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In this paper, the electroconvective flow induced by the unipolar charge injection is
extended from single-phase dielectric liquid to the solid-liquid interaction problem. The
physical model with fully coupled mathematical equations is built in the liquid, solid, and
interface for both the Ohmic and non-Ohmic solid models. An improved lattice Boltzmann
model (LBM) is developed with three lattice Boltzmann equations for Poisson’s equation,
charge conservation equation, and Navier-Stokes equations, respectively. Our codes are
first validated by the analytical solutions at the hydrostatic state. It is found that the LBM
can well reproduce the discontinuous changes of electrical field and charge density at the
interface and agrees well with the analytical results. Then, simulations are conducted under
different governing parameters and interface position fl . Results show that the bifurcation
of electroconvection in the presence of the solid-liquid interface is still of subcritical type,
but both the linear and finite amplitude stability criteria increase due to a voltage drop
happening at the solid phase. Besides, the stability criterion expressed by the electrical
Rayleigh number Tc increases as the permittivity ratios εr and the mobility ratios Kr

increase, but Tc decreases with the increasing of dimensionless electric conductivity S and
the interface position fl .
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I. INTRODUCTION

The flow motion driven by the Coulomb force exerted by the electric field on free-space charges
are fundamental problems in electrohydrodynamics (EHD) [1]. Such flow plays an important role
in a wide range of applications in industrial processes, such as EHD pumps, EHD turbulent mixer,
electrostatic precipitators, flow control, and heat-transfer enhancement [2–7]. Extensive studies
have been devoted to this problem from the aspects of stability analysis [8–10], experimental
studies [7,11–13], and numerical simulations [14–18]. However, most of these studies are limited
to single-phase dielectric liquids. Actually the EHD-based techniques show even more promising
applications with multiphase systems containing a solid-liquid interface [19]. Some representative
cases include EHD enhancement solid-liquid phase change [20,21], and dielectric barrier injectors
[5]. The common fundamental of these applications is the electroconvection problem in the presence
of a solid-liquid interface.
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When compared to the previously established single-phase liquid model, additional equations
should be added at the interface to keep the continuity of electric current at the two-phase EHD
system. In addition, special treatments are required at the phase interface where extra electric forces
and surface charge accumulation may exist. [22,23]. In some preliminary works, different kinds
of interfaces in EHD systems have been considered, such as air-liquid, air-solid, and liquid-liquid
interfaces. Chicón et al. [22,23] conducted a linear stability analysis of an interface between air
and a low-conducting liquid. They reported both the volumetric instability and the rose-window
instability in the presence of an air-liquid interface. Li et al. [24] investigated the surface charges and
an electrical tangential shear stress at the liquid-liquid interface owing to the different conductivities
of the two fluids. Jayaraman and Shyy [25] studied the electrical discharge induced by surface
accumulated charge at the air-solid interface between two electrodes separated by an insulating
solid dielectric barrier.

However, a mathematic model has not been well established for conjugate charge transport at
the solid-liquid interface, which greatly limited the burgeoning applications of the applications of
EHD on the fluid-structure interaction and the solid-liquid phase-change heat-transfer problems.
Louste et al. [5] experimentally tested a dielectric solid barrier immersed in silicon oil to observe the
charge injection induced wall jet with vortices. They reported the combination of double layer and
charge injection should expect to develop reversible actuators which may be very interesting for flow
control applications. Quite recently, Nakhla et al. [20,21] conducted two experimental studies about
the EHD enhancement solid-liquid phase-change process by testing paraffin wax and Octadecane;
they reported a melting time saving of 40% can be achieved under DC electric field. More complete
mathematical models as well as numerical schemes are encouraged to gain fundamental insights
into these interesting phenomena.

When using conventional computational fluid-dynamics methods such as finite-difference, finite-
volume, and finite-element methods for conjugate transport problems, a popular approach to imple-
ment the conjugate interface condition is to apply iterative methods in which a Dirichlet interface
condition is imposed for one phase and a Neumann interface condition for the other [26]. Equations
in each phase are separately solved and the continuity condition at the interface is gradually satisfied
through iterations. However, when extending to the conjugate charge transport problems, these itera-
tive methods may become difficult to implement. Due to the nonlinear coupling between the Poisson
equation and the Nernst-Planck equations, the iterative approach requires a considerable amount of
computational effort. Moreover, the iterative methods are hard to capture the discontinuities in the
distributions of electric field and charge density. Therefore, our main purpose of this work is to
build a simple but efficient numerical algorithm in the framework of the lattice Boltzmann method
(LBM). For each field, we plan to use only one lattice Boltzmann equation (LBE) for the whole
computational domain without any special treatment at the solid-liquid interface.

During the last three decades, the LBM has experienced rapid development and has become
an well-established numerical scheme for both simple and complex flows [27–29]. Owing to
its kinetic particulate nature, the LBM has some attractive advantages such as simplicity of
calculation, easy programming and intrinsic parallelism [30]. Only in recent years the LBM has
been introduced into EHD problems, such as electrokinetic flows [31], electroconvection [32], and
electrothermoconvection [33–36]. Specifically, for the model problem of electroconvection induced
by unipolar injection, our LBM accurately reproduced the subcritical bifurcation of the linear
instability and finite-amplitude bifurcation behaviors. However, no existing LBM models can be
developed for EHD problems with a solid-liquid interface. The first work that explicitly addressed
the solid-liquid interface condition in the LBM was conducted by Wang et al. [37] in simulating the
conjugate heat transfer. They proposed a simple “half-lattice division” treatment scheme without
special treatment, and the continuity condition at the interface can be automatically satisfied for
steady cases. This half-lattice division scheme has been rapidly extended to the conjugate heat-
and mass-transfer problems under the framework of LBM [38,39]. In this paper, the idea of
half-lattice division is adopted and cooperates with the well-designed LBEs for Poisson equation
and Nernst-Planck equations.
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FIG. 1. Schematic diagram of electroconvective flows with solid-liquid interface. Interface zoom in sketch
maps for both the Ohmic and non-Ohmic cases are presented on the right side.

In this work, we study the electroconvection between two electrodes separated by a low electric
conductivity solid. To simplify the problem, we divide the solid barrier into two kinds, namely,
the “Ohmic solid” and the “non-Ohmic solid” distinguished by the charge-transport mechanism in
the solid region. A LBM model is developed for this EHD fluid-solid interaction problem. Three
consistent lattice Boltzmann equations are built to calculate the fluid velocity, electric potential, and
charge-density distributions respectively. The remainder of the present paper is organized as follows.
In the next section, the physical model with the mathematical equations and the lattice Boltzmann
model are presented. In Sec. III, code validation and numerical results are presented. Finally, the
conclusions are drawn in the last section.

II. PHYSICAL MODELS AND MATHEMATIC FORMULATIONS

As shown in Fig. 1, the configuration consists of two planar electrodes of length L placed
horizontally at a distance of H from each other. The aspect ratio of the configuration is set to be
the critical wavelength (L/H = 1.228) [8]. A direct current (DC) electric field is established by
setting the two electrodes with constant but different electric potentials. The high-voltage electrode
is exposed to a dielectric liquid while the grounded electrode is encapsulated by a solid substance.
Free charges are first injected from the high-voltage electrode and transport in the liquid with a
drift velocity proportional to the electric field, then across the solid-liquid interface by different
mechanisms depending on the physical properties of the solid substance. To simply the problem,
the injected charge density at the emitter electrode q0 is assumed to be constant and uniform
(autonomous and homogeneous). The system possesses a linear instability characteristic, that is,
when the driving parameter, electric Rayleigh number T, exceeds its linear stability criteria Tc,
convection will arise in the liquid region under the effect of the Coulomb force and in turn affects
the transport of free charges.

A. Equations in the liquid region

The fluid is assumed to be incompressible, Newtonian, and linear isotropic, and only the
Coulomb force F = qE acts on the fluid. The classical EHD governing equations include the
Navier-Stokes equations and a reduced set of Maxwell’s equations in the electroquasistatics limit.
Basic macroscopic EHD equations in the liquid region can be expressed as [1]

∇ · (εl∇φ) = −ql , (1)

El = −∇φ, (2)
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∂ql

∂t
+ ∇ · J = 0, J = (KlEl + u)ql − Dl∇ql , (3)

∂ρ

∂t
+ ∇ · (ρu) = 0, (4)

∂ (ρu)

∂t
+ ∇ · (ρuu) = −∇ p̂ + ∇ · (μ∇u) + qlEl . (5)

where u = [u, v] is the fluid velocity; E = [Ex, Ey] is the electric field; J is the current density;
φ, q, ε, K, D, ρ, μ, and ν are the electric potential, charge density, permittivity, ion mobility,
charge-diffusion coefficient, fluid density, dynamic viscosity, and kinematic viscosity, respectively;
p̂ denotes the generalized pressure including the hydrostatic pressure and the extra electrostrictive
contribution [40]. The subscript l denotes liquid. The system is essentially governed by the
following four dimensionless parameters:

T = ε(φ0 − φ1)

μK
, C = q0H2

ε(φ0 − φ1)
, M = 1

K

(
ε

ρ

)1/2

, α = D

K (φ0 − φ1)
. (6)

The electric Rayleigh number T is defined as the ratio between the Coulomb force and the viscous
force; C represents the injection strength; M is the nondimensional mobility parameter, which is
the ratio of the so-called hydrodynamic mobility to the actual ionic mobility. From the definition
equation, we know that M depends only on the physical properties of fluid. For dielectric liquids, its
typical value is higher than 3 [40]; α is the nondimensional charge-diffusion number [41].

Macroscopic boundary conditions are given as: The horizontal electrodes (top and bottom) are
considered to be rigid walls: u = 0, q = q0, φ = φ0 at y = 0; u = 0, ∂q/∂y = 0, φ = φ1 at
y = H . The vertical boundaries (left and right) are assumed to be periodic for all fields.

B. Equations in the solid-liquid interface and solid region

The physical properties of solid substance have significant effects on not only the charge transport
across the interface and electric field in the solid region, but also the liquid motion in the liquid
region. In this study, two typical kinds of solid-liquid interfaces are considered distinguished by
the charge-transport mechanism in the solid region, namely, the Ohmic solid and the non-Ohmic
solid (see Fig. 1). In terms of the Ohmic solid, the current density in the solid phase obeys Ohm’s
law and the continuity of the electric current implies KlElql = σEs at the interface. Consequently,
there will be surface charge accumulated at the solid-liquid interface Qs = εsEs − εlEl . For the
non-Ohmic solid, a mobility of the charges in the solid is considered (much smaller than that of
the liquid Ks � Kl ), and therefore the continuity of the electric current at the interface implies
KlElql = KsEsqs. No surface charge will accumulate at the interface for the non-Ohmic solid and the
continuity of the electric displacement vector gives εsEs = εlEl . For simplicity, we name the cases
in the presence of the Ohmic solid and the non-Ohmic solid to be the “Ohmic case” and “non-Ohmic
case,” respectively. Due to the different charge-transport mechanisms in the solid region, equations
for the Ohmic case and non-Ohmic one need to be separately provided as follows:

1. Ohmic model

At the solid region, equations are given as

∇ · (εs∇φ) = −qs, Es = −∇φ, (7a)

J = σEs, qs = 0, (7b)

u = 0. (7c)
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At the solid-liquid interface, the continuity of the electric current must be satisfied, and the
surface charge density can be calculated as

(KlEl ql − Dl∇ql ) · n = σsEs · n, (8a)

(εsEs − εlEl ) · n = Qs, (Es − El ) × n = 0. (8b)

in which n is the unit vector normal to the surface and pointing towards the solid; σs is the electric
conductivity at the solid phase. The subscripts s and i indicate the solid phase and interface,
respectively.

2. Non-Ohmic model

At the solid domain, equations are given as

∇ · (εs∇φ) = −qs, Es = −∇φ, (9a)

∂qs

∂t
+ ∇ · (KsEsqs − Ds∇qs) = 0, (9b)

u = 0. (9c)

At the solid-liquid interface, the continuity of both the electric current and electric displacement
vector must be satisfied:

(KlEl ql − Dl∇ql ) · n = (KsEsqs − Ds∇qs) · n, (10a)

(εsEs − εlEl ) · n = 0 (Es − El ) × n = 0. (10b)

Three more parameters need to be considered due to the presence of the solid-liquid interface.
In the Ohmic case, a nondimensional electric conductivity S is defined to be the ratio between
conductivity in the solid and the mobility in the liquid. In the non-Ohmic model, two parameters εr

and Kr are considered, defined to be the ratios of permittivity and mobility between the liquid and
solid phases. In addition, a geometric parameter named interface position fl is defined as the liquid
layer thickness Hl versus electrode distance H, expressed as

S = σ

Kl q0
, εr = εl

εs
, Kr = Kl

Ks
, (11a)

fl = Hl

H
. (11b)

C. The lattice Boltzmann model

Instead of directly solving the complex macroscopic equations, an improved LBM is developed
to simulate this problem based on three well-designed LBEs for electric potential, charge density,
and flow field [32,42], respectively. The numerical scheme is inherited from our previously
developed unified lattice Boltzmann model (ULBM) for single-phase electroconvective flow. For
different physical fields, our ULBM uses the same forms of LBEs, equilibrium distribution function,
and relaxation time. A unique advantage of our ULBM lies in simple, efficient, and easy modular
programming.

When considering the interface, the LBEs for charge density and flow field can be naturally
adapted by using the modified equilibrium distribution and bounce-back scheme, respectively.
However, the LBE for electric potential in ULBM fails in dealing with the Ohmic case due to
the discontinuity of the electric displacement vector εE at the interface; in consequence, the code
for electric potential has been rewritten. Detailed equations are given as follows.
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1. LBM for electric potential

To solve the electric potential in the presence of solid-liquid interface for both the non-Ohmic
and Ohmic cases, an improved lattice Boltzmann model for the Poisson equation proposed by Chai
and Shi [43] is added to our LBM system. In this model, the artificial transient term derived by
previous models is eliminated. The corresponding LBE can be given as

g j (x + c j	t, t + 	t ) − g j (x, t ) = − 1

τφ

[
g j (x, t ) − geq

j (x, t )
] + 	t� jRDa, (12)

where g, c, τφ , R, Da are the distribution function, the microscopic velocity, relaxation time, source
term, and artificial diffusion coefficient, respectively. The D2Q5 velocity discretization scheme is
adopted with the equilibrium distribution function geq

j and Da corresponding weight coefficients ω

and � are expressed as

geq
j (x, t ) =

{
(ω0 − 1.0) j = 0
ω jφ j = 1 − 4 , ω j =

{
0 j = 0
1/4 j = 1 − 4 , � j =

{
0 j = 0
1/4 j = 1 − 4 .

(13)
In this work, we use a local permittivity-dependent relaxation time τφ is computed by

τφ = εt Da

βc2	t
+ 1

2
, (14)

where εt (=ε/εl ) is the ratio between the local permittivity ε and the liquid permittivity εl , the
artificial diffusion coefficient Da(Da > 0) is chosen to be Da = 1/2 in our simulations in balance of
evolution speed and stability. The coefficient β has been derived to be 1/2 by the Chapman-Enskog
expansion [43]. Then, the source term R can be given as

R = q/ε. (15)

Finally, the electric potential can be evaluated as

φ = 1

1 − ω0

4∑
j=1

g j . (16)

To calculate the electric field E in Eqs. (2), (7a), and (9a), a straightforward way is to use the
second-order central differencing formula for a gradient. But in this study, we obtain the electric
field E by a totally local manner with the help of distribution function g, which avoids the complex
treatment in obtaining the electric field at the solid-liquid interface,

E = 1

τφβ	t

∑
j

c jg j . (17)

In LBM simulations, our code can naturally distinguish the electric potential and electric field
between the liquid and solid regions, which is due to the local permittivity-related relaxation time
in Eq. (14) and the local way to compute the electric field as in Eq. (17).

2. LBM for flow field

The LBE for the flow motion in the liquid phase can be expressed as [44]

f j (x + c j	t, t + 	t ) − f j (x, t ) = − 1

τν

[
f j (x, t ) − f eq

j
(x, t )

] + 	t × Fj, (18)

where f , τν , Fj are the distribution function, the relaxation time, and Coulomb force term, respec-
tively. The D2Q9 velocity discretization scheme [30] is adopted with the equilibrium distribution

083702-6



STABILITY ANALYSIS OF ELECTROCONVECTION …

function f eq
j and corresponding weight coefficients ω are expressed as

f eq
j = ρω j

(
1 + c j · u

c2
s

+ (c j · u)2

2c4
s

− u2

2c2
s

)
, ω j =

⎧⎨
⎩

4/9 j = 0
1/9 j = 1 − 4
1/36 j = 5 − 8

. (19)

The relaxation time τν is computed from [30]

τν = 3ν

c2	t
+ 1

2
. (20)

The Coulomb force term in Eq. (18) can be calculated in every discretization direction from

Fj = ω j

(
1 − 1

2τν

)
c jqE

c2
s

. (21)

Finally, the fluid mass density ρ the velocity u can be evaluated from Eq. (22):

ρ =
∑

j

f j ρu=
∑

j

c j f j + 	t

2
qE. (22)

Due the no-slip condition at the solid-liquid interface, the classical bounce-back scheme is
adopted at both the interface and solid region.

3. LBM for charge density

The LBE for charge density has been derived in our previous single-phase electroconvection,
given as

h j (x + c j	t, t + 	t ) − h j (x, t ) = − 1

τq

[
h j (x, t ) − heq

j (x, t )
]
, (23)

with the equilibrium distribution function heq
j given as

heq
j (x, t ) = qω j

{
1 + c j (KE + u)

c2
s

+ [c j (KE + u)]2 − c2
s (KE + u)2

2c4
s

}
. (24)

The D2Q9 model is used with ω j defined in Eq. (19). The relaxation time in Eq. (23) is defined
as

τq = 3D

c2	t
+ 1

2
, (25)

where D is the charge-diffusion coefficient expressed in Eq. (3). The charge density is evaluated
from

q =
∑

j

h j . (26)

The LBM code identifies the liquid and solid regions by the mobility and charge-diffusion
coefficient differences in these two regions, which are involved in the equilibrium distribution
[Eq. (23)] and the relaxation time [Eq. (24)], respectively.

The mesoscopic boundary conditions and interface treatment scheme are presented in
Appendix A. For the purpose of code validation, the analytical solutions at hydrostatic state for both
the Ohmic and non-Ohmic cases are also derived in Appendix B. Numerical results are presented
by isosurfaces and streamlines, as well as the electric Nusselt numbers (Ne), given as

Ne = I/I0, (27a)

I = 1

L

∫ L

0

[
q(Ey + uy) + ∂Ey

∂t

]∣∣∣∣
y=0 or y=1

dx, (27b)

I0 = (qEy|y=0 or y=1)hydrostatic state. (27c)
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FIG. 2. Validation of LBM model for the Ohmic cases at hydrostatic state: (a) electric field at y direction
Ey and (b) charge-density distributions for different electric conductivity S. Dashed line is the results of single-
phase problem.

III. RESULTS AND DISCUSSION

In this section, the LBM code is first validated by comparing with the analytical results at
hydrostatic state. Then, a comprehensive numerical study of electroconvection in the presence of
solid-liquid interface is conducted. Simulations are performed for both the Ohmic and non-Ohmic
models. The effects of the interface position fl , nondimensional electric conductivity S, permittivity,
and mobility ratios (εrKr ) on the flow patterns and bifurcations are investigated. In all simulations,
a strong charge injection C = 10 is considered, and the mobility and charge diffusion are fixed
at M = 10 and α = 10−4, respectively. The aspect ratio of the computational domain is set to be
A = L/H = 1.228 and a grid discretization scheme with 246×200 lattices in a cavity computational
domain is adopted.

A. Code validation

Without the flow motion (by setting velocity to be zero or under small values of the driving
parameter T < Tc), the problem can be reduced to the electric field–space charge coupled problem
governed by Eqs. (1)–(3), also known as the hydrostatic solution. The hydrostatic solution of single-
phase model has been derived for zero and nonzero value of charge-diffusion coefficient [9,45,46].
The hydrostatic solutions in the presence of the solid-liquid interface are derived in this work as
given in Appendix B.

1. The Ohmic case

The hydrostatic solution of the Ohmic case depends on the nondimensional electric conductivity
S and interface position fl . Figure 2 presents the electric-field component Ey and charge-density q
distributions under different S. As shown in Fig. 2(a), a discontinuity in the distribution of Ey can
be readily observed at the interface due to the nonzero surface charge accumulation Qs. Besides, the
value of Ey in liquid phase increases as the increase of S, but an opposite trend is observed in the
solid phase. As presented in Fig. 2(b), charge density q also increases with S increasing in the liquid
phase, but q suddenly decreases to zero at the interface as no free charge exists in the solid phase
for the Ohmic case.

The influence of interface position fl on electric field Ey and charge density q is shown in
Figs. 3(a) and 3(b), respectively. It is seen that both Ey and q slightly increase as increasing of
fl in the liquid phase. Besides, for all test cases presented in Figs. 2 and 3, our LBM results show
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FIG. 3. (a) Electric-field Ey and (b) charge-density q distributions for different interface position fl for the
Ohmic cases at S = 0.01.

an excellent agreement with the analytical solutions. In particular, the LBM code well reproduces
the discontinuity of the electrical field Ey and charge density q.

2. The non-Ohmic case

No free charge will accumulate at the interface in this case, and the continuities of both the
electric current and electric displacement vector at interface imply KlElql = KsEsqs and εsEs =
εlEl , respectively. However, the difference of permittivity and mobility (εrKr ) between the liquid
and solid regions will result in the discontinuities in the distributions of Ey and q. Therefore, three
representative cases with different combinations of (εrKr ) are tested. As shown in Fig. 4, for εr = 1
and Kr = 1, the results are the same as the single-phase problem. Both the electric field Ey and
charge density q show continuous distributions in the whole domain. For the case εr = 2 and Kr = 1,
a sudden jump can be observed at the interface in electric field Ey; see Fig. 4(a). In detail, the values
of Ey in the liquid side is half of that in the solid side, opposite to the value of permittivity ratio εr ,
which satisfies the relationship given in Eq. 10(b).
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FIG. 4. Validation of LBM model for the non-Ohmic cases at hydrostatic state: (a) electric-field Ey and
(b) charge-density distributions for different combinations of permittivity ratio and mobility ratio (εrKr ).
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FIG. 5. (a) Electric-field Ey and (b) charge-density q distributions for different interface position fl for the
non-Ohmic cases at εr = 2 and Kr = 10.

Meanwhile, as shown in Fig. 4(b), a sudden decrease at the interface can be observed in q profiles,
which is due to the conservation of charge density as given in Eq. 10(a). However, for the case
εr = 2 and Kr = 10, a sudden jump of q at the interface can be obtained in Fig. 4(b), which can be
explained by the fact that a relatively lower mobility K in the solid phase requires a higher charge
density q to satisfy the continuity condition of electric current density. Besides, with the increase
of εr or Kr , both charge density and electric field have lower values in the liquid phase. Figure 5
shows the effects of interface position fl on Ey and q distributions. It is seen that both Ey and q have
larger values in liquid phase for a larger fl . For all non-Ohmic cases presented in Figs. 4 and 5, the
numerical results fit well with the analytical solutions with the maximum difference less than 1%.

B. Electroconvection with solid-liquid interface

When electric Rayleigh number T exceeds its linear stability threshold T > Tc, the Coulomb
force is strong enough to overcome the damping action of the viscous force and the convective
flow will be motivated from the motionless state. As shown in Fig. 6, some basic features of
electroconvection, such as the charge void region in charge-density distributions and vortices pairs,
can be clearly observed for both Ohmic and non-Ohmic cases in Figs. 6(a) and 6(b), respectively.
Compared to the single-phase electroconvection, the presence of solid-liquid interface leads to much
more complex distribution of charge density and different number of flow vortices.

To better illustrate the charge void region and discontinuous distribution in charge density field,
simulation results of q are presented in the forms of 3D contours with z-axis being charge density
(left side). The charge void region is formed due to the competition between the migration and
convection mechanisms for charge transport [8], and the discontinuities of q is due to the interface
effect. For both Ohmic and non-Ohmic cases [Figs. 6(a) and 6(b)], two complete charge void regions
in the liquid phase can be observed, which can be explained by the fact that the aspect ratio of liquid
region A = L/(H fl ) ≈ 2.46 is close to twice the critical wavelength of the most unstable mode
(λc = 1.228). However, significant difference can be observed in the q distribution in the solid
phase. There is a sudden decrease to zero at the interface of the Ohmic case while there is a jump
increase in the non-Ohmic situation, which is consistent with the hydrostatic solutions shown in
Figs. 2(b) and 4(b), respectively. Besides, streamlines of convection together with electric field are
also plotted in Fig. 6. It is seen that the flow motion exhibits a two-pairs of vortices pattern in the
liquid region for both the Ohmic and non-Ohmic cases, but the nondimensional stream function Str
has a larger value in the Ohmic case implying the relatively stronger flow strength.
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FIG. 6. Results of electroconvection for (a) the Ohmic cases at T = 500, S = 0.1, and (b) the non-Ohmic
cases at T = 1200, εr = 2, Kr = 10. In each figure, the left contour map is the charge-density distribution
while the right plot is the dimensionless stream function Str with electric field E.

Another representative characteristic of electroconvection of single-phase liquid lies in its
subcritical bifurcation in the finite-amplitude regime. Here we are interested in the bifurcation
behavior in the presence of the solid-liquid interface. The bifurcation diagrams of Ohmic and
non-Ohmic cases expressed by the electric Nusselt number Ne versus T are presented in Figs. 7(a)
and 7(b), respectively. It is seen that both bifurcations are of subcritical type, featured by a linear
stability criterion Tc, a finite-amplitude stability criterion Tf (also called a nonlinear stability
criterion), and a hysteresis loop linking the two criteria. In our numerical practice, Tc is decided
by the interpolation of growth rate at the exponential stage, which has been well addressed in our
previous work [47]. Tf is determined as follows. Restart the computation from a steady convection
obtained with T slightly higher than Tc, then gradually decrease T by a small amount until a critical
value (i.e., Tf ), at which the system suddenly jumps from a convective state of finite-amplitude
strength to the rest state. For Ohmic and non-Ohmic cases, our numerical findings of Tc are 456.7
and 1072.1, and Tf are 311.9 and 783.6, respectively.

It is seen that both Tc and Tf are larger than the corresponding values with single-phase
electroconvection (164.1 and 111.7 [8]). This can be explained by the fact that a voltage drop
happens at the solid region leading to a higher requirement of applied voltage between the electrodes
to motivate the electroconvection. In detail, the useful voltage drop in the liquid layer is but a fraction
of the total voltage drop. Let us define this voltage drop as Vl in the hydrostatic state, which may be
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FIG. 7. The subcritical bifurcation diagram of electroconvection with solid-liquid interface: (a) Ohmic case
at S = 0.1 and (b) non-Ohmic case at εr = 2 and Kr = 10.

computed from the analytical solution. For the Ohmic case, the voltage drop Vl is 0.3782 at S = 0.1,
fl = 0.5, while for the non-Ohmic one Vl = 0.1547 at Kr = 10, εr = 2, and fl = 0.5. By combining
with the definition of electric Rayleigh number T, we have that the relation between the T parameter
across the layer Tl and across the whole system is T = Tl/Vl . Taking Tlc = 164.1 as the expected
critical value for the liquid layer alone [8], we obtain 434 and 1061 as the ideal values for T, to
be compared with the numerically obtained 456.7 and 1072.1. The differences are attributable to
that the upper boundary is no longer an equipotential surface and also that the aspect ratio of the
convective cells does not correspond to the most unstable mode for fl does not equal to 1.

C. The effects of solid-liquid interface position fl

In this part, we further consider the effects of interface position fl on flow pattern and related
bifurcations. Figure 8 shows the stability map of both the Ohmic and non-Ohmic cases based
on a large number of the computational runs with wide ranges of the electric Rayleigh number
T(100 ∼ 25 000) and the interface positions fl (0.1 ∼ 0.9). In each figure, a dash-dot line separates
the whole domain into a stable region and an unstable one. In the stable region, the Coulomb force
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FIG. 8. Regions of stable and unstable in electroconvection under different interface position fl for the
(a) Ohmic model at S = 0.1 and (b) non-Ohmic model at εr = 2 and Kr = 10.
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FIG. 9. The steady-state charge-density distributions and streamlines at four interface position fl = 0.1,
0.3, 0.6, and 0.9 for the Ohmic cases. Results are presented only in the liquid region as q = 0 and u = 0 at the
solid phase.

is unable to overcome the damping action of the viscous force, and the fluid remains in a motionless
state, marked by the hollow circle in Fig. 8. This static state is potentially unstable; once T is across
the dashed line (linear stability curve), the system loses its linear stability and the flow motion arises,
evolving into convective flow patterns as shown in Figs. 9 and 10.

Another dashed line in Fig. 8 indicates the theoretically predicted values of Tc, computed by
the ratio of critical value Tlc in single-phase electroconvection and voltage drop Vl at hydrostatic
state. Obviously, the numerically predicted Tc values (dash-dot line) are systematically above the
theoretical ones (dashed line) as presented in Fig. 8, which may be explained by the fact that the
aspect ratio for the theoretical case corresponding to the most unstable at fl = 1 is not general for
other values of fl . For instance, as shown in Fig. 9, for fl = 0.9 the aspect ratio of just a pair of
convective cells is L/Hl = L/( flH ) = 1.364; for fl = 0.6 we have two pairs of convective cells of
1.023 aspect ratio; for fl = 0.3 we have three pairs of cells and the aspect ratio is again 1.364; and
for fl = 0.1 we observe ten pairs of cell with an aspect ratio of 1.228. Moreover, the interface in
a real situation is no longer an equipotential surface as assumed in the theoretical case. Therefore,
the values of Tc are higher than the theoretical ones. As shown in Fig. 8, the stability map for both
the Ohmic and non-Ohmic cases have similar trends, such as the linear stability criteria Tc increase
as the decreasing of fl in both cases due to the reason that a thicker solid layer will induce a larger
useless voltage drop in the solid region. However, there are some differences between Figs. 8(a)
and 8(b). For instance, the stability curve of the non-Ohmic case has smoother distribution than
that of Ohmic ones. In addition, the values of Tc for the non-Ohmic case, varying from Tc ≈ 250 at
fl = 0.9 to Tc ≈ 24 000 at fl = 0.1, are larger than those of the Ohmic case, Tc ≈ 237 at fl = 0.9
to Tc ≈ 9000 at fl = 0.1.

The final steady-state charge-density distribution and velocity field of the Ohmic case at four
representative cases are presented in Fig. 9; from top to bottom, parameters are set to be ( fl = 0.1,
T = 12000), ( fl = 0.3, T = 1400), ( fl = 0.6, T = 450), and ( fl = 0.9, T = 300), respectively. In
those cases, the governing parameters T are chosen to be slightly above the corresponding linear
stability criterion Tc to avoid the secondary instability. Results are presented only in the liquid region
as both the charge density and velocity are zero at the solid phase. As shown in Fig. 9, the charge
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FIG. 10. The steady-state charge-density distributions and streamlines at two different interface position
fl = 0.4, and 0.8 for the non-Ohmic cases.

density and streamlines have similar shapes for different fl but the number and the size of the charge
void region and vortices are different. For a smaller fl , the aspect ratio of liquid region A = L/(H fl )
is larger, and therefore the flow pattern with more periodic units can be motivated. Quantitatively,
11, 4, 2, and 1 basic periodic units (1 periodic unit including 1 charge void region and 2 vortices) can
be observed for the cases fl = 0.1, 0.3, 0.6, and 0.9, respectively. Besides, distributions of charge
density and velocity for two cases with parameters ( fl = 0.4, T = 2000) and ( fl = 0.8, T = 500)
are considered for the non-Ohmic cases. As shown in Fig. 10, a sudden increase in charge-density
distribution happens at the interface; three and one periodic units can be observed in the liquid phase
at fl = 0.4 and fl = 0.8, respectively.

D. The effects of electric conductivity S, permittivity ratios εr, and the mobility ratios Kr

As presented in Eqs. (6) and 11(a), there are seven nondimensional parameters (T, C, M, α, S,
εr , Kr) in this problem except for the geometry parameters. Among them, the first four (T, C, M, α)
are common parameters in both the single-phase and two-phase electroconvection problems. The
effects of (T, C, M, α) on flow instability and bifurcations have been well discussed in previous
works on single-phase problems [9,45,48,49]. Here we consider the additional three parameters

TABLE I. Numerical predictions of the linear and finite-amplitude stability criteria Tc and Tf under
different S.

Electric conductivity S in solid phase 0.01 0.05 0.1 0.5 1

Linear stability criteria Tc 1190.0 594.4 456.7 296.0 265.9
Finite-amplitude stability criteria Tf 857.1 409.6 311.9 192.9 170.0
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TABLE II. Linear and finite-amplitude stability criteria Tc and Tf for various values of εr at Kr = 1.

Ratios of permittivity between solid and liquid phase εr 1 2 3 4 5

Linear stability criteria Tc 487.9 731.4 954.1 1191.2 1398.1
Finite-amplitude stability criteria Tf 331.7 502.5 671.9 850.8 1019.5

(S, εr , Kr) in the presence of a solid-liquid interface; results are provided for the effect of (S, εr , Kr)
on the linear and finite-amplitude stability criteria of convective flow.

For the Ohmic case, only S needs to be considered as defined in Eq. (11a). As shown in Table I,
both Tc and Tf decrease as the increasing of S. Due to the reason that a larger S corresponds to
a lower electrical resistance R = 1/S, which induces a smaller voltage drop in the solid phase,
consequently convective flow takes place at a relative lower Tc. Particularly, the two limiting cases,
S→0 and S→�, represent the totally insulating solid and perfect conductor, respectively. In the
first case, there is no electric current in the system and therefore electroconvection will never be
motivated; therefore Tc → ∞. And in the latter case, the solid layer can be considered to be a part
of the electrode and the problem will degenerate into the single-phase electroconvection problem
with stability criteria Tc ≈ 164.1 and Tf ≈ 111.7. In addition, the variation of Tf with S has a similar
trend as Tc, but the gap between Tf and Tc, expressed by g = Tc/Tf becomes larger with the increase
of S, as presented in Table I, which means a larger nondimensional voltage drop is required to
recover the system from the convective state to the motionless state at a larger S.

For the non-Ohmic case, both the permittivity ratios εr and the mobility ratios Kr between
the liquid and solid phase have significant effect on electroconvective instability. Results about
the effects of εr and Kr are presented in Tables II and III, respectively. As shown in Table II,
both the stability criteria Tc and Tf increase as the increasing of εr , which can be simply interpreted
that as the continuity of that electric displacement vector at the interface gives Es/El = εr , and a
larger εr corresponds to a relatively larger electric field Es and a larger voltage drop in the solid
phase, therefore a larger applied voltage is required to motivate the electroconvection in the liquid
layer. Besides, the basic mechanism of the influence of Kr (=Kl/Ks) on stability criteria is the same
as the electrical resistance R[=1/S = Kl/(σ/q0)] in the Ohmic case, and the only difference is the
type of charge carrier in the solid phase. Therefore, both Tc and Tf increase as Kr increases as shown
in Table III.

IV. CONCLUSIONS

In this paper, electroconvection of dielectric liquids subjected to a solid-liquid interface has been
numerically studied. A physical model with fully coupled mathematical equations has been built for
both the Ohmic and non-Ohmic models with the solid phase. An improved lattice Boltzmann model
(LBM) has been developed. An interface treatment for conjugate charge transport is proposed based
on the half-lattice division scheme. The continuity of electric current and electric displacement
vector is intrinsically satisfied without iterative computations, and the interfacial electric field is
conveniently obtained by a local manner from the microscopic distribution functions.

TABLE III. Linear and finite-amplitude stability criteria Tc and Tf for various values of Kr at εr = 1.

Ratios of mobility between solid and liquid phase Kr 1 2 5 10 50

Linear stability criteria Tc 487.9 530.5 635.4 767.4 1364.4
Finite-amplitude stability criteria Tf 331.7 366.2 447.5 551.2 1333.4
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The numerical model and the interface treatment scheme have been fully validated by the
hydrostatic solutions. Good agreement between numerical and analytical solutions is always
obtained for both the Ohmic and non-Ohmic model. Then, simulations have been conducted
for electroconvective flows under different governing parameters, and results are presented for
flow pattern, bifurcation diagram, and stability map. Numerical results have revealed that (1) the
bifurcation of electroconvection with a solid-liquid interface are of subcritical type; for both the
Ohmic and non-Ohmic cases, the linear and nonlinear stability thresholds (Tc and Tf ) are larger
than those of single-phase electroconvection problem as a useless voltage drop happening at the
solid phase; and (2) the value of Tc increases as the permittivity ratios εr and mobility ratios Kr

increases, but Tc decreases with the increaseing of nondimensional electric conductivity S and
interface position fl .

The present study extends the previous work of electroconvection from single-phase dielectric
liquid to the solid-liquid interaction problem. The numerically obtained linear and nonlinear stability
criteria can serve as reference for future theoretic stability analysis. In addition, our work may
provide some theoretic basis for electrohydrodynamic phase-change heat transfer in the next work.
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APPENDIX A: MESOSCOPIC BOUNDARY CONDITIONS AND INTERFACE TREATMENT

The macroscopic boundary conditions have been provided in Sec. II A. For the lattice Boltzmann
simulation, the treatment of mesoscopic boundary conditions is also a key issue. For the left
and right boundaries, the periodic boundary condition can be easily achieved in LBM by setting
distribution functions that leave the computational domain from one side and reenter from the
opposite side [47]. At the up and bottom electrodes, the bounce-back scheme [50] is used for the
flow field, while the nonequilibrium extrapolation scheme [51] is adopted for other fields.

g j (rb, t ) = geq
j (rb, t ) + [

g j (rf , t ) − geq
j (rf , t )

]
. (A1)

The treatment of the solid-liquid interface is also a key issue. As shown in Fig. 11, a half-lattice
division scheme in which the interface is placed on the middle point between the fluid and solid
nodes is adopted [37]. The advantage of this scheme is that no lattice node is located at the interface.
It can be seen from Fig. 11 that the lattice links marked in red will cross the interface with nodes in
the liquid side, and solid side are marked to be xl and xs, respectively.

In LBM simulations, the interface equations [expressed through Eqs. (8) and (10)] should be
satisfied. For the non-Ohmic case, simulations are conducted for the whole domain including the
solid and liquid region; our lattice Boltzmann code can naturally satisfy the relationship [Eq. (10)]
by special techniques in different LBEs in detail as shown in Fig. 11(a): the bounce-back scheme in
the solid region for the flow field, the local permittivity-related relaxation time for electric potential
[Eq. (14)], and the mobility-related equilibrium distribution for charge density [Eq. (24)].

For the Ohmic solid, there is no charge density in the solid region as discussed in a mixed model
[52], i.e., qs = 0. Consequently, electric field in the solid region has a constant value Es = c by
solving Eq. (7a). Then, the electric potential in the solid region has a linear distribution, φs =
φ1 + c(H − y). Therefore, simulations are merely conducted in the liquid region, with the interface
equations [Eq. (8)] being regarded as the boundary condition. By defining the nondimensional
electric conductivity to be S = σs/(Klq0), the boundary condition for electric potential can be given
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FIG. 11. The solid-liquid interface treatment scheme. (a) The sketch of half-lattice division scheme. (b) The
sketch of interface treatments for different fields for the non-Ohmic case. (c) the sketch of interface treatments
for the Ohmic solid case.

as

φs = φ1 + ql El (H − y)

Sq0
, (A2)

where ql and El are the values of charge density and electric field at the liquid side of the interface
[xl in Fig. 11(a)], respectively, which can be obtained from the previous iteration step. Besides, the
zero-slope condition is assumed for charge potential at the interface, expressed as

∂q/∂y = 0. (A3)

APPENDIX B: DERIVATION OF ANALYTICAL SOLUTIONS

The hydrostatic solution of THE single-phase model has been derived for zero and nonzero
values of charge-diffusion coefficient [9,45,46]. However, in the presence of solid-liquid interface,
no analytical solution can be found. In this section, analytical solutions for both the non-Ohmic and
Ohmic solid models are provided.

1. Analytical solution for the Ohmic model

In the liquid phase, analytical solutions of electric-field and charge-density distributions are
expressed as

El = a(y + b)1/2, ql = a

2C(y + b)1/2 . (B1)
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In the solid phase, analytical solution are given as

Es = c qs = 0. (B2)

The constants a, b, c, d can be obtained by solving the following coupled algebraic equations:

a = 2Cb1/2,

c = 2Cb/S, S = σ/(Klq0),

2

3
2Cb1/2[( fl + b)3/2 − b3/2] + 2Cb

S
(1 − fl ) − 1 = 0,

Qs = 2Cbεr

S
− 2Cb

1
2 ( fl + b)1/2,

where εr = εl/εs and Kr = Kl/Ks are the ratios of permittivity and mobility between the liquid and
solid phases, respectively. The liquid fraction fl indicates the position of the solid-liquid interface
(defined to be the ratio of volume of liquid region to the whole domain).

2. Analytical solution for the non-Ohmic model

In the liquid phase, analytical solutions of electric field and charge density distributions are
expressed as

El = a(y + b)1/2, ql = a

2C(y + b)1/2 . (B3)

In the solid phase, analytical solutions are given as

Es = c(y + d )1/2, qs = c

2Cεr (y + d )1/2 , (B4)

where the constants a, b, c, d can be obtained by solving the following coupled algebraic equations:

a = 2Cb1/2,

c = 2C
√

Krεrb1/2,

d = ( fl + b)
εr

Kr
− fl ,

2

3
a[( fl + b)3/2 − b3/2] + 2

3
c[(1 + d )3/2 − ( fl + d )3/2] − 1 = 0.

It can be seen from the above equations that the hydrostatic solution of the non-Ohmic solid
depends on the injection strength C, the ratios of permittivity and mobility εr and Kr , and the
interface position fl .
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