeability versus
void size.

Next, we discuss the dependence of hydrodynamic load on the effective void size a. It is
important to recall that the void fraction was kept constant throughout the experiments at φ =
0.69 ± 0.02, while varying numbers of voids and their dimensions. From the results in Fig. 5(b),
we find that the drag ratio decays monotonically with increasing void size, from � = 1 at a = 0
(the unperforated reference disks), down to � ≈ 0.6 for perforated disks with an effective void
size of a = 26.6 mm [the annular disks (ix)]. Therefore, the hydrodynamic drag decreases when
permeability increases. However, the resulting reduction of the drag ratio is too large as in the
case of largest permeability, which is an annular disk, the predicted drag ratio is smaller than the
analytical prediction already mentioned in Sec. I. In particular, recalling Eq. (7), we can infer that
the analytical prediction of the drag on the annular disks (ix) is � ≈ 0.82, whereas with the results
reported in Fig. 5(b), for the same configurations, we find � ≈ 0.6. The data presented in Fig. 5 use
the wall-effect correction factor α, analytically predicted by the Wakiya’s approximation [Eq. (12)],
for the Stokes flow past an impervious thin disk. Therefore, we could ascribe these discrepancies to
unrealistic wall-correction factors. Here we note that the dependency of � on a could be in part due
to pore-pore hydrodynamic interactions [50]. Instead of quantifying the effect of these couplings,
we encapsulate them within the permeability, which we will solve for in Sec. IV.

As will become clear in the next section, the use of wall-effect factors (originally evaluated for
solid impervious obstacles) to porous disks leads to an underestimation of the hydrodynamic forces.
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FIG. 6. (a) Sketch of the numerical flow configuration (not to scale); (b) representative detail of the mesh
used to simulate the Stokes flow past the disk (v).

This means that wall effects for permeable disks are different from those for impervious disks. Thus,
in order to have an estimation of the wall-effect for the permeable disks, numerical simulations of
the Stokes flow past confined perforated disks have been carried out, which we address next.

C. Evaluation of the wall effect for porous disks

We have seen in the previous section that for permeable disks, the effect of the wall confinement
must be studied for each specific case. Indeed, the effect of the walls on the solution of the flow
through permeable obstacles is difficult to predict, and it differs from what we have discussed in
Sec. II for impervious disks. Thus, to correct the experimental results reported in Fig. 5, we shall
proceed by numerically evaluating the appropriate wall-correction factors by simulating the three-
dimensional flow around and through perforated disks (i)–(ix) in a confined domain.

As sketched in Fig. 6, the flow is described in a Cartesian coordinate system that is fixed
with the disks, with the x direction aligned with the incoming relative flow velocity. When the
dynamics of a viscous fluid at low Re numbers are considered, the flow behavior is well described
by the incompressible Stokes equations, already reported in Eq. (3). This system is then completed
by the following boundary conditions: uniform velocity is imposed at the inlet boundary BI and on
the lateral boundary BL, i.e., u = U∞ex, the homogeneous Dirichlet condition is considered on disk
BD, i.e., u = 0, and the no-stress condition is then applied to the outlet boundary BO. In order to
evaluate the wall effect for different levels of confinement ratio, the radius RP is varied, such that
0.01 � r/RP � 0.6.

The system of Eq. (3) was discretized in space using P2-P1 Taylor-Hood finite elements for the
velocity and for the pressure, respectively. The physical domains were discretized using unstructured
grids generated with the open-source code GMSH [51] and then imported in the finite-element library
FreeFem++ [52], where the discretized version of Eq. (3) was solved. Three internal subregions
were created to control the mesh density, here specified by the vertex densities imposed on the
corresponding edges. The presence of subdomains is essential to have a good refinement of the
meshes in the region close to the perforated disks, especially when cases with small void radii are
considered. In Fig. 6(b), we present an example of the discretization for the disk (v). Considering
the double symmetry of the Stokes solutions, only a quarter of the domain was considered; the
corresponding symmetry conditions were imposed at the two corresponding lateral boundaries, i.e.,
uz = 0 on �S,xy and uy = 0 on �S,xz. The typical grid size consisted of approximately 4.5 × 105

elements, considering at least three elements in the disk thickness, for a total number of degrees of
freedom of about 2 × 106.
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FIG. 7. The colored solid lines represent the wall-correction factors for different confinement ratios, here
numerically evaluated for the disks considered in the experiments, from the case of the solid disk (i) to the
annular disk (ix). The dashed green line is the characteristic force derived from the analytical prediction for
the force on a disk by Sampson [39]. The vertical dashed black line corresponds to the confinement ratio used
during the experiments, i.e., α(r/Rp = 0.4643). The red asterisks are the experimental values obtained for the
reference disks, as already reported in Fig. 4.

The numerical procedure and spatial discretization were validated considering the case of the
unperforated reference disk, both for the case with unbounded domain (here using r/RN = 400)
and for the confined configurations. Our numerical results (black circles in Fig. 4) show excellent
agreement both with the analytical formula by Wakiya [Eq. (12)] and with the experimental results
reported in Sec. III A. The same numerical results are reported again in Fig. 7—the continuous
disk corresponds to the disk (i)—together with the numerical results for the permeable disks
considered during the experiments, i.e., disks from (ii) to (ix). In particular, these values have been
evaluated from the numerical simulations for the disks from (iv) to (ix), while, for the disks (ii) and
(iii), the correction factors have been linearly extrapolated from the others [Fig. 8(a)] due to the
demanding computational resources that the spatial discretization of these last two configurations
would have involved (dashed light-blue lines). As shown in Fig. 7, for consider perforated disks,
the wall-correction factor decreases as the permeability of the disk increases, namely, from disk (ii)
to disk (ix). We can also see that for low confinement ratios, r/RN � 0.2, no significant variations
of α have been found among the different configurations investigated and the analytical result of
Eq. (12) is therefore valid. On the contrary, the effect of the walls in the case of permeable disks is
found to be more complex when higher confinement ratios are considered, i.e., r/RN > 0.2, leading
to wall-correction factors that depend on the permeability of the disk.

Having evaluated the wall-correction factors for the specific permeable disks considered in the
experiments, we can now correct the experimental results using the values of α corresponding to the
specific confinement ratio used in the experiments, namely, r/RP = 0.464. These values of α are
summarized in Fig. 8(a). The corrected experimental data are reported in Fig. 8(b) where, similarly
to Fig. 5, we present the results in terms of � as a function of the void radii a for various thicknesses
t . As a first comment, we can clearly see that while the preliminary drag ratio � ranged from 0.6 to
1, the variability of the adjusted drag ratio is reduced, ranging from 0.79 to 1.

There are significant modifications in the reprocessed data [Fig. 8(b)] that take into account
the numerically computed wall corrections when compared to the previous data [Fig. 5(b)] that
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FIG. 8. (a) Wall-correction factors for the perforated disks at the experimental confinement ratio α(r/Rp =
0.464) as function of the void radii. The solid blue line represents the linear interpolation between the numerical
correction factors. (b) Drag ratio � as a function of the effective void radius a, taking into account the wall
effects for porous disks obtained from the numerical simulations.

was initially analyzed using Wakiya’s correction [Eq. (12)]. It is evident that accounting for the
confinement using appropriate wall-correction factors, the drag ratio of all the realizations is
increased. In particular, the experimental values for the cases of the annular disks (ix) are now
clustered around the analytical result in Eq. (7) for the corresponding inner-to-outer radius ratio
[reported as a black cross in Fig. 8(b)]. The drag ratios for the other perforated cases, i.e., disks
from (ii) to (viii), are higher and mostly in the range 0.85 � � � 1. These results are reasonable
given that their permeabilities are higher than that of the annular disk. Finally, as a consistency
check, the values of the drag ratio computed numerically for the disks from (iv) to (ix) are also
reported in Fig. 8(b), showing good agreement with the experimental data. Figure 8(b) is the main
finding of the paper, which we further rationalize in the next section.

IV. INTERPRETATION OF THE DRAG RATIO RESULTS
WITHIN A PERMEABILITY FRAMEWORK

In this section, we interpret the above experimental results of the hydrodynamic drag ratio for
disks of different layouts of voids within the framework of Darcy flow proposed by Vainshtein [22].
As is the crux of many problems involving flow through porous media [37], the permeability k of
the disks must be determined to invoke Darcy’s Law in Eq. (8). We address this by first proposing
two possible scalings for k that depend on the dimensions of the voids (t and a) and rely on different
models for the flow through them. Both of these scaling arguments involve considering the flow
through the channels formed by the voids; the first uses a Poiseuille flow argument and the second
employs an aperture flow argument. Each of these scalings is then tested and evaluated against our
own experimental data, toward empirically identifying the most appropriate choice.

In order to determine the permeabilities k of our disks, we develop a scaling argument which
relates the pressure drop through a single void to the pressure drop across the disk associated with
Darcy flow. All voids are treated equally, meaning that the specific location of each void on the disk
has no impact on the flow through it. Furthermore, each void has radius a and the hydrodynamic
interactions between voids are assumed to be negligible. This analysis serves as a leading-order
estimate. A more detailed description that also takes into account the hydrodynamic interaction of
the voids is presented in Ref. [50].

In more detail, the flow through each of the voids is assumed to be classifiable into one of two
flow models: for Poiseuille flow [47] and for aperture (orifice) flow [39,47]; referred to by the
subscripts j = {1, 2}, respectively. We note that a third model, with a linear combination of these
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flows (proposed by Weissberg [53], confirmed by Dagan [54], and used by Jensen [50]) could also
have been possible, but we do not explore it here since we shall demonstrate sufficiently good
agreement of aperture flow with our results. Consequently, the corresponding changes in pressure
can be expressed as follows:

	P1 = 8μt

πa4
q, (14a)

	P2 = 3μ

a3
q, (14b)

where, in both cases, q is the volumetric flow rate of a fluid with viscosity μ, through a single hole
of size a. This pressure drop 	Pj occurs over a distance t in the Poiseuille model ( j = 1), and
over a distance comparable with the dimension of the orifice in the orifice flow model ( j = 2). It
is important to note that the pressure becomes uniform when the distance from the orifice becomes
larger than a few a. This is a consequence of constant pressure radial sink (or source) flow prevailing
away from the orifice. Note also that Eq. (13) neglects any collective effects. In the orifice flow, those
have been analyzed in Ref. [50] [also Eq. (13) in this paper] and in Ref. [47]. They have found that
the pressure jump is reduced by collective effects, depending on the distance between two hole
centers L and the lattice on which the holes are located. In the worst-case scenario L = 2a, 	P/Q
is reduced by 2.3/8 = 28%, assuming a hexagonal lattice. In order to determine the permeability k,
we relate each of the above pressure-drop models to that associated with the Darcy’s equation:

	PD = −μt

k

Q

A , (15)

where Q = nq is the total volumetric flow rate across all the holes, over a distance t , and the cross-
sectional area is assumed to scale with the total projected area, A ∼ r2 = na2/φ. Away from this
porous disk, the flow is governed by the Stokes equation and the pressure becomes again constant,
sufficiently far from the disk. We therefore equate the Darcy pressure drop with the pressure drop
associated with each of the j flow model yields,

	Pj ∼ 	PD. (16)

Finally, solving for the permeability and dropping the porosity term since all experiments were
conducted with a constant φ = 0.69 ± 0.02, we find that the scalings for the permeability for the
two cases are, respectively,

k1 ∼ a2, (17a)

k2 ∼ at . (17b)

Next, we shall evaluate which of the two scalings above for k j is most appropriate by testing
them against the experimental data.

To interpret our experimental results in the framework of Darcy flow, we must first determine
the actual form of the permeability k. We do so by comparing each of the two possible scalings
presented in Eqs. (17a) and (17b) to Vainshtein’s solution [22] for flow through and around a porous
disk, whose permeability is denoted by kV . Recalling Eq. (9), Vainshtein’s solution can be rewritten
as a function of the experimentally measurable physical quantities,

kV = πrt
1 − �

�
. (18)

In Fig. 9(a), we plot kV , computed through the experimental data, versus k1, determined from
Eq. (17a). In Fig. 9(b), we plot the same kV as a function of k2, from Eq. (17b). Comparing both plots
suggests that the second alternative, coming from the orifice flow model, that is, kV ∼ k2 ∼ at , is a
more appropriate description of the data given the more effective collapse of the data. The prefactor
c = k2/(at ) was determined to be c = 0.97 ± 0.02 from a linear least-squares fit.
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FIG. 9. Experimentally determined permeability kV computed through Eq. (18) vs (a) k1 ∼ a2 and (b) k2 ∼
at . The solid symbols correspond to experiments done at Re = O(1–10), for the mineral oil, and open symbols
correspond to experiments conducted at Re = O(10−4–10−3), for the silicone oil. Error bars in the vertical
direction represent the experimental uncertainty in � propagating from the the rod force. Error bars are smaller
than the solid data points.

As the final step of our investigation, we revisit the original formulation of the solution of Darcy
flow through the disk. Recalling the definition of the Brinkman parameter, β = √

rt/k, from Sec. I,
making usage of Eq. (9), and taking k = k2 = cat with c = 0.97 ± 0.02 determined above, we can
now plot the experimentally measured drag ratio � versus β, which is shown in Fig. 10. We recall
that the Brinkman parameter β characterizes the permeability of the disk relative to its size, which
we took to be described by its radius r and its thickness t . When β � 2, we find that � � 1,
signifying that the perforations (voids) are important in reducing the experienced hydrodynamic
drag. For β � 2, the voids have no apparent effect on the hydrodynamic load of the disks and � ≈ 1.
Note that Eq. (9) is expected to be valid across all values of β. However, the smallest possible value

FIG. 10. Drag ratio � as a function of the Brinkman parameter β. The solid symbols correspond to
experiments conducted at Re = O(1–10) (with the mineral oil) and open symbols correspond to experiments
conducted at Re = O(10−4–10−3) (with the silicone oil). Error bars of the data points correspond to uncertainty
in the rod force. Uncertainty in the prediction (shown shaded in gray) is due to uncertainty in the prediction of
k. [Vainshtein eqn. = Eq. (9).]
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of this Brinkman parameter in our experiments is β = 1.124, which corresponds to the case of
the disk being perforated with just one hole, n = 1, with the porosity φ = 0.69 ± 0.02 [this case
corresponds to the disk (ix) in Fig. 2]. The solid line in Fig. 10 corresponds to the Vainshtein
prediction given in Eq. (9) using a fitted value of k = cat , with c = 0.97 ± 0.02. The shaded region
corresponds to the drag ratio calculated using Eq. (9) within the 95% confidence interval obtained
from the fitted k. Excellent agreement is found between our experimental data and Vainshtein’s
description.

V. DISCUSSION AND CONCLUSION

We have shown that the hydrodynamic loading of perforated disks at low Reynolds number
conditions is strongly dictated by the effective size of the voids, while keeping the porosity fixed.
Through displacement controlled experiments, we have focused our investigation on the drag ratio
�, comparing the drag that a porous disk experiences with respect to a continuous (unperforated
and impermeable) reference disk. In particular, � was found to depend on the effective void radius,
but not on the thickness of the disks. When the effective radius of the voids is small, the drag
experienced by the perforated disks is close to that experienced by disks without perforations. On
the other hand, a disk with the same porosity but with a larger effective void radius exhibited a
significant reduction in drag, depending on the selected porosity. We have rationalized our findings
by implementing a scaling argument that connected the geometric parameters of the voids to the
permeability of the disks. The efficacy of our experimentally guided analysis was tested against the
permeability from Vainshtein’s solution [22], and good agreement was observed.

An important finding that was crucial for our study is the evaluation of the wall effects for porous
structures. Our experimental results, supported and enriched by the numerical simulations, show
that for large confinement, the wall effects deviate from Wakiya’s correction, which was indeed
derived for impermeable disks. In general, we show that wall effects become increasingly important
as permeability decreases, that is, as holes become smaller and more numerous.

We close by providing a speculation on a potential application of our results. Our findings could,
for example, be harnessed to reduce the weight of porous devices such as microrobots, whose power
consumption triples as their weight doubles [49]. While most of the weight budget (approximately
70%) of such systems is dedicated to the electronics, motors, actuators, and battery, the remaining
30% is taken by the air frame [49]. Reductions in the weight of the air frame by introducing
porosity could enable further reductions in the battery size necessary for flight, without significantly
comprising the fluid loading.

APPENDIX A: DETERMINATION OF THE VISCOSITY OF THE FLUIDS USED

Two oils were used: a mineral oil (Crystal Plus Food Grade 500FG, STE Oil Company, Inc.)
with a dynamic viscosity on the order of 10−1 Pa s and a density of ρ1 = 868 kg/m3; and a silicone
oil (DMS-T51, Gelest) with a dynamic viscosity on the order of 102 Pa s and a density of ρ2 =
977 kg/m3. The Reynolds number for all experiments was defined as Re = ρU2r/μ, taking the
diameter of the disk, 2r, as the characteristic length scale. The dynamic viscosity of these two
oils was determined as functions of temperature T , using a rheometer (AR-G2, TA Instruments)
with a 40 mm steel cone with an angle of 2◦. The shear rate was fixed at γ̇ = 2.856 s−1, which was
estimated to be comparable to the shear rates encountered in the experiments, and the oil temperature
T was decreased from T = 28 ◦C to T = 16 ◦C, over the course of 20 minutes.

In Fig. 11, we plot the dynamic viscosity as a function of temperature, for both of the oils (green
squares for the silicone oil and red crosses for the mineral oil). The experimental data is found to be
well fitted (dashed and solid lines, respectively, in Fig. 11) by an Arrhenius description [55]:

μi = Aie
Bi/(T +273.15), (A1)
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FIG. 11. Temperature dependence of the dynamic viscosity of both fluids used: silicone oil and mineral oil
(see legend). The dashed and solid lines correspond to fits to Eq. (A1) for the two oils, respectively.

where μ is given in units of Pa s, T in ◦C, and the subscripts i = 1, 2 correspond to the
mineral and silicone oils, respectively. The fitting coefficients were determined to be A1 = (1.46 ±
0.39) × 10−9 Pa s and B1 = 5604 ± 73 ◦C for the mineral oil and A2 = 0.688 ± 0.005 Pa s and
B2 = 1508 ± 3 ◦C for the silicone oil. The temperature of the room where the experiments were
performed could vary on a day-to-day timescale in the range 18 � T � 24 ◦C. To circumnavigate
this practical but inevitable issue in our laboratory, T was measured before each experimental test
and used to determine the corresponding value of the viscosity of the oil through Eq. (A1). Both
fluids were found to behave as Newtonian fluids for γ̇1 < 102 s−1 [56] and γ̇2 < 104 s−1 [57], which
are shear rate values much larger than those encountered in our experiments, so we assume that the
behavior of each in our experiments is Newtonian.

APPENDIX B: CALIBRATION OF THE FORCE ON THE SUPPORTING
RODS TO DETERMINE THE LOAD ON THE DISK

In the steady-state regime [regime II in Fig. 3(a)], the component of the hydrodynamic load
associated with the disk, Fss(U ), is expected to be constant, while the component associated with
the rods, FR(z,U ), grows with increasing z (due to an increasing wetted length). The steady-state
force on the disk can therefore be isolated from the total load signal as

Fss(U ) = F (z,U ) − FR(z,U ), (B1)

whose average we define as the characteristic force exerted on the disk,

Fd (U ) = 〈Fss(U )〉. (B2)

The component of the loading attributed to the rods, FR(z,U ), results from a combination of
hydrodynamic loading, buoyancy, and air entrainment near the free surface. Next, we focus on
calibrating FR(z,U ), so that Fd (U ) can be obtained through Eq. (B1). Separate experiments were
conducted to determine FR(z,U ) for the mineral and silicone oils. In these calibration experiments,
we followed the experimental protocol detailed in Sec. II C. However, in contrast to all the other
experiments described in this paper which use two rods to support the disks, we used a varying
numbers of rods attached to calibration disks to ensure that each rod introduces the same force. To
confirm this, we also conducted experiments with varying numbers of rods but no calibration disk at
all. First, we assume that each of the nr supporting rods experiences the same force as a function of
speed, so FR(z,U ) = Fr (z,U ) nr , which implies that the rod-rod and rod-disk cross interactions are

084101-18



HYDRODYNAMIC LOADING OF PERFORATED DISKS IN …

0 0.01 0.02 0.03 0.04
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

no disk, 1 rod
no disk, 2 rods
no disk, 3 rods
disk, 2 rods
disk, 3 rods
disk, 4 rods
disk, 5 rods
disk, 6 rods
best fit line

Speed, U [m/s] Speed, U [m/s]

R
od

fo
rc

e
sp

ee
d

co
ef

.,
M

[m
/s

]

R
od

fo
rc

e
sp

ee
d

co
ef

.,
M

[m
/s

]

0 0.005 0.01 0.015
0

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

no disk, 1 rod
no disk, 2 rods
no disk, 3 rods
best fit line

1 cm

m1

b1

(a) (b)

FIG. 12. The rod force-speed coefficient M, defined in Eq. (B3), is plotted as a function of the speed U for
(a) the mineral oil and (b) the silicone oil. In both plots, the solid line is the fitted M(U ) and the gray region
represents the 68% confidence interval in both fitted parameters. The outlier data point in (b) was preserved
because we could not recall any abnormalities regarding the particular experiment from which it came. The
inset in (b) shows the air entrainment that occurred at the free surface in experiments using the silicone oil.
Error bars corresponding to variation in the steady-state force signal Fss and the disk speed U are smaller than
the data points and are not shown.

negligible. Furthermore, we also assume that first, the rods only contribute to the slope of F (z,U )
with increasing z, and, second, the slope of F (z,U ) versus z is caused entirely by the rods.

The calibration of the effect of the rods in the mineral oil was conducted first. We carried out
two sets of experiments, as described above in Sec. II C. In the first, we ran the experiments using
the same disk (r = 3.75 cm, a = 2.5 cm, t = 0.80 mm) supported by nr = 2, 3, 4, 5, or 6 rods such
that the total force was given by F (z,U ) = Fd (U ) + nrFr (z,U ). The Fd component of the force was
assumed to remain constant with z in the steady-state regime, so any change of the force signal with
displacement was attributed to the rods. In the second, we ran experiments without a disk using only
one, two, or three rods so that F (z,U ) = nrFr (z,U ). Given the practical challenges of working with
the more viscous silicone oil (namely, cleanliness) and the efficacy of the mineral oil calibration,
the calibration for the rod effect in the silicone oil involved only the first experiment.

As above, the subscript i denotes the selected oil (i = 1 for mineral oil and i = 2 for silicone oil).
The slope mi of the best linear fit to regime II of the F (z,U ) data in Fig. 3(a) was divided by both the
number of rods, nr , and the fluid viscosity, given by Eq. (A1), to obtain Mi = mi/(μinr ) m/s, which
we shall refer to as the force-speed coefficient of the rod. The reason for treating the data in this
apparently cumbersome way is so as to scale out changes of viscosity due to temperature variations
(for experiments performed in different days), which can be taken into account using Eq. (A1). In
Fig. 12, we plot Mi as a function of U , for a variety of different disk and rod combinations, finding
a linear relation of the form

Mi(U ) = miU + bi, (B3)

where the coefficients mi and bi were determined using a linear least-squares fit. The collapse of
the data provides evidence for the validity of the assumption that the rod-rod and the rod-disk
interactions are negligible. For the mineral oil, m1 = 1.77 ± 0.07 and b1 = 0.040 ± 0.002, where
the uncertainties correspond to the 68% confidence intervals of the fit. This uncertainty reflects the
minimum resolution of our force measurements and is the basis for the uncertainty which propagates
throughout the remainder of the analysis. For the silicone oil, we obtained m2 = 1.8 ± 0.2 and
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b2 = 0.000 ± 0.002. We suspect that the difference between the values of the offset b for the two
oils is due to the fact that air entrainment at the free surface was significantly pronounced for the
silicone oil [see photograph in Fig. 12(b), inset], but less so for the mineral oil. Moreover, buoyancy
and viscous loading was also different for the two oils.

The calibrated rod force is then subtracted from the total force signal, through Eq. (B1), with
FR(z,U ) = nrFr (z,U ) = nrμi Mi(U ) z, to isolate the steady-state force signal, Fss(U ), and, hence,
the average disk force Fd (U ). An example of the outcome of this procedure is presented in Fig. 3(b);
the rod force is subtracted from the raw force signal (black circles) to give the steady force (blue
crosses) to yield the average disk force (horizontal red line).
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