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Wind-sustained viscous solitons
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When wind blows at the surface of a liquid of sufficiently high viscosity, a wave packet
of small amplitude is first generated, which sporadically forms large-amplitude fluid bumps
that rapidly propagate downstream. These nonlinear structures, first observed by Francis
[J. R. D. Francis, Philos. Mag. 42, 695 (1954)], have an almost vertical rear facing the wind
and a weak slope at the front. We call them viscous solitons. We investigate their dynamics
in a wind-tunnel experiment using silicon oil of kinematic viscosity 1000 mm2 s−1 by
means of laser sheet profilometry and particle image velocimetry. We give evidence of
their subcritical nature: They are emitted in a region of large shear stress but, once formed,
they are sustained by the wind and propagate in a region of lower stress. Their propagation
velocity is given by the balance between aerodynamic drag in the air and viscous drag in
the liquid. The stable soliton branch of the subcritical bifurcation diagram is reconstructed
from the measured soliton amplitude at various wind velocities and distances along the
channel. At large wind velocity, the emission frequency of solitons increases, resulting in a
long-range sheltering of downstream mature solitons by newly formed upstream solitons,
which limits their course.

DOI: 10.1103/PhysRevFluids.4.084003

I. INTRODUCTION

When wind blows over water, small-amplitude disordered wrinkles elongated in the wind
direction first appear, which, for a wind velocity above a critical value, turn into growing waves
propagating predominantly in the direction of the wind [1–7]. The amplitude of these waves slowly
increases with wind velocity and with downstream distance, leading to a gradual nonlinear evolution
of their spectral content: Their typical wavelength increases, starting from about twice the capillary
length at the onset, while their typical frequency decreases [2,8–10].

Increasing the viscosity of the liquid up to 100 times the water viscosity does not change this
picture: Above a critical wind velocity, which slightly increases with the liquid viscosity, the initially
sinusoidal wave train slowly evolves towards a more complex pattern at large downstream distance
[11]. Importantly, this nonlinear evolution remains moderate, in the sense that the spatial growth
rate of the initial wave train remains much smaller than the typical wavelength.

However, for a liquid of sufficiently high viscosity, this picture dramatically changes: The initial
wave train becomes strongly unstable even very close to the wind velocity threshold, and it rapidly
evolves over a distance of the order of one wavelength into a large fluid bump pushed by the wind.
Such a viscous soliton is illustrated in Fig. 1 for a liquid kinematic viscosity of 1000 mm2 s−1 and
a wind velocity of 9.6 m s−1 (see below for experimental details). Viscous solitons are typically
2–4 mm high, 10–20 mm wide in the streamwise direction, with an almost vertical rear facing the
wind and a weak slope at the front. Their spanwise extent is about 8 cm close to the critical wind
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FIG. 1. Viscous soliton propagating from left to right, generated by a wind of velocity Ua = 9.63 m s−1 on
a silicon oil bath of viscosity ν� = 1000 mm2 s−1 and depth h = 35 mm. The size of the grid pattern is 1.3 cm.

velocity and increases up to the channel width (30 cm) at larger wind velocity, with a slightly curved
crest line.

Viscous solitons provide a striking example of out-of-equilibrium coherent structures, resulting
from the balance between an external forcing and dissipation [12–14]. Note that although the
viscous solitons considered here and the classical inviscid solitons in weakly dispersive shallow
water waves are both self-preserving nonlinear objects, they are of a very different nature: Viscous
solitons are strongly dissipative objects, which would rapidly decay without the continuous supply
of energy by the wind.

Viscous solitons forced by the wind were first reported by Francis in a series of experiments
using oils and syrups of kinematic viscosity ν� from 250 to 58 000 mm2 s−1 [15,16]. Reproductions
of his photographs can be found in Ref. [17] for the linear wave regime and in Ref. [18] for the
nonlinear soliton regime. Surprisingly, since the early work of Francis, these viscous solitons were
not investigated further until the recent experiments of Paquier et al. [11,19]. In these experiments,
liquids in a range of viscosity ν� � 1–560 mm2 s−1 were used, covering the transition between
the classical low-viscosity wind waves and the high-viscosity solitons. Both Francis [15,16] and
Paquier et al. [11,19] note that, once it appears, the initial wave packet is systematically unstable
and forms solitons and that the critical wind velocity for their generation, of the order of 9–11 m s−1,
shows almost no dependence on liquid viscosity. Another remarkable feature of viscous solitons is
their finite amplitude even very close to the critical wind velocity, suggesting that they arise from a
subcritical instability.

The conditions under which the interface between a viscous liquid and a low-viscosity gas flow
becomes unstable have been the subject of extensive literature (see Ref. [20] for a review). Stability
analyses are usually based on either the thin-film approximation or the deep-water approximation.
The instability that leads to viscous solitons falls in the second category, to which we restrict our
attention in the following. A central issue in this problem is the relevance of the Kelvin-Helmholtz
instability mechanism: While it is well established that this mechanism does not describe the
wave generation in the low-viscosity case, including in the air-water configuration, it is is usually
considered as the relevant mechanism in the large-viscosity case [17,18,21–24]. The reason for
this somewhat paradoxical result is that although the liquid viscosity affects the growth rate of
the instability, it has no effect on the critical wind velocity or on the most unstable wavelength,
which remain governed by the inviscid Kelvin-Helmholtz predictions. Such a velocity threshold
independent of the liquid viscosity is indeed consistent with the observations of Francis [15,16] and
Paquier et al. [11,19]. Accordingly, viscous solitons can be seen as the nonlinear saturated state that
results from the Kelvin-Helmholtz instability on a liquid of sufficient viscosity. This conclusion also
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holds in the closely related problem of slug formation in two-phase pipe flows, a configuration of
primary interest in the oil industry [25].

The aim of this paper is to characterize experimentally the viscous soliton regime of Francis [15].
Based on the same experimental setup as in Ref. [4], experiments were carried out in this regime,
using silicon oil of viscosity 1000 mm2 s−1 and various liquid depths. Our experiments confirm
the subcritical nature of the instability that leads to the generation of solitons: We show that they
are emitted in a region of large wind stress (thin air boundary layer), but, once formed, they can
propagate in regions of lower wind stress (thicker boundary layer). We characterize in detail their
properties (shape, amplitude, and velocity) as a function of the air velocity and liquid depth and
show that their propagation results from a balance between the aerodynamic drag in the air and the
viscous drag in the liquid. We finally discuss the conditions under which viscous solitons may form
when blowing over a liquid surface.

II. EXPERIMENTAL SETUP AND FLOW CHARACTERIZATION

A. Wind tunnel and liquid tank

The experimental setup is composed of a liquid-filled rectangular tank of length Lx = 1.5 m and
width Ly = 296 mm, located at the bottom of a wind tunnel (Fig. 2). The depth h of the liquid tank
is varied in the range 20–50 mm using immersed Plexiglas plates at the bottom. The wind tunnel
height is H = 105 mm and its width is equal to the width of the liquid tank.

The working fluid is silicon oil (Bluesil Fluid 47 V1000), of density ρ� = 970 kg m−3, kinematic
viscosity ν� = 1000 mm2 s−1, and surface tension γ = 21.1 mN m−1 at 25◦. Using silicon oil, a
nonpolar liquid with low surface tension, reduces surface pollution, which is unavoidable with
aqueous solutions. The air flow, generated by a wind turbine located upstream, can be adjusted
in the range Ua = 1–15 m s−1. The wind velocity here is limited to 11 m s−1; otherwise, solitons
reach the end of the tank, resulting in a loss of oil. More details on the setup and properties of the
air boundary layer can be found in Ref. [19].

Two measurement methods are used: laser sheet profilometry (LSP) (Fig. 3) and particle image
velocimetry (PIV) (Fig. 4). Both measurements are performed along x, at a distance of 45 mm from
the left side wall of the channel. For LSP, the oil is made diffusive by adding TiO2 powder (a white
pigment) at a concentration of 250 mg/l. For PIV, the oil is seeded with coated glass beads, 10 μm
in diameter, at a concentration of 25 mg/l. Because of these different seedings, the two methods
cannot be used simultaneously.

B. LSP measurements

For LSP measurements, the liquid is illuminated by a laser sheet making a small incidence angle
α with the horizontal, and the intersection between the laser sheet and the surface is imaged from
above with a 1280 × 1024 camera (PCO 1200hs mounted with a 85-mm Nikon lens) working at
20 frames/s. For a surface deformation ζ (x, t ) invariant along y, this intersection is shifted
horizontally by a distance �Y (x, t ) = ζ (x, t )/tan α [see Fig. 2(b)]. The angle α is chosen small
to increase the vertical resolution, but such that the typical deviation �Y remains smaller than the
transverse curvature of the solitons (their spanwise extent is of the order of 8 cm at small wind
velocity, as shown in Fig. 1, and up to the channel width at larger wind velocity). In practice, we
chose α = 16◦, yielding �Y of the order of 1 cm for a 3-mm soliton.

The surface elevation ζ (x, t ) is determined by a standard edge detection method: The maximum
light intensity at each x is determined with subpixel accuracy using an 11-point parabolic fit of the
light intensity, yielding a vertical resolution of 0.1 mm. A typical LSP image is shown in Fig. 3.
Because of the pressure drop in air along the tunnel, the liquid surface is not perfectly horizontal but
shows a marked lowering at x = 0 of typically 1 mm, followed by a shallow positive slope along the
channel. This lowering is more pronounced at small liquid depth, which limits the measurements to
h � 20 mm. In the following, this mean surface profile is substracted and we define the wave profile
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FIG. 2. Sketch of the wind tunnel and of the liquid tank: (a) side view and (b) front view, looking
downstream. Measurements are performed by laser sheet profilometry and particle image velocimetry. The
wave amplitude is exaggerated for visibility.
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FIG. 3. Free surface measurement using LSP showing three viscous solitons propagating downstream, for
Ua = 9.95 m s−1 and h = 35 mm. The grayscale image shows the raw image of the tilted laser sheet penetrating
the oil; the solid red line is the reconstructed interface ζ (x). Note that the vertical scale is magnified for
visibility.
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FIG. 4. Flow in a vertical plane measured by PIV (a) below the onset of solitons, Ua = 7.4 m s−1, and
(b) showing the formation of a soliton, Ua = 10.1 m s−1. Color codes the norm of the velocity. Because of the
camera incidence, the 5 mm at the bottom of the tank are not resolved. In (b) a soliton measured by LSP is also
shown at the same location as in the PIV field (PIV and LSP measurements are not simultaneous).

as ξ (x, t ) = ζ (x, t ) − 〈ζ (x, t )〉t , with 〈·〉t a time average. Note that for strong forcing the upstream
side of the soliton shows an overhanging profile, so ζ (x) is no longer monovalued. Because of
the observation from above, only the upper part of the overhang can be detected and no reliable
measurement can be performed where the slope is nearly vertical.

From the LSP measurements, solitons are identified using a two-step tracking algorithm. (i)
In the identification step, for each time t we detect the locations of the maxima of the surface
height ξ (x, t ), with one maximum per interval in which ξ (x, t ) exceeds the threshold of 0.5 mm. A
minimum distance of 8 mm is taken between two consecutive maxima. (ii) In the pairing step, the
solitons detected in consecutive frames are paired using a standard nearest-neighbor scheme. Using
this algorithm, we build a set of N solitons for each wind velocity, with N � 30 at small Ua, up to
N � 100 at large Ua. For each soliton, we record its location Xs(t ), velocity Vs(t ) = dXs/dt , and
amplitude A(t ) = max ξ .

C. PIV measurements

Particle image velocimetry measurements are performed in a vertical plane, right after the edge
of the tank, for x = 0–120 mm, where solitons are generated (see Fig. 2). The flow is illuminated
from below, to avoid deformation from the surface, using a vertical laser sheet from a double-pulsed
Nd:YAG laser (25 mJ/pulse). The repetition rate of the image pairs is 10 Hz, and the time interval
between two images of a pair is set between 10 and 100 ms. Images are taken from the side
using a double-frame camera (PCO 2000 mounted with a 35-mm Nikon lens), making a small
angle of 5◦ in order to better resolve the flow close to the free surface; however, because of
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the curvature of the crest of the solitons, the flow cannot be resolved inside the soliton bump,
and measurements are restricted to z < 0. The velocity fields are computed using standard PIV
algorithm, with interrogation windows of 16 pixels, yielding a spatial resolution of 0.7 mm.

Two PIV fields are shown in Fig. 4, one below and one above the onset of solitons. The velocity
field below the onset [Fig. 4(a)] shows a surface drift velocity induced by the wind shear stress, of
order of 1.5 mm s−1, and a backflow underneath. At larger wind velocity [Fig. 4(b)], in addition to
this mean recirculation flow, we observe the emission of solitons, characterized by a vortex traveling
below the surface bump (PIV and LSP measurements are not performed simultaneously, but the
snapshots shown here correspond to a similar event). The fluid velocity below a soliton is of the order
of its propagation velocity, here about 40 mm s−1, which is at least 20 times faster than the mean
recirculation flow.

D. Spatial decay of the wind shear stress

An important parameter for the generation and propagation of solitons in this experiment is the
rate of decrease of the wind shear stress τ (x) at the surface. This spatial decay is related to the
increase of the turbulent boundary layer thickness δ(x) [26].

Below the onset of solitons, the local shear stress τ (x) can be inferred from the local drift velocity
Us(x) using stress continuity at the interface: Assuming an applied shear stress slowly varying in x,
the Stokes flow of a viscous liquid in a closed container of thickness h is parabolic,

u(x, z) � Us(x)
(

1 + z

h

)(
1 + 3

z

h

)
, (1)

with −h � z � 0, where Us(x) is the surface drift velocity

Us(x) = τ (x)h

4ρ�ν�

. (2)

The recirculation flow in Fig. 4(a) is consistent with the parabolic profile (1), at least for x not too
close to the edge of the tank (typically for x > h) and y not too close to the side walls. The local
shear stress deduced from this measurement, plotted in Fig. 5(a), clearly shows a decrease in x.
It can be described in terms of the skin friction coefficient τ/ρaU 2

a as a function of the Reynolds
number based on the total streamwise distance x + x0. Here x0 = 350 mm is the length of the flat
plate between the end of the wind-tunnel convergent and the edge of the liquid tank at x = 0. The
data show excellent agreement with the classical empirical fit for a developing turbulent boundary
layer [Fig. 5(b)]

τ (x)

ρaU 2
a

� C

(
Ua(x + x0)

νa

)−0.2

. (3)

The value of the coefficient C = 0.029 is identical to that obtained for a conventional no-slip
boundary layer over a rigid wall [26]. This is because of the very small drift velocity Us (less than
2 mm s−1), which is at least three orders of magnitude smaller than Ua. This law applies only below
the onset of waves and solitons, when the influence of the wave roughness on the turbulence can be
neglected.

III. LIFE CYCLE OF VISCOUS SOLITONS

We now turn to the generation of viscous solitons and provide here a general overview of their
life cycle. It can be divided in three phases: generation, propagation, and decay. These three phases
are visible in the spatiotemporal diagrams of the surface elevation ξ (x, t ) shown in Fig. 6, for a
liquid depth h = 35 mm and three values of the wind velocity Ua. For this liquid depth, the critical
wind velocity is Uac = 9.15 m s−1.

We first note that for Ua smaller than the critical velocity Uac, the surface remains essentially
stationary at all x: The wrinkles (random wakes produced by the pressure fluctuations in the
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FIG. 5. (a) Shear stress τ as a function of the distance x for three wind velocities Ua, obtained from the
drift velocity measurement using Eq. (2). (b) Normalized shear stress (skin friction coefficient) as a function
of the Reynolds number based on the total streamwise distance x + x0, where x0 is the length of the flat plate
before the edge of the tank. In both figures the lines show the empirical fit [Eq. (3)].

turbulent boundary layer [6]) are of amplitude less than 2 μm for such a large viscosity, which
is well below the resolution of the LSP measurements.

As the wind velocity is increased above Uac, a wave packet composed of a few propagative
waves of small amplitude is formed in a narrow interval of x [see the magnification in Fig. 6(d)].
This interval is approximately 30–70 mm close to the onset and increases up to 30–100 mm at
larger velocity. The wave packet remains spatially confined in this interval, but it is always unstable
in time: Its amplitude grows, at a rate that increases with the wind velocity, until one crest abruptly
steepens and forms a large-amplitude soliton. This process is better visualized in the stacked plot
shown in Fig. 7. Once formed, the soliton accelerates, leaves the initial wave packet, and propagates
along the channel for a certain distance. After the formation of a soliton, the wave packet disappears
for some time and then reforms and the process repeats.

These observations suggest a description of the generation and propagation of solitons in terms of
a subcritical instability governed by the local shear stress τ (x). Figure 8 illustrates this scenario. For
a given wind velocity Ua, the fact that the initial wave packet is found only up to a certain distance x1

indicates that it is sustained only for a sufficient shear stress τ1 = τ (x1) [see Fig. 8(a)]. Beyond x1,
the shear stress decreases below τ1 and the wave packet disappears. However, once formed, solitons
can cross the boundary x1 and propagate in the region of lower shear stress τ (x) < τ1. Solitons in
the subcritical region are sustained until the local shear stress decreases below a secondary threshold
τ2 < τ1, corresponding to the distance x2 of decay of solitons.

The local shear stress τ (x) depends both on the wind velocity Ua and on the distance x along the
channel through Eq. (3). In order to determine the critical shear stress τ1 for the onset and instability
of the initial wave packet, we varied the location of the initial wave packet by extending the rigid
wall upstream of the liquid surface using a rigid floating membrane of length Lm fixed at the edge
of the tank, at x = 0 (see the sketch in Fig. 9). For each membrane length Lm, we measure the
critical wind velocity Uac, which typically increases from 9 to 10 m s−1 when the total length of the
boundary layer is increased from x0 = 350 to x0 + Lm = 650 mm. The critical shear stress deduced
from this measurement using the decay law (3) is remarkably independent of the membrane length
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FIG. 6. Spatiotemporal diagrams of the surface elevation ξ (x, t ) during 50 s for a liquid depth h = 35 mm
at three wind velocities (a) Ua = 9.15 m s−1, (b) Ua = 9.31 m s−1, and (c) Ua = 9.95 m s−1, showing the
emission, propagation, and decay of viscous solitons. The dashed box in (a), magnified in (d), shows the
interval of x where the initial wave packet is present. The horizontal dashed arrows and the circles highlight
the influence of new upstream solitons on mature downstream solitons: strong sheltering at moderate wind
velocity, leading to a marked slowdown sometimes followed by a decay in (b), and weak sheltering at larger
wind velocity in (c).

Lm (see the inset of Fig. 9),

τ1 � 0.25 ± 0.01 Pa. (4)

This confirms that the shear stress, rather than the wind velocity, is the relevant control parameter
for the onset of waves and solitons.

The secondary threshold τ2 can be estimated from the distance x2 of natural decay of solitons,
i.e., the location where isolated solitons spontaneously disappear in the absence of interaction with
other solitons. This distance x2 must be determined for a wind velocity close to the onset, when the
emission frequency is small and solitons remain isolated [see Fig. 6(a)]. We find x2 � 500 ± 50 mm
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FIG. 7. Stacked plots of the surface elevation ξ (x) for Ua = 9.15 m s−1 taken every �t = 0.1 s, showing
the propagation and growth of the initial wave packet and the generation of a soliton. The profiles are vertically
shifted by 0.1 mm at each time step.

(this value is determined by visual inspection of solitons; LSP measurements are restricted to x =
400 mm), from which Eq. (3) yields

τ2 � 0.21 ± 0.01 Pa. (5)

In spite of this narrow hysteresis window [τ2, τ1] of 15%, the shallow decrease of τ (x) allows for a
extended subcritical region [x1, x2] where solitons can propagate.

At larger wind velocity, although x2 should increase in principle, solitons are found to decay
before reaching this distance: Because of the larger emission frequency, more than one soliton
is present in the tank at the same time and the wind perceived by a mature downstream soliton
is reduced by a newly formed upstream soliton. Interactions between solitons are depicted by
horizontal dashed arrows and circles in Fig. 6. At moderate wind velocity [Fig. 6(b)], a marked
slowdown of the downstream soliton is observed each time a new soliton is emitted, illustrating the
high sensitivity of solitons to changes in the local boundary layer induced by upstream solitons.

A
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(a) (b)

x
x1 x2

unstable
wave

+ soliton soliton
unstable wave

1

2

12

FIG. 8. Sketch illustrating the subcritical formation of viscous solitons. (a) Decrease of the shear stress
along the channel, τ ∼ (x + x0 )−0.2 [Eq. (3)], and the two thresholds τ1 > τ2 defining the two distances x1 <

x2. (b) Bifurcation diagram showing the primary wave branch, unstable for τ > τ1, and the soliton branch,
stable for τ > τ2 (stable branches in solid lines, unstable branches in dashed lines). The vertical black arrows
illustrate the linear growth rate σi. The red trajectory illustrates the evolution of the system when governed by
a time-varying shear stress τ close to the onset τ1 (see Sec. IV).
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FIG. 9. Determination of the critical shear stress τ1 for the onset of solitons, obtained by measuring the
critical wind velocity Uac as a function of the length Lm of a floating rigid membrane that extends the length of
the rigid-wall boundary layer (red dashed line in the sketch). From this measurement, the critical shear stress
τ1 � 0.25 Pa is obtained using the decay law (3), shown in the inset. The liquid depth h = 35 mm.

Such a sheltering effect may even lead to the decay of the downstream soliton when the two solitons
are close enough, typically when they are separated by less than 200–300 mm (100 times larger than
the soliton amplitude). At higher wind velocity [Fig. 6(c)], this sheltering effect is less pronounced:
Only a weak slowdown is observed at moderate fetch, while solitons at larger fetch are essentially
not affected and continue their course.

IV. GENERATION OF SOLITONS

We now describe in more detail the instability of the initial wave packet that leads to the formation
of viscous solitons.

The initial wave packet has a characteristic wavelength λ ≈ 18 ± 2 mm and frequency f � 1.0 ±
0.1 Hz [see Figs. 6(d) and 7], with no significant dependence on liquid depth or wind velocity. This
wavelength, which is about twice the capillary length λc = 2π

√
γ /ρg ≈ 9.4 mm, is consistent with

the one found by Francis over a wide range of liquid viscosity (see Ref. [17]). The phase velocity
of these waves, c � 19 ± 2 mm s−1, is about one-tenth of the minimum phase velocity of inviscid
gravity-capillary waves (one has cmin = 170 mm s−1 for a fluid with identical density and surface
tension but zero viscosity).

Importantly, the wavelength in the initial wave packet is smaller than the viscous cutoff λ0 =
2πθ

−2/3
0 (ν2

� /g)1/3 � 24 mm below which waves at a stress-free interface cannot propagate [27,28];
here θ = ν�k2/σ is the parameter which compares the dissipation timescale and the inviscid wave
period σ−1 of a wave number k, with θ > θ0 � 1.31 for overdamped waves (this viscous cutoff λ0

is essentially independent of the liquid depth h for the values considered here). The waves in the
initial wave packet are therefore overdamped waves, resulting from a balance between the forcing
by the wind and the viscous dissipation. This is consistent with the fact that they do not cross the
boundary x1 beyond which the local shear stress is not sufficient to sustain them [see Fig. 8(a)].

The initial wave packet, once it appears, is always unstable and forms a soliton. The formation of
a soliton can be decomposed into two stages: a slow and erratic temporal growth of the initial wave
packet, followed by a rapid steepening of its highest crest. An instance of such erratic growth prior
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to the emission of a soliton is visible in the spatiotemporal diagram in Fig. 6(d) for the liquid depth
h = 35 mm; see the slight temporal decrease of the wave amplitude at t � 31 s. The variability of
this first growth stage is more pronounced at lower liquid depth.

The time evolution of the amplitudes of the initial wave packet and soliton crest at the onset
Ua = Uac is illustrated in Fig. 10(a). For each event, the data at �t = t − ts < 0 show the amplitude
of the wave envelope at a fixed point in the center of the wave packet, xc = 50 mm, while the data at
�t > 0 show the amplitude following the soliton crest. The transition time ts from wave to soliton
is defined such that the wave envelope crosses a critical amplitude Ac, which we choose so as to
minimize the dispersion in the soliton growth phase. We find Ac � 0.5 ± 0.1 mm, corresponding to
a wave slope kAc � 0.2 ± 0.05.

The rapid growth of the wave crest above a critical amplitude suggests that the transition is
triggered by a modification in the air flow as the wave grows [29–33]: For small amplitude the flow
in the air closely follows the surface, resulting in a nearly symmetric pressure and shear stress
distribution on both sides of the wave. As the amplitude increases, an asymmetry in the stress
distribution gradually appears, resulting in an increased momentum transfer from the wind to the
waves.

The growth rate σs in the soliton phase, computed by fitting A(t ) ∼ exp(σs �t ) for �t > 0, is
almost independent of the wind velocity σs � 2.8 ± 0.3 s−1 [see Fig. 10(b)]. On the other hand,
the growth of the initial wave packet prior to the formation of a soliton shows a high variability.
We characterize this irregular growth by fitting A(t ) ∼ exp(σi �t ) for �t < 0 for each event right
before the sharp increase at A = Ac and we compute the average and standard deviation of σi among
the set of solitons. In spite of this large variability, we observe in Fig. 10(b) an increase of σi with
Ua. A similar increase is obtained for the two other liquid depths h = 20 and 50 mm.

The nearly constant σs and the increasing σi with wind velocity are again consistent with a
subcritical bifurcation: The initial growth is related to the linear instability of the base state, which
is governed by the deviation from the critical shear stress τ − τ1, whereas the dynamics when
approaching the nonlinear soliton branch do not depend significantly on τ . The large variability
in the initial wave packet evolution close to the onset probably originates from the temporal
fluctuations of the shear stress. This is illustrated by the red trajectory in Fig. 8(b): For a mean
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FIG. 11. (a) Emission frequency of solitons for the three liquid depths. (b) Fluctuation rate of the waiting
time Te between two solitons for h = 35 mm. The dashed line, (Ua − Uac )−1 with Uac = 9.25 m s−1 the critical
wind velocity, is shown as a guide to the eye.

shear stress close to the critical value τ1, temporal excursions of τ on both sides of τ1 are expected
to produce an alternating positive and negative growth rate and hence alternating amplification and
attenuation of the wave amplitude. Such a cycle may repeat several times until a sufficiently long
positive excursion leads to a jump on the bifurcated soliton branch.

After the emission of a soliton, the wave packet disappears for a certain time and then reforms.
The waiting time Te between two solitons depends both on the time to “refill” the liquid tank after
the emission of a soliton and on the reformation and irregular growth time of the wave packet. Close
to the onset, Te is expected to be governed by the second (slower) process, i.e., by the typical number
of cycles performed around the critical shear stress τ1 before jumping to the soliton branch, which
itself depends on the timescale of the fluctuating stress perceived by the wave compared to its growth
time. The mean emission frequency fe = 1/〈Te〉 and its fluctuation rate T ′

e /〈Te〉, with T ′
e the standard

deviation of Te, are plotted in Fig. 11 as a function of the wind velocity. The emission frequency
starts from zero at the critical wind Ua = Uac, with a large fluctuation rate, and the system rapidly
evolves towards a nearly periodic emission of solitons at a frequency fe at larger wind velocity.
This nearly periodic emission far from the onset reflects the disappearance of the intermittent cycles
when the instantaneous shear stress remains well above the threshold τ1 at all time. The maximum
emission frequency at large wind velocity is comparable to the wave frequency f � 1.0 Hz. In the
case h = 50 mm, solitons are emitted at a particularly high rate fe � f /2: One out of two wave
crests forms a soliton.

V. PROPAGATION AND DECAY OF MATURE SOLITONS

A. Amplitude and propagation velocity

We now characterize the shape and propagation velocity of mature solitons in the subcritical
region x > x1. We first plot in Fig. 12(a) the amplitude of a large set of solitons as a function of the
distance x along the channel. We recover the successive steps of their life cycle: (1) Solitons emerge
from the initial wave packet at x � 50 ± 10 mm; (2) their amplitude strongly increases between 60
and 80 mm, where they reach their maximum value; (3) during their “mature” state, their amplitude
shows strong fluctuations (�±10%) because of the stress fluctuations in the turbulent boundary
layer, superimposed to a clear decreasing trend related to the decay of the mean shear stress along
the channel; (4) their amplitude rapidly falls at the end of their course. The fluctuations of amplitude
in the mature phase (3) imply a large variability in the distance x at which solitons disappear (note
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FIG. 12. (a) Spatial evolution of the soliton amplitude A for a set of N = 12 solitons, for a wind velocity
Ua = 9.15 m s−1 and liquid depth h = 35 mm. (b) Soliton trajectories, in the plane amplitude A vs velocity
Vs. Each color represents a single soliton. (1) shows the unstable primary wave, (2) the growth phase, (3) the
slowly decreasing mature state, and (4) the rapid decay. The horizontal dashed line represents the mean phase
velocity of the regular waves, c � 19 mm s−1.

that the tracking of solitons is limited here to 380 mm, but a number of solitons continue their course
up to �500 mm). The disappearance occurs on a short timescale of 1–2 s, which is consistent with
a sharp jump from the soliton branch to the base state when τ = τ2 in the subcritical bifurcation
diagram of Fig. 8(b).

An interesting feature of viscous solitons is the strong correlation between their velocity Vs

and their amplitude A. This is shown in Fig. 12(b), where we plot the time history of a set of
solitons in the plane (A,Vs). Each color denotes a single soliton, sampled at 20 Hz. In phase (1), the
soliton precursor (dominant wave crest of the regular wave packet) has a velocity independent of its
amplitude, Vs � 13 ± 3 mm s−1, a value slightly smaller than the average phase velocity of regular
waves, c � 19 ± 2 mm s−1. However, as the amplitude increases above 1 mm, A and Vs increase
simultaneously, reach their maximum mature values, and then slowly decrease. In the decay phase
(4), A and Vs rapidly fall, approximately following path (2) in the opposite direction.

During the mature phase, although the amplitude of the solitons fluctuates and slightly decreases,
their shape remains unchanged. The average shape of mature solitons is shown in Fig. 13(a) for
various wind velocities. Each curve represents an average of soliton profiles ξ shifted about their
center Xs in their early mature phase (averaged over an interval of time corresponding to their first
100 mm of propagation). When both the height ξ and spatial coordinate x are rescaled with the
maximum amplitude A = max(ξ ), the profiles collapse onto a single master curve [Fig. 13(b)]:
The soliton shape is remarkably self-similar, at least not too close to the center Xs � 0 where
measurements are not reliable. The crest is at �x � 1.5A and the trough (min ξ � −0.6A) is at
�x � −2A, yielding a trough-to-crest mean slope of order of 0.5. The local slope at the center is
in reality much larger and may even become negative. We also note that although the crest is larger
than the trough, the front side decays more rapidly than the rear side, so the integral of the surface
elevation over the whole soliton profile is essentially zero: The mass transported by the soliton crest
is compensated by the long negative tail, which corresponds to the slow upstream refilling by the
recirculation flow.

The structure of the flow below solitons is shown in Fig. 14 for three liquid depths. The vortex
is located at −z/h � 0.4–0.5, which is slightly deeper than the depth −z/h = 1/3 at which the
velocity of the mean recirculation flow vanishes [see Eq. (1)]. The vorticity is concentrated in a
layer of thickness of order 1 cm below the surface. Surprisingly, decreasing the liquid depth h tends
to produce solitons of larger amplitude, but has a weak influence on their propagation velocity Vs

(Fig. 15). This dependence on h suggests that the bottom of the tank plays an important role in the
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FIG. 15. (a) Mean velocity Vs, and (b) mean amplitude A of solitons in the quasistationary phase as a
function of the wind velocity for various liquid depths h.

formation of solitons. The decrease of the amplitude for increasing depth raises the question of the
existence of solitons for larger depth, but it cannot be tested in the present setup. Producing even
higher solitons by decreasing the liquid depth below 20 mm is not possible either, because the mass
transported by the crest of solitons cannot be compensated by the too slow return flow, leading to a
gradual flushing of the tank.

B. Force balance on mature solitons

We show now that, in the quasistationary mature phase, solitons are nonlinear objects pushed
by the wind: Their propagation velocity Vs is proportional to their amplitude A, as the result of a
balance between the inertial drag on the air side and the viscous drag on the liquid side.

On the air side, the aerodynamic drag is turbulent: The soliton height, 2–4 mm, is 100 times
larger than the thickness of the viscous sublayer (δν = νa/u∗ � 30 μm at this wind velocity, with
u∗ = √

τ/ρa the friction velocity). The wind velocity at the top of a soliton is therefore essentially
given by Ua, with a typical Reynolds number of UaA/νa � 2000. The drag force exerted by the wind
on the soliton is therefore of the form

FD � CDρaU
2
a WA, (6)

with W the lateral extent of the soliton and CD a drag coefficient that depends only on its shape.
On the liquid side, the flow is laminar (the maximum Reynolds number is VsA/ν� � 0.3). We can

therefore model the viscous friction by a Stokes drag force Fν � Sτs, with S � AW the surface area
of the soliton and τs the viscous stress. Since the velocity gradients remain concentrated in a layer
of thickness of order A below the surface (see Fig. 14), we can write τs � ρ�ν�Vs/A, yielding

Fν � βρ�ν�WVs, (7)

where β is a numerical factor of order 1, which may depend on the shape of the soliton and the
liquid depth.

Balancing the inertial force (6) and the viscous force (7) finally selects the velocity of the soliton
in the mature phase,

Vs � α
ρa

ρ�

U 2
a A

ν�

, (8)

where α = CD/β is a numerical factor of order 1. This scaling is confirmed by the measured values
of the coefficient α shown in Fig. 16, which is independent of Ua for the whole range of velocity
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FIG. 16. Coefficient α characterizing the soliton velocity in Eq. (8) as a function of the wind velocity Ua

for the three liquid depths h. The inset shows the mean value of α as a function of h, with a best fit α ∼ h0.3.

where solitons are observed. The mean value of α slightly increases with the liquid depth (α ∼ h0.3;
see the inset): This trend originates from an increase of the viscous drag as h is decreased, resulting
in an increased drag coefficient β in Eq. (7). Note that linearity between A and Vs applies only in the
quasistationary mature phase (3), not in the growth (2) and decay (4) phases [see Fig. 12(b)].

C. Reconstruction of the soliton branch

We finally show that from the slow decay of the soliton amplitude in the mature phase
[Fig. 12(a)], it is possible to reconstruct the stable soliton branch in the subcritical bifurcation
diagram hypothesized in Fig. 8(b). Such bifurcation diagram implicitly assumes that the local shear
stress uniquely selects the properties of the solitons, i.e., it ignores the retroaction of the soliton on
the shear stress. To test to what extent this assumption holds, we plot in Fig. 17 the mean soliton
amplitude as a function of the local shear stress τ , deduced from the wind velocity and the location
x along the tank using the decay law (3). The data collapses reasonably well onto a single curve,
which confirms that the soliton amplitude is correctly described by the local shear stress. In this
plot, the unstable branch between τ1 and τ2 (shown as a dashed line) is drawn as a guide to the eye,
but it cannot be accessed in this experiment.

From Fig. 17 we can summarize the evolution of a soliton as follows: For a given wind velocity,
provided the local shear stress is above τ1, the system first jumps to the soliton branch A �= 0 (solid
line), follows the branch from right to left for increasing x, and finally jumps back to the stable
branch A = 0 when the local shear stress reaches τ2. This return to the base state is either natural,
when the soliton reaches the distance x2 where τ (x) = τ2, or forced, when the air drag on the soliton
is reduced by the emission of a new upstream soliton.

VI. CONCLUSION

In this paper we characterized experimentally the viscous solitons first observed by Francis
[15] that are formed when wind blows over the surface of a highly viscous liquid. These out-
of-equilibrium structures result from a balance between the forcing by the wind and the viscous
dissipation in the liquid, which selects a nontrivial self-preserving asymmetric shape. Our results
suggest that viscous solitons arise from an initial unstable wave train when the wave amplitude
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becomes large, triggering a change in the air flow that abruptly increases the aerodynamic drag on
the wave.

We proposed here a simple model to describe the growth, propagation, and decay of viscous
solitons, based on a subcritical bifurcation governed by the local shear stress. A key ingredient
to capture their life cycle is the streamwise decay of the local shear stress applied on the liquid
surface, due to the development of the turbulent boundary layer in the air. Although this particular
inhomogeneity of the shear stress field is specific to our flow configuration, we believe that viscous
solitons are generic objects that could be observed in other configurations. Using a fully developed
channel flow instead of a developing boundary layer would provide an interesting configuration with
a uniform shear stress. For an applied shear stress τ inside the hysteresis window [τ2, τ1], a single
soliton propagating to infinity could be in principle generated by means of a localized mechanical
forcing. Such a fully developed configuration with uniform shear stress is encountered in two-phase
pipe flows, but the strong confinement usually present in this configuration (soliton amplitude of the
order of the gas layer thickness) rapidly leads to the formation of slugs rather than solitons [25].

Viscous solitons resulting from a balance between wind forcing and viscous dissipation are also
found in the Hele-Shaw geometry [34,35]. In this configuration, the two-phase flow confined in the
thin gap between two vertical parallel plates generates propagating localized structures resulting
from a subcritical instability. Because of the transverse confinement, the flow in a Hele-Shaw cell is
laminar in both phases and the small gap size implies a thin uniform shear layer between the fluids,
thus mimicking a quasi-inviscid discontinuous velocity profile. The nature of the force balance in
the quasi-two-dimensional (quasi-2D) Hele-Shaw flow strongly differs from the 3D configuration:
The capillary and the friction forces are governed by the transverse scale (gap size) in the quasi-2D
case, rather than by the vertical scale (soliton amplitude) in the 3D case. In spite of these differences,
solitons with similar asymmetric shapes are found in both configurations, with an almost vertical
rear facing the wind and a weak slope at the front.

The subcritical nature of the instability that leads to the generation of viscous solitons raises a
number of questions. How does the hysteresis window [τ2, τ1], which is about 15% in the present
experiments, depend on the liquid properties and flow parameters? Under what conditions is this
transition subcritical? More precisely, for a given flow configuration, is there a critical liquid
viscosity ν�c above which the instability becomes subcritical? The experiments of Paquier et al. [11]
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suggest a transition for ν�c � 100–200 mm2 s−1, but the dependence of this critical viscosity on the
other parameters remains unexplored. If only the liquid properties are considered, i.e., ignoring the
possible influence of the liquid depth h, dimensional analysis implies

ν�c �
(

γ 3

ρ3
� g

)1/4

. (9)

We obtain ν�c � 180 mm2 s−1 for silicon oil, which turns out to provide the correct order of
magnitude for the onset of solitons. We note that for this viscosity, the viscous cutoff for linear
waves (ν2

� /g)1/3 matches the capillary length (γ /ρ�g)1/2, suggesting that the instability becomes
subcritical and generates solitons when the most unstable wavelength is critically damped and
cannot propagate.

We conclude this paper by conjecturing that a necessary condition to form viscous solitons by
blowing over a viscous liquid is to first generate critically damped waves of sufficient slope, over
which flow separation occurs. For waves of wavelength of order of the capillary length, such as those
naturally arising from the Kelvin-Helmholtz instability, this condition requires a liquid of viscosity
larger than ν�c [Eq. (9)]. This conjecture is however difficult to check experimentally because this
critical viscosity cannot be varied significantly using ordinary liquids.

We finally note a striking similarity between viscous solitons and the hydroelastic localized
structures that form at the surface of a compliant gel forced by wind [36–38]. The turbulent air
flow above a wavy viscous liquid and a wavy soft solid being similar, this suggests that the physical
mechanism responsible for the generation of solitons (detached flow over overdamped waves) is not
specific to viscous liquids, but is also present in viscoelastic solids.
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