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The linear hydrodynamic stability of a film of viscoelastic fluid flowing down an
inclined wavy surface is studied. We investigate the stability of the flow with respect
to infinitesimal two- and three-dimensional (2D and 3D) disturbances and employ the
Floquet-Bloch theory to examine the effect of periodic disturbances of any wavelength.
The study is based on the numerical solution of the momentum equations along with the
Phan-Thien–Tanner (PTT) model to account for material viscoelasticity. The generalized
eigenvalue problem is solved using Arnoldi’s algorithm, in a Newton-like implementation
in order to calculate faster the critical conditions for the onset of the instability. Our results
are in excellent agreement with the previous experimental and theoretical results in the case
of Newtonian liquids flowing over flat and undulating substrates and viscoelastic liquids
over flat substrates. We present detailed stability maps for finite amplitude of the wall
corrugations and a wide range of material parameters. Our calculations indicate that fluid
elasticity is primarily stabilizing, while shear thinning of the fluid tends to destabilize the
fluid flow. In order to investigate the mechanisms involved, we perform an energy analysis
of the flow under long-wave disturbances indicating that the convection of stress-gradient
disturbances provides an additional viscoelastic mechanism for the destabilization of the
flow, in contrast to the base state stress gradients which contribute to stabilization of
the flow. Besides the usual long-wave instability, conditions are identified which lead to
unstable disturbances of wavelength equal or smaller than the wavelength of the substrate.
Experimental observations for Newtonian liquids have indicated that these short-wave
instabilities will dominate and a similar behavior is predicted for viscoelastic liquids.
Sometimes, before the short-wave instabilities, a hysteresis loop in the steady flow can
be identified, which leads to a sharp change in the critical frequency. Finally, we examine
the stability of the flow when subjected to disturbances in the spanwise direction and show
that for highly elastic liquids 3D instabilities may arise.

DOI: 10.1103/PhysRevFluids.4.083304

I. INTRODUCTION

A typical characteristic of film flows, either Newtonian or non-Newtonian, is the appearance of
wavy interfacial instabilities which can be enhanced or mitigated by the presence of the substrate
structure. Such instabilities may enhance the heat or mass transfer in cooling or mixing applications
[1,2] whereas in coating applications wave instabilities may significantly affect the final product,
reducing its quality. In the latter applications, though, an important factor is the rheology of the fluids
involved: coating liquids are typically polymeric solutions which exhibit viscoelastic properties. In
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Part I of this work (Pettas et al. [3], hereinafter referred to as Part I) we examined the steady flow of
a viscoelastic liquid film over sinusoidal corrugations. We considered steady solutions which exhibit
a periodicity identical to the periodicity of the substrate topography and investigated in detail the
effects of both the geometrical characteristics of the substrate and the rheological parameters which
characterize the flow behavior. The goal of this part of our study is to investigate the effect of
viscoelasticity on the stability of films flowing over an undulated topography, analyzing in depth the
interplay of elasticity along with the flow inertia and capillarity on the stability of films.

Early efforts to investigate the flow instabilities of a film over a flat substrate were reported
by Benjamin [4] and Yih [5] who investigated the stability of a Newtonian film flowing over
an inclined flat surface. They showed that the flow becomes unstable to long-wave disturbances
above a critical value of the flow rate which depends on the angle of inclination, while for vertical
substrates the flow is unstable even under creeping flow conditions. Subsequent studies examined
various aspects of the flow stability in both the linear and nonlinear regimes [6], while some works
considered the effect of surfactants [7,8]. Regarding the flow over structured surfaces, it was shown
by Kalliadasis and Homsy [9] that the flow over isolated shallow rectangular topographies is stable
for a wide range of the relevant parameters. Shortly after, Bielarz and Kalliadasis [10] performed
time-dependent simulations, using lubrication theory for both two- and three-dimensional (2D
and 3D) thin film flows over an isolated topography. They found that the free surface is stable
against finite disturbances of the same wavelength as the topography even for finite values of the
Reynolds number. These results were also supported by the experimental work of Vlachogiannis
and Bontozoglou [11] and Argyriadi et al. [12] who studied the flow of a Newtonian liquid over
rectangular trenches. Their experiments revealed that the critical flow rate for the onset of the
instability is shifted to larger values as the steepness of the substrate increases, in the limit of
small amplitude disturbances. D’Alessio et al. [13] considered the effect of the surface tension
and topography steepness on the stability of a laminar film flow along an uneven surface. They
observed that, under strong surface tension, the substrate corrugations could destabilize the flow of
a Newtonian fluid, provided that the wavelength of the topography is sufficiently short compared to
the film thickness. More recently, Heining and Aksel [14] predicted that the case of shallow films
flowing along deep sinusoidal corrugations might lead to stabilization of the film flow and/or to
unstable isles in the linear stability maps. Motivated by the previous results, Pollak and Aksel [15]
reported experiments which have validated the existence of the unstable isles. Later on, Trifonov
[16], by performing direct Navier-Stokes simulations combined with Floquet theory, validated these
isles theoretically. Around that time, Cao et al. [17] provided evidence that, besides the long-wave
instability that has been seen in previous studies, a short-wave mode may also arise in flows
over deep periodic corrugations. They found that, with increasing inclination, the flow instability
becomes short wave and, as a result, it has an intrinsic frequency which is insensitive to external
excitation. Very recently, an attempt to summarize all the above results was made by Schörner
et al. [18] through the presentation of stability maps (comparing experimental observations and
theoretical predictions) in the parameter space of the inclination angle, viscosity and corrugation
amplitude and wavelength of the topography. The linear stability analysis performed by these
authors also confirmed the existence of short-wave instabilities under specific values of the flow rate
reported by Cao et al. [17]. Up to now, Schörner and Aksel [19] have identified six characteristic
stability map patterns that unify the linear instability of Newtonian films flowing over undulated
inclines, reporting that the flow stability follows a universal pathway, which they called the “stability
cycle.”

All the aforementioned studies considered Newtonian liquid films. The flow of liquids following
a generalized Newtonian law has been examined employing the Carreau model or a modified
power law model by Millet et al. [20] and Ruyer-Quil et al. [21], respectively, for flat substrates.
Furthermore, Heining and Aksel [14] considered the flow of a shear-thinning liquid over an inclined
corrugated surface. All these works reported that shear thinning promotes flow instabilities, while
the effect of shear thickening actually stabilizes the flow; an experimental confirmation of this
behavior was provided by Allouche et al. [22].
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As it was mentioned above, in many applications the flowing material is often a polymeric solu-
tion or a suspension of particles which exhibit viscoelastic properties. Up to now, the examination
of the stability of viscoelastic films has been restricted to flows over flat inclined solid surfaces.
In particular, asymptotic long-wave linear stability analysis has been carried out for flow over an
inclined plane either assuming a second-order fluid [23] or an Oldroyd-B fluid [24,25]. As shown
in these studies, the linear stability analysis for these two fluids yields precisely the same result
and shows that there is a specific threshold of fluid elasticity, above which the fluid flow becomes
unstable at zero inertia for a non-vertical inclination angle. There is, therefore, a purely elastic
mechanism for the instability. However, according to Shaqfeh et al. [26], the growth rates of the
resulting purely elastic waves are relatively small, and so the instability may be difficult to observe
experimentally [27]. To the best of our knowledge, regarding the flow over structured surfaces, the
only work that considers the stability of a viscoelastic film was presented by Dávalos-Orozco [28]
for an Oldroyd-B liquid over a shallow wavy wall, under the long-wave assumption. As discussed
in this study, even though fluid viscoelasticity has a destabilizing effect, the spatial resonance effect
of the free surface with the wavy wall may conditionally lead to stabilization.

The goal of the present study is to examine the stability of viscoelastic films flowing over surfaces
with sinusoidal corrugations of arbitrary depth. To this end, we will consider a viscoelastic liquid
that follows the exponential Phan-Thien–Tanner (ePTT) constitutive law which allows a realistic
variation of the shear and extensional fluid viscosities with the local rate of strain components as
encountered in typical polymeric solutions. We will perform a linear stability analysis, employing
the Floquet-Bloch theory and assuming that the steady solution which has been derived in Part I is
subjected both to 2D and 3D disturbances of an arbitrary wavelength.

This paper is organized as follows: In Sec. II, the problem formulation along with the governing
equations are given, and the numerical implementation is described in Sec. III. In Sec. IV, we
proceed with the validation of our model against both numerical and experimental results found
in the literature, while the discussion of the results from our numerical simulations is presented in
Sec. V. Conclusions are drawn in Sec. VI.

II. PROBLEM FORMULATION

We consider the same physical system as in Part I, in which a viscoelastic liquid film flows under
the effect of gravity along an inclined sinusoidally corrugated substrate normal to the main flow
direction (see Fig. 1 in Part I). We use the same model, the same notation, and the same scalings
under which the following dimensionless numbers arise: the Reynolds number Re, Stokes number
St, Kapitza number Ka, Weissenberg number Wi, viscocity ratio β, and inclination angle α. For the
definitions of all dimensionless groups the reader is referred to Table I of Part I.

A. Governing equations

The flow is governed by the momentum and mass conservation equations, which under the
arbitrary Eulerian-Lagrangian (ALE) formulation in dimensionless form are given by

Re

(
∂u
∂t

+ (u − um) · ∇u
)

+ ∇P − ∇ · τ − St g = 0, (1)

∇ · u = 0, (2)

where u = (ux, uy, uz )T , P, and τ, denote the velocity, pressure, and stress fields, respectively,∇ =
(∂x, ∂y, ∂z )T denotes the gradient operator for Cartesian coordinates, and um = ∂x/∂t the velocity of
the mesh nodes in the flow domain. We also define the unit gravity vector as g = (sin a,− cos a, 0)T ,

The extra stress tensor, τ, is split into a purely Newtonian part 2βγ̇ and a polymeric contribution
τ p:

τ = 2β γ̇ + τ p, (3)

where γ̇ = 1
2 (∇u + ∇uT ) is the rate of strain.
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FIG. 1. Eigenspectrum for Re = 8; the flowing liquid is Elbesil 65 (see Table I), for Q ∈ [0, 1). The light
blue dots indicate the eigenvalues which have been calculated for Q = 0; the light red symbols indicate the
eigenvalues for Q in the range (0, 0.5] and gray symbols indicate the eigenvalues for Q in the range (0.5, 1].

To account for the viscoelasticity of the material we use the affine exponential form of the Phan-
Thien and Tanner model [29]:

Y
(
τ p

)
τ p + Wi

∇
τ p −2(1 − β )γ̇ = 0, Y (τ p) = exp

(
ε

1 − β
Wi trace(τ p)

)
, (4)

where
∇
τ p = ∂τ p

∂t + (u − um) · ∇τ p − τ p · ∇u − (τ p · ∇u)T is the upper convective derivative of τ p.
The viscoelastic fluid properties depend on the dimensionless parameters Wi, β, and ε; the physical
relevance of these parameters is briefly discussed in Part I.

B. Boundary conditions

Along the air-liquid interface we apply the following interfacial stress balance:

n · (−PI + τ ) = κ

Ca
n, (5)

where n is the outward unit vector normal to the free surface and κ is the mean curvature defined as

κ = −∇s · n, ∇s = (I − nn) · ∇. (6)

TABLE I. Material properties and dimensionless quantities of liquids used in this paper.

Notation
Viscosity
(mPa s)

Density( kg
m3

)
Surface
tension(

mN
m

) Kapitza
number

Dimensionless
unit cell length

L = L∗
l∗c

Geometric
aspect ratio

A/L

Elbesil 65 62.40 958.5 19.91 3.75 13.765 0.40
Elbesil 100 96.6 963.2 20.07 2.09 13.765 0.40
Elbesil 145 139.1 964.8 20.01 1.28 13.765 0.40
68% w/w aqueous glycerol 12.8 1170 68.83 110 4.9 0.167
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In Eq. (5) the ambient pressure has been set equal to zero (datum pressure) without loss of
generality. Along the free surface, we also impose the kinematic condition

n ·
(

u − ∂x
∂t

)
= 0, (7)

while, along the walls of the substrate, we impose the usual no-slip, no-penetration boundary
conditions. Additionally, we impose periodic boundary conditions in the velocity and stress field
between the inflow and the outflow of the domain. As noted in Part I, we assume that the steady
flow has the same periodicity as the substrate structure (i.e., we assume that the steady solution is
L-periodic):

u|x=0 = u|x=L, (8)

n · (−PI + τ)|x=0 = n · (−PI + τ )|x=L. (9)

Finally, the film height at the entrance of the unit cell, H∗, is determined by requiring that the
dimensionless flow rate is equal to unity:

q =
∫ H∗/H∗

N

0
uxdy = 1. (10)

In Table I, we present the material properties and the geometric characteristics used in the
simulations of this paper. As a base case, we choose the Newtonian properties of Elbesil 65
(Ka = 3.75) flowing over a substrate with L∗ = 20 mm and A∗ = 8 mm. This is a setup which
has frequently been used in experiments [18,19]. Throughout the paper the dimensional and dimen-
sionless geometric characteristics are constant such that, L = 13.765, A/L = 0.4; an exception of
that is Fig. 4 where for validation purposes we use different geometric characteristics; see Table I
for 68% w/w water glycerol. Moreover, the inclination angle is set at α = 10◦ and, unless stated
otherwise, the parameters Ka and β are set at 3.75 and 0.1, respectively.

III. NUMERICAL IMPLEMENTATION

The base flow is steady, two-dimensional, and is assumed to be L-periodic, the characteristics of
which were discussed in detail in Part I. We consider the stability of this steady flow subjected to
infinitesimal 2D and 3D perturbations. To this end, we map the perturbed physical domain (x, y, z) to
a known reference domain (η, ξ, ζ ). The variables are written in the computational domain and are
decomposed into a part which corresponds to the base state solution and an infinitesimal disturbance
using the following ansatz:⎡

⎢⎣
u
P
G
τ p

⎤
⎥⎦(η, ξ, ζ , t ) =

⎡
⎢⎣

ub

Pb

Gb

τ p,b

⎤
⎥⎦(η, ξ ) + δ

⎡
⎢⎣

ud

Pd

Gd

τ p,d

⎤
⎥⎦(η, ξ, ζ , t ), (11)

⎡
⎣x

y
z

⎤
⎦(η, ξ, ζ , t ) =

⎡
⎣xb

yb

ζ

⎤
⎦(η, ξ ) + δ

⎡
⎣xd

yd

0

⎤
⎦(η, ξ, ζ , t ). (12)

The first terms on the right-hand side of these equations represent the base solution, indicated
by the subscript b, while the second ones are the perturbation, indicated by the subscript d while
δ � 1. Introducing Eqs. (11) and (12) in the weak form of the governing equations, we derive a
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linearized set of equations for the flow in the bulk and the corresponding boundary conditions; a
detailed description is provided in Appendix A.

The disturbances are represented by a set of normal modes as follows:

⎡
⎢⎢⎢⎣

ud

Pd

Gd

τ p,d

xd

⎤
⎥⎥⎥⎦(η, ξ, ζ , t ) =

⎡
⎢⎢⎢⎢⎢⎣

u′
d

P′
d

G′
d

τ′
p,d

x′
d

⎤
⎥⎥⎥⎥⎥⎦(η, ξ, ζ )eλt+ikz, (13)

where xd is the disturbance of the position vector [xd = (xd , yd , 0)T ]. According to our ansatz,
an exponential dependence on time is assumed; here λ denotes the growth rate. If the calculated
λ turns out to have a positive real part, the disturbance grows with time, and therefore the
corresponding steady state is unstable. The disturbances u′

d , P′
d , G′

d , τ ′
p,d , x′

d are discretized
employing finite element basis functions in the streamwise and spanwise directions while Fourier
modes are employed in the transverse ζ direction; k denotes the wave number of the perturbation in
the z direction. A detailed description is provided in Appendix A.

A. Periodic boundary conditions and implementation of Floquet-Bloch theory

For flows over periodic structured surfaces, the most unstable disturbance for the specific system
may have a wavelength that exceeds the period of the domain. Thus, it becomes evident that if one
assumes periodic conditions for the disturbances between the inflow and outflow boundaries, the
overall linear stability of the system cannot be captured unless a sufficiently long computational
domain is considered. This would imply a formidable computational cost in the case where long-
wave disturbances are the most unstable ones as is typical for thin film flows. As we will discuss
below, the most appropriate and efficient way to deal with this issue is to employ the Floquet-
Bloch theory, which allows us to model the flow over a structured surface by considering the small
periodic domain of the topography, thus maintaining a considerably reduced computational cost,
while examining disturbances with wavelengths that may extend over multiple trenches or fractions
thereof.

According to Bloch’s theorem [30], it is sufficient to look for solutions such that the disturbances
between the inflow and outflow of the unit cell are related to each other with the following
expression:

⎡
⎢⎢⎢⎣

u′
d

P′
d

G′
d

τ′
p,d

y′
d

⎤
⎥⎥⎥⎦

∣∣∣∣∣∣∣∣∣
x=L

=

⎡
⎢⎢⎢⎣

u′
d

P′
d

G′
d

τ′
p,d

y′
d

⎤
⎥⎥⎥⎦

∣∣∣∣∣∣∣∣∣
x=0

e2π Q i. (14)

Using this formulation, the unknown disturbances, (u′
d , P′

d , G′
d , τ

′
d , y′

d )T , will be determined by
imposing Eq. (14) at the edges of the periodic domain, which enforces that, for finite real values of
Q, the disturbances will not be L-periodic. For example, when Q = 0.5 the imposed perturbation
has a wavelength that is twice the size of the physical domain, whereas Q → 0 corresponds to
disturbances with wavelength much larger than the size of the periodic domain. Disturbances with
Q = 0 should be distinguished, since in that case Eq. (14) reduces to typical periodic boundary
conditions, and thus the case corresponds to disturbances that have the same period or aliquots of
the basic solution, i.e., correspond to superharmonic instabilities.
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B. The Arnoldi algorithm

After we discretize the linearized set of equations, we end up with a generalized eigenvalue
problem of the form

Aw = λMw, (15)

where A and M are the Jacobian and the mass matrix respectively, with λ the eigenvalues and w

the corresponding eigenvectors. This eigenvalue problem is solved using Arnoldi’s method [31–36]
which allows us to locate only the eigenvalues of interest; for determining critical conditions, we
need those eigenvalues with the smallest real part. According to our framework, the solution is stable
if the real parts of all eigenvalues are less than or equal to zero for all values of Q.

To implement Arnoldi’s algorithm, we use the public domain code ARPACK [36] which computes
the eigenvalues with the largest magnitude. Since we are interested only in the eigenvalues with
the smallest real part, and to avoid the singularity of the mass matrix, the following shift-and-invert
transformation is employed:

Kw = ν w, where K = (A − λM)−1M and ν = 1

λ − s
. (16)

The leading eigenvalues of the above system are those eigenvalues of the original problem that
are closest to the complex shift value, s; when ν is maximum, then λ − s is minimum. Therefore,
with a sequence of such complex shifts, adaptively generated with a procedure similar to the one
described in [32–35], it is possible to obtain the desired part of the eigenspectrum (i.e., the leading
eigenvalues with the smallest real part). The accuracy of the converged eigenpairs is independently
checked by evaluating the residual |Aw − λMw|, and this quantity is always less than 10−12 for the
reported results.

C. Evaluation of the eigenspectrum and neutral stability curves

In Fig. 1 we present a typical eigenspectrum for a Newtonian liquid flowing over a sinusoidal
topography. This spectrum is produced by solving the eigenvalue problem for different values of Q
in the range [0, 1). For Q 	= 0, 0.5 the Jacobian matrix has complex entries [see Eq. (14)], and
therefore the calculated eigenvalues do not appear in conjugate pairs. However, the continuous
spectrum which is recovered by evaluating the eigenvalues for all values of Q in the range [0, 1)
appears to be fully symmetric with respect to the axis of Real(λ). For instance, we notice that the
calculated eigenvalues for Q = 0.7 are the conjugate eigenvalues of the spectrum for Q = 0.3; see
Fig. 1. As a result, it is possible to calculate the total spectrum by considering the values of the
Bloch wave number Q simply in the range of [0, 0.5] instead of [0, 1). The flow will be considered
to become unstable for a specific value of Re when for any value of Q in the range of [0, 0.5] there
exists at least one eigenvalue with positive real part. Neutral conditions will arise when the real part
of the most dangerous eigenvalue becomes equal to zero.

After a critical point has been detected for some combination of Re and Q (i.e., the real part of
the most critical eigenvalue is close to zero) it is desirable to locate it precisely and to trace its path
in order to obtain the dependence of the critical Reynolds number as a function of the Bloch wave
number Q for fixed geometrical characteristics of the substrate, liquid properties, and inclination
angle. To this end, we employ an algorithm similar to the one proposed by Hackler et al. [37], and
for every value of Q we solve the following coupled set of equations:

R(v; Re) = 0, (17)

(A − λM)w = 0, (18)

wtrial · w = 1, (19)

Real(λ) = 0. (20)
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FIG. 2. Stability map for the Elbesil 65 (see Table I), in (a) the Floquet parameter space (Re, Q) and in (b)
the frequency space (Re, f ). The light blue area indicates the unstable regimes of the fluid flow.

Equation (17) represents the set of equations for the steady state flow for the vector of unknowns v
(velocities, pressures, stresses, velocity gradients, and node positions) as a function of Re. Equation
(18) is the eigenvalue problem for the specific value of Q. Equation (19) is the normalizing condition
for the eigenvector, and Eq. (20) the condition that the growth rate of the eigenvalue vanishes. First,
we solve Eq. (17) to determine the steady solution and Eq. (18) to detect the eigenvalue to be tracked
(i.e., the eigenvalue with the largest growth rate) for a specific value of Re and the Floquet parameter
Q. The latter are introduced as an initial guess to the system of equations (17)–(20). As wtrial we
choose the eigenvector of the corresponding eigenvalue. The system is solved iteratively until the
real part of the eigenvalue followed becomes smaller than 10−8. After the algorithm converges, we
increase Q to Q + dQ and use the calculated steady state, eigenvector, and critical eigenvalue of Q
as the initial condition for the new iteration at Q + dQ. Given a good initial guess, this algorithm
ultimately converges quadratically even if the path of the steady state is close to a hysteresis loop.
The implementation of this tracking algorithm is described in Appendix B.

We use this algorithm to produce the stability map of Elbesil 65 (see Table I) in the (Re, Q) plane
shown in Fig. 2(a). In this figure, the neutral stability curve is indicated with the continuous blue
line, while the white and light blue areas represent the stable and the unstable regimes, respectively.
As shown in this figure for disturbances with infinite wavelength (Q → 0, Q > 0) the critical Rec

is calculated to be 8.51. Figure 2(a) presents the stability characteristics of the flow for different
values of Re as a function of Q, which is associated with the wavelength of the imposed disturbance.
Examining all wavelengths, the flow becomes first unstable for Q = 0.405, where the critical Rec =
5.09. In experiments, instead of imposing a disturbance with a specific wavelength, it is easier to
impose a disturbance with a specific frequency. According to our formulation, the imaginary part of
the eigenvalue corresponds to the dimensionless frequency of the disturbance and can be related to
the dimensional frequency of the disturbances using the following expression:

f ∗ = Imag(λ)

2π

U ∗
N

H∗
N

= Imag(λ)

2π
Re1/3St−2/3

(
μ∗

ρ∗g∗2

)−1/3

. (21)

By scaling the dimensional frequency with the viscous timescale t∗
v = ( μ∗

ρ∗g∗2 )1/3, so that the
timescale is independent of Re, the dimensionless frequency is given by the following expression:

f = Imag(λ)

2π
Re1/3St−2/3. (22)

Based on this definition, it is possible to present the same stability map shown in Fig. 2(a) in the
(Re, f ) plane; see Fig. 2(b). The two representations are interchangeable while the latter has the
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FIG. 3. Comparison of the predicted neutral curves for Newtonian liquids with previous studies. The liquids
used are (a) Elbesil 145 and (b) Elbesil 100; see Table I. Experimental data are shown with dots while the
theoretical predictions are presented with lines; the continuous black line and orange dashed line refer to the
current work and Schörner et al. [18], respectively.

advantage that the theoretical predictions can be directly compared with experimental observations
[38]. For the rest of the discussion, we will follow the latter representation of our numerical results.

IV. VALIDATION

Before we proceed with the discussion of our results, we present a series of validation tests
of our in-house code with experimental observations and theoretical predictions for relevant flows
that can be found in the literature. First, we have examined the stability of Newtonian films over
corrugated surfaces subjected to 2D disturbances (k = 0), and we present in Fig. 3 the theoretical
and experimental data for two different liquids, Elbesil 100 and Elbesil 145, the properties of which
are given in Table I.

In Fig. 3, we depict the dependence of the critical Rec on the frequency of the instability. Our
results are in very good agreement with both the theoretical curves and the experimental data, [18].
Note that the linear stability analysis predicts the existence of both a neutral curve for Re > 10.5 as
well as an unstable isle for 3.9 < Re < 7.8 [see Fig. 3(a)], the nature of which will be described later
in the paper. Interestingly, in between those two regions, the substrate corrugations provoke a narrow
window where all linear perturbations are damped, i.e., for 7.8 < Re < 10.5. Above a specific value
of Re, the experimental observations deviate from the theoretical results and the deviation is larger
at the higher viscosity liquids for Re > 12; see Fig. 3. Since there is no guarantee that all base
flow formations in the experiment correspond to the steady state solution theory, it is possible thick
films may have different flow arrangement (i.e., the L-periodicity of the fluid flow may have broken
down). This hypothesis is also supported by the study of Tseluiko et al. [39] who found that the
film flow might experience a sequence of multiple steady states which in general have a different
periodicity than the wall. However, finding and analyzing this type of bifurcation is outside the
scope of this study.

Cao et al. [17] performed experiments for an aqueous-glycerol liquid (68% w/w, see Table I)
flowing over a sinusoidal substrate with L∗ = 12 mm and A∗ = 2 mm. In Fig. 4 we present the value
Rec/Reflat, where Reflat = 5

6 cot α, as a function of the inclination angle. Along the continuous blue
line, the Bloch wave number varies from Q = 0.15 at a = 2◦ to Q = 0.81 at a = 45◦. For all values
of the inclination angle, there is good agreement with the experiments [17] in terms of the value of
the critical Re number. However, it is important to note that even though our theoretical calculations
predict that for all inclination angles the most unstable modes are long-wave disturbances, Cao et al.
[17] observed instead the appearance of short-wave instabilities for large values of the inclination
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FIG. 4. Comparison of the predictions of this study with the experimental data of Cao et al. [17] as a
function of inclination angle. Black dots depict the experiments; the continuous blue line indicates the critical
Reynolds number with the minimum value for finite values of Q, and the dashed red line indicates the most
unstable mode for Q = 0. The Kapitza number is 110, whereas the geometric parameters are L = 4.9, A/L =
0.167.

angle (a � 25◦). For instance, for inclination angle a = 30◦ we predict that the most unstable mode
corresponds to a disturbance with Q = 0.73 and frequency f ∗ = 12.84 Hz, whereas Cao et al.
[17] observed instability with a frequency of 19.35 Hz. As shown in Fig. 4, according to our
predictions the second most unstable mode is a short-wave instability which corresponds to Q = 0
and frequency f ∗ = 18.68 Hz, which is very close to the experimental observations. Although this
mode becomes unstable at slightly higher values of Reynolds number than in the experiments, the
difference becomes very small for inclination angles a � 25◦, which can explain why this mode has
been observed.

To build further confidence we have also compared the predictions of our model with theoretical
predictions in the literature for the case of a viscoelastic film flow over an inclined flat solid surface.
Figure 5(a) presents the predictions of our model for a steady flow subjected to 2D disturbances
(k = 0) for different values of ε and for β = 0.1. In the limit of the Oldroyd-B model (ePTT for
ε = 0) we find an excellent agreement between our numerical results and the analytical expression
of Lai [25]:

Rec = 5
6 cot a − 5

2 Wi(1 − β ). (23)

This analytical expression describes that, except for the inertia, the viscoelastic films over flat
plates have a second destabilizing effect due to fluid elasticity. Interestingly, Eq. (23) describes that
there is a specific value of Wi for which the instability arises in the absence of inertia. Nevertheless,
for nonzero values of ε, a liquid following the ePTT law expresses shear thinning; with increasing
ε the effect of shear thinning increases. As shown in Fig 5(a), shear thinning appears to destabilize
further the flow monotonically. This is in agreement with predictions regarding the stability of
generalized Newtonian liquids [21,22]. Finally, as depicted in Fig. 5(b), our code accurately predicts
the critical conditions when the flow is subjected to disturbances in the spanwise direction; here we
compare our predictions with the analytical expression provided by Kang and Chen [24] which has
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FIG. 5. (a) Critical Reynolds number for the Nusselt flow of a viscoelastic liquid subjected to 2D
disturbances. The gray dashed line is the analytical expression derived by Lai [25] using the Oldroyd-B model
with β = 0.1. The rest of the lines correspond to our neutral curves for long-wave disturbances (Q = 10−2)
and different ε values. (b) Critical Reynolds number for the Nusselt flow of a viscoelastic liquid subjected to
3D disturbances as a function of k. Comparison with the analytical expression by Kang and Chen [24] for
Ka = 10, L = 100.

been modified to account for 3D disturbances, following the arguments described by Benjamin [40]:

Re − 5
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)
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(
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) 1
3

− 5

2
Wi(1 − β ) = 0,

(24)
where k denotes the wave number in the spanwise direction and k2D = 2πQ

L .

V. RESULTS AND DISCUSSION

A. Linear stability analysis for the Oldroyd-B fluid

We will now turn our attention to the stability of the steady flow described above. We will first
focus on 2D disturbances to an Oldroyd-B fluid and then proceed with the investigation of the
stability of an ePTT fluid, including 3D disturbances.

1. Effect of long-wave disturbances

We begin our discussion by examining the stability of the steady flow when subjected to long-
wave 2D disturbances. To this end, we focus on disturbances with Bloch wave number Q = 10−2.
In Fig. 6, the growth rate of the most unstable eigenvalue is presented as a function of Re. As
expected, for both Newtonian and viscoelastic liquids the flow is found to be stable for low values
of Re and unstable as Re assumes large values. At intermediate values of Re, though, the growth
rate of the most unstable mode exhibits a nonmonotonic behavior. In the case of the Newtonian
liquid, the flow first becomes unstable at Re = 8.52 while the maximum growth rate was calculated
at Re = 14.77, which coincides with the point of resonance of the steady free surface with the
bottom wall [see Fig. 4(a) in Part I]. With further increase of Re, the flow becomes stable in the
range 16 � Re � 22.1. For higher values of Re, the steady shape of the interface becomes almost
flat, and the flow is destabilized by inertia similarly to Nusselt flow, over a flat substrate, although
there Rec = 5

6 cot α = 4.73.
In the case of the viscoelastic liquid, the maximum growth rate arises at Re = 16.25, which

coincides with the resonance point of the steady free surface with the bottom wall [see Fig. 4(a) in
Part I]. Additionally, an isle of stability also arises for higher values of Re (17.39 � Re � 21.78)
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FIG. 6. The growth rate of the most unstable eigenvalue for an Oldroyd-B (continuous blue line) and a
Newtonian (dashed black line) liquid over a sinusoidal topography. The remaining parameters are Wi = 1,
ε = 0.

although the size of this region is significantly smaller than its Newtonian counterpart. Interestingly,
a second instability region emerges for 7.26 � Re � 10.31, albeit with smaller maximum growth
rate. The position of this peak coincides with the position of the change in slope that is seen in
Fig. 4(a) in Part I (i.e., for Re ∼= 9) indicating that a weaker resonance exists in this range. In
addition, we observe that an isle of stability arises between these two unstable regions, i.e., for
10.31 � Re � 13.22.

Note that, in Fig. 6, due to the specific choice of Q (Q = 10−2), the wavelength of the
disturbance corresponds to 100 unit cells and cannot be presented in the paper. To appreciate the
long-wavelength disturbance, in Fig. 7 we examine a slightly larger value of Q (Q = 0.1), where
we present the steady state profile of the free surface along with the disturbance profile of the
most unstable mode and their superposition over a complete wavelength (10 unit cells); the black
dotted line depicts the long-wavelength disturbance, which in this case is constructed by connecting
the extreme values inside each unit cell. The long-wavelength disturbance clearly is cos(2π x∗

10L∗ ).
Moreover, Figs. 7(a) and 7(b) depict the cases for Re = 9.1 and Re = 16.25, which correspond to
positions of the two local maxima of the growth rate. In both cases, the disturbances are localized in
the region of the cusp in the steady state solution, and therefore it can be deduced that the presence
of the cusp has a destabilizing effect on the flow due to the intense velocity gradients and normal
polymeric stresses (τp,xx) that arise in that region.

2. Energy analysis for the flow of an Oldroyd-B liquid subjected to long-wave disturbances

To identify the physical mechanism that leads to the destabilization of the flow, we perform
an energy analysis, which has been used successfully in the past for the analysis of various
viscoelastic flows [33,34,41,42]. The energy method considers the interaction of the base flow and
the disturbance flow by evaluating the mechanical energy balance for the perturbed system. Hence,
it is used to determine the stabilizing and destabilizing effects of the coupling of the velocities and
stresses of the base and disturbance flows. The method is described in detail in the Appendix of
Karapetsas and Tsamopoulos [33].

The disturbance energy equation is obtained by taking the inner product of the linearized
perturbation of the momentum equation with the perturbation velocity, and integrating the resulting
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FIG. 7. Steady free surface (continuous blue line) and its corresponding long-wave disturbances for Q =
0.1 (continuous green line), calculated at (a) Re = 9.1, (b) Re = 16.25. The red dash-dotted line in (a) and (b)
indicates the superposition of the steady free surface and the disturbance, where the magnitude of the latter
has been magnified 500 times. The black dotted lines indicate the long-wave disturbances. The remaining
parameters are Wi = 1, ε = 0.

equation over a complete wavelength of the disturbance with 0 < x < L
Q and one period in time

(i.e., 0 < t < T = 1
f ). After some manipulation the energy budget becomes

Re

(
dEk

dt
+ φRey

)
= −φpre + φvis − dEp

dt
+ φp, (25)

where φp = φpv1 + φps1 + φpv2 + φps2. The various terms of Eq. (25) and their physical interpreta-
tions are given in Table II. Note that for the evaluation of all terms shown in Eq. (25) we take just
the real part of the perturbations, while the subscript b denotes the base state and d the disturbance
variables.

In the presence of inertia, the term dEk/dt , which signifies the rate of change of kinetic energy
with time, can be used as the term which indicates the stability or instability of the flow. The term
φRey corresponds to the Reynolds stresses, φpre is the energy associated with the perturbation of
the pressure, and φvis is the viscous dissipation energy term, which is always negative and thus has
a stabilizing effect on the flow. Accounting for the viscoelasticity of the fluid, the term dEp/dt
describes the growth rate associated with the polymeric stresses, while the remaining terms denoted
as φp are related to the coupling of the polymeric stresses with the velocity field.

The energy analysis was performed for a Newtonian and an Oldroyd-B liquid for Wi = 1 and
β = 0.1 while varying the Reynolds number and assuming that the flow is subjected to long-wave
disturbances, Q = 10−2. The various terms of the energy equation for both cases are presented
in Fig. 8, without the normalization of the eigenvectors. In the case of a Newtonian liquid [see
Fig. 8(a)], we find that the only positive term is φRey, while φpre becomes positive at supercritical
conditions. Additionally, the term φvis is always negative since viscous dissipation stabilizes the
flow. The term φRey is always positive for low values of Re, while at the transition from stability
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TABLE II. The physical interpretation of terms arising in the energy budget for an Oldroyd-B liquid.

Term Physical interpretation
dEk
dt = ∫

Vt

dud
dt · ud dV dt The rate of change of the kinetic energy with time

dEp

dt = ∫
Vt

Wi ∇ · ∂

∂t τ p,d · ud dV dt Growth rate of polymeric stresses

φRey = ∫Vt
(ud · ∇ub + ub · ∇ud ) · ud dV dt Reynolds stresses

φpre = ∫Ct
n · Pd I · ud dCdt Energy associated with the pressure perturbation

φvis = ∫Vt
∇ · (∇ud + ∇ud

T ) · ud dV dt Viscous dissipation energy term

φpv1 = ∫Vt
Wi ∇ · (ud · ∇τ p,b) · ud dV dt Coupling of the base state stress gradients with

the velocity perturbations
φpv2 = ∫Vt

Wi ∇ · [τ p,b · ∇ud + (τ p,b · ∇ud )T ] · ud dV dt Coupling of the velocity gradient perturbation
with the base state stresses.

φps1 = ∫Vt
Wi ∇ · [ub · ∇τ p,d ] · ud dV dt Coupling of the stress gradient perturbation with

the base state velocity
φps2 = ∫Vt

Wi[τ p,d · ∇ub + (τ p,d · ∇ub)T ] · ud dV dt Coupling of the stress perturbation with the base
state velocity gradient

to instability this term appears to increase rapidly, indicating that this term drives the instability in
Newtonian liquids. This is not surprising, as it is well known that inertial effects drive this instability
and φRey is associated with the Reynolds stresses.

For a viscoelastic liquid, the mechanism of the instability is more complicated, as seen in
Fig. 8(b); in this figure, we have omitted the term φvis since it is always stabilizing. Interestingly, in
the case of the viscoelastic fluids besides the inertia terms, expressed by the term φRey, we find that
the terms φps1 and φpv2 also acquire positive values contributing to the destabilization of the flow
with increasing Re. We note though that the destabilization is primarily due to φps1, which represents
the coupling of the stress gradient perturbation with the base state velocity since it increases rapidly
near critical conditions. Stress gradients are indeed maximized near the cusp region, as shown in
Fig. 8(c). φpv2, which represents the coupling of the velocity gradient perturbation with the base
state stresses, appears to increase considerably, albeit at supercritical conditions. On the other hand,
the magnitude of the term φpv1 decreases rapidly close to criticality, indicating that the polymeric
stress gradients of the base state tend to stabilize the fluid flow. Since φps1 is the most destabilizing
term, we may deduce that in viscoelastic liquids an additional mechanism of instability exists which
is related with the convection of the perturbation of the polymeric stress field by the base state fluid
flow. Nevertheless, inertia remains the leading mechanism for the onset of instability.

3. Stability maps for disturbances with arbitrary wavelength: Effect of Wi

So far we have discussed the stability of an Oldroyd-B liquid for steady flows allowing only 2D
long-wave disturbances, i.e., for Q � 1. In order to investigate the effect of disturbances with any
wavelength, we produce the stability maps shown in Fig. 9 considering values of the Bloch wave
number Q in the range [0, 0.5]. Figure 2(b) shows the stability map for the case of Elbesil 65, which
is a Newtonian liquid; its properties are given in Table I. For disturbances with infinite wavelength
( f → 0) the Rec is calculated to be 8.51, whereas the flow becomes first unstable for a finite value
of the disturbance frequency, i.e., for f = 0.052 (which corresponds to Q = 0.405) and Rec = 5.09.
Note that this behavior in the case of structured surfaces is markedly different from the flow over an
inclined flat surface in which the most unstable eigenmode corresponds to long-wave disturbances,
i.e., for f → 0. This effect has been observed experimentally [15,18] and has been attributed to the
resonance of the steady free surface with the bottom wall [43]. We have already seen in Fig. 6(a)
that for moderate values of Re (15.79 � Re � 22.34) the flow becomes stabilized. Note that the isle
of stability also exists for finite frequency values, as can be clearly seen in Fig. 2(b).
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FIG. 8. Energy analysis diagrams for the leading mode for (a) Newtonian and (b) Oldroyd-B liquid, for
ε = 0 and Wi = 1, under long-wave disturbances Q = 10−2. (c) Steady free surface (continuous blue line) and
its corresponding τp,xx disturbance for Q = 10−2 (red dashed dotted line) calculated at Re = 9.1. The remaining
parameters are Wi = 1, ε = 0.

With increasing fluid elasticity, the flow progressively deviates from the Newtonian case, as can
be seen in Figs. 9(a)–9(d) for Wi = 0.5, 0.75, 1, and 1.5, respectively. For Wi = 0.5 [Fig. 9(a)] the
stability map differs in two ways from that of a Newtonian liquid. First, as also seen in Fig. 6(a), we
have the appearance of two isles of stability instead of one for a Newtonian liquid; and secondly for
low values of elasticity the flow appears to become more stable since the first critical Re increases
to 6.89 (for f = 0.046 which corresponds to Q = 0.324). In this case, elasticity acts in a different
way than in Nusselt flow [24] due to the spatial variation of the steady normal polymeric stresses
(see Fig. 5 in Part I) which provides a significant stabilizing effect on the flow at finite values
of Q. Nevertheless, for higher values of Re, due to the effect of elasticity, stable isles arise with
considerably smaller size than in the Newtonian counterpart. Further increase of Wi [Fig. 9(b)]
indicates that the bulk fluid elasticity has an overall stabilizing effect on the fluid flow, and the most
unstable state is now encountered for long-wave disturbances ( f → 0). Therefore, we deduce that
the elasticity is responsible for dampening high frequency interfacial perturbations. Interestingly,
the stable isle in the range of Re ∼ 17.5 − 22 expands its area, and for the even higher value of
Wi [Fig. 9(c)] it crosses the main neutral curve connecting the two stable regimes. An unstable isle
thus is created which contains a smaller stable isle for Re in the range between 10.31 and 13.23.

Interestingly, even though the flow initially becomes unstable at Rec = 7.3, there is a stable region
for Re in 17.4 < Re < 21.8, denoting that the fluid elasticity induces a small window where all
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FIG. 9. Effect of the Wi number in the stability diagrams using the Oldroyd-B model. (a) Wi = 0.5,
(b) Wi = 0.75, (c) Wi = 1.0, (d) Wi = 1.5.

linear perturbations are dampened at supercritical conditions. With an additional increase of Wi, the
unstable isle shrinks further and at Wi = 1.5 it is split into two smaller unstable isles; see Fig. 9(d).
Clearly, the unstable isles correspond to the first and second resonance points described in Fig. 6(a)
while the neutral curve that arises for Re > 22 [see Fig. 9(d)] indicates the transition to instability
due to the dominance of inertia in the fluid flow. This value is 4 times larger than the critical Re
for a Newtonian liquid, Rec = 5.09, which is a clear demonstration of the stabilizing effect of fluid
elasticity.

B. Linear stability analysis for the ePTT fluid

1. Stability maps for disturbances with arbitrary wavelength: Effect of Wi

We now turn our attention to the case of an ePTT fluid, which may provide a better description for
polymeric solutions because, besides the effect of elasticity, they also typically exhibit considerable
shear thinning. In Fig. 10 we present stability maps for Wi = 0.5 and 1. We use a rather small value
for the exponent ε = 0.05 and keep the remaining parameters as in Fig. 9. As shown in Fig. 10(a),
for weak fluid elasticity the flow becomes slightly stabilized since the most critical Re, is found
to be Rec = 5.56, higher than the corresponding value for the Newtonian liquid, Rec = 5.09; see
Fig. 2(b). Moreover, the most unstable mode has a lower frequency, f = 0.050 (which corresponds
to Q = 0.384), than that for the Newtonian liquid ( f = 0.052 and Q = 0.405). It should be noted
that for an ePTT fluid and such low values of Wi the effect of shear thinning is not dominant, since
the product of ε and Wi is very small and appears in the ePTT exponent, Eq. (4); see also [44]. Hence
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FIG. 10. Effect of the Wi number in the stability diagrams using the ePTT model for ε = 0.05. (a) Wi =
0.5, (b) Wi = 1.

the fluid exhibits behavior similar to the Oldroyd-B fluid [although with slightly lower value for Rec

compared to 6.89 for the Oldroyd-B fluid; see Fig. 9(a)], and therefore the stabilization of the flow,
in this case, can be attributed to the elasticity alone. Even so, the presence of small shear thinning
decreases the size of the stable isle, and for Wi = 0.5 it has completely disappeared; see Fig. 10(a).
Increasing the value of Wi [see Fig. 10(b)], a different picture emerges, and the flow now becomes
clearly destabilized, since the effect of shear thinning becomes stronger. We find that for Wi = 1
the most critical value of Re is Rec = 4.18 while the most unstable mode has frequency f = 0.059
(corresponds to Q = 0.45) which is larger than the corresponding Newtonian case. It should be
noted that the destabilizing effect of shear thinning has also been reported both experimentally and
theoretically for film flows over a flat substrate of liquids following generalized Newtonian laws
[21,22].

Figure 11(a) presents the stability map for the highest value of Wi that we have examined, i.e.,
for Wi = 2. Interestingly, in this figure, besides the further destabilization of the flow due to the
increased effect of shear thinning, we also observe a discontinuity in the neutral curve which arises
for 14.73 < Re < 14.89. In this discontinuity the dimensionless frequency of the most unstable
mode changes abruptly from 0.067 to 0.14. As already described in Part I, at this range of Re a
hysteresis loop arises [see Fig. 11(b)], denoting the existence of multiple steady states in a narrow

FIG. 11. (a) Stability diagram and (b) relative amplitude of the steady free surface, Arel, close to the
hysteresis loop, for Wi = 2 and ε = 0.05.
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FIG. 12. (a) Stability diagram for Wi = 1, ε = 0.25 and (b) close-up of the relative amplitude of the free
surface at steady solution, Arel, corresponding to the jump in frequency.

range of Re. The points A and B in Fig. 11(a) depict the frequencies at the first and second turning
point of the hysteresis loop of Fig. 11(b). We could not find a critical value for Re at the upper
branch connecting these points in the hysteresis loop [see the dashed line in Fig. 11(b)], indicating
that this branch is unstable for all values of Q. Indeed, examination of the eigenspectrum for this
upper branch AB reveals that the eigenvalue, which otherwise remained at 0 + 0i (it is the point
“M0” if Fig. 13 to be discussed subsequently) assumes a positive real part. Therefore, points A
and B correspond to the usual limit points of bifurcation theory, where one real eigenvalue becomes
positive at A and zero again at B. All other unstable eigenvalues discussed in this study are complex.

2. Effect of the parameter ε

In Fig. 12 we present the stability diagram of the flow for ε = 0.25 alongside the hysteresis
loop that arises in the steady state solution. As we have already discussed regarding Fig. 10(b),
for ε = 0.05 the flow becomes unstable for Rec = 4.18 and the most unstable mode has frequency
f = 0.059. For ε = 0.25 [see Fig. 12(a)], the flow becomes destabilized at much smaller Rec =
0.92 with f = 0.067 (which corresponds to Q = 0.73). We also observe that with increasing ε the
wavelength of the most unstable disturbance decreases (corresponding to the frequency increase).
Generally, we note that for ε = 0.25 the range of critical frequencies has values almost twice as
large as for ε = 0.05 [see Fig. 10(b)], which indicates that shear thinning promotes the occurrence
of instability at shorter wavelengths. Furthermore, the discontinuity in the neutral curve that appears
for ε = 0.25 is due to the presence of a hysteresis loop in the steady state flow that here arises for
14.28 < Re < 14.38 [see Fig. 12(b)], similarly to the case in Fig. 11.

Interestingly, beyond point B in Fig. 12(a), the frequency of the disturbance increases further,
while its wavelength becomes short enough to be less than the wavelength of the topography, which
signifies the onset of the so-called “short-wave” instability. Essentially, the terms “long-wave” and
“short-wave” refer to disturbances with wavelengths longer and shorter with respect to substrate
undulations. Note that during this transition there is a critical point where the wavelength of the
disturbance is identical to the wavelength of the substrate, so that it corresponds to Q = 0. In Fig 13
we present the spectrum of the fluid flow just before the first turning point at Re = 14.38 and just
after the second one at Re = 14.28 [Fig. 12(b)], while we mark with white circles the eigenmodes
that arise for Q = 0. These modes are the harmonics of the steady free surface inside the unit cell;
for instance, the modes “M1” and “M2” in Fig. 13 represent the first and second harmonics of
the system, with wavelengths L and L/2, respectively, whereas the mode “M0” is pinned at 0 + 0i
and it is described as the zeroth harmonic of the system. The rest of the spectrum (blue line) is
generated for Q 	= 0. The eigenvalues that lie between the points M0 and M1 are responsible for
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FIG. 13. Eigenspectrum calculated at (a) Re = 14.37 and (b) Re = 14.28 for Wi = 1 and ε = 0.25. The
white circles indicate the eigenvalues for Q = 0, while the blue lines indicate the continuous spectrum for
Q 	= 0.

the long-wave instabilities of the flow since their wavelength is always larger than the topography
wavelength. On the other hand, the eigenvalues that have an imaginary part larger than M1 are short
wave. In Fig. 13(a) we observe that the growth rate and the imaginary part of the most dangerous
eigenvalue are λR = 0.18 and λI = 0.16 for Q = 0.13 (wavelength 7.7L), respectively. According
to the spectrum, the flow is stable under short-wave disturbances since the eigenvalues at M0, M1,
M2 have negative growth rate [see Fig. 13(a)], but is unstable to long-wave disturbances.

After the hysteresis loop [i.e., beyond point B in Fig. 12(a)] the growth rate and the imaginary
part of the most unstable eigenvalue are λR = 0.18 and λι = 0.66 for Q = 0.21, respectively; see
Fig. 13(b). Interestingly, the first harmonic of the system is unstable as well, while its growth
rate is λR = 0.06 and the corresponding imaginary part is λI = 2.88, which demonstrates that the
frequency of this unstable mode is 4 times larger than the linearly critical eigenvalue. Since the two
modes coexist and their growth rates are comparable to each other, we might expect that in this
regime short-wave instability will be superposed on the low frequency (long-wave) disturbances
and, given enough time, short-wave instabilities would also be observed in experiments. In Fig. 12(a)
the light orange areas for 14.3 � Re � 30.22 indicate the region where the first harmonic of the
system is unstable, implying the short-wave instability. The continuous orange line in this figure
depicts the frequency of the most dangerous mode for Q = 0 and provides an estimation for the
frequency that could be observed in an experiment, because here the disturbance and topography
wavelengths coincide. Cao et al. [17] have identified what they call “short-wave instability,”
although the wavelength they observe is twice as long as that of the topography but still much shorter
than the usual long wavelengths of thin film theory. Moreover, they state that this type of instability
introduces an intrinsic frequency which is insensitive to external excitations. It is intriguing that the
shorter waves with the smaller predicted growth rates are observed to dominate the longer ones. This
may be caused by a difference in their phase velocities, but this is beyond the scope of this study.
Schörner et al. [18] have observed that when short-wave instabilities arise, the stable isles are not
observed. This is understandable, since there is at least one unstable eigenvalue and therefore the
stable isle that arises for 14.88 � Re � 22.02 will not be observed experimentally, simply because
it exists only for specific (small) values of Q.

In Fig. 14 we present the steady free surface along with the disturbance profile of the most
unstable mode, Q = 0.2, the first harmonic one, Q = 0, and their superposition with the base state
profile. Both disturbances are unstable with wavelengths 5L and L, respectively. As we have already
discussed,experiments indicate that eventually the first harmonic will dominate over the long-wave
disturbance.
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FIG. 14. Steady free surface and its disturbances for Q = 0 (black-orange dashed line) and Q = 0.2
(dashed green line), for Re = 14.28, Wi = 1, ε = 0.25. The red dash-dotted line indicates the superposition of
the steady free surface (continuous blue line) and the corresponding disturbances, where the magnitude of the
latter has been magnified 200 times. The black dotted line indicates the long-wave disturbances.

It is noteworthy that the regime of the short-wave instability is not sustained at higher values of
Re and remains constrained in a region for 14.3 � Re � 30.22 only. For higher values of Re, we
find that short-wave instabilities are not possible and the flow becomes unstable only to long-wave
disturbances, again. For Re = 30.22 the eigenmode M1 becomes stable and the frequency abruptly
drops from f = 0.34 to 0.22; see Fig. 12(a). As will be explained below, this is mainly due to
inertia, which eventually overwhelms shear thinning, which favors the emergence of high frequency
modes. In Fig. 15 we depict the spatial variation of the polymeric shear stress, τp,yx and the normal
polymeric stress field, τp,xx, for the steady base state. We observe that for this limiting value of Re
a large recirculation arises inside the wall corrugations (the continuous black lines in Fig. 15 depict
the streamlines). As described by Nguyen and Bontozoglou [45] and Pollak and Aksel [15] such
vortices arise at sufficiently high values of Re, depending on the amplitude of the wall corrugations,
due to the effect of inertia. This eddy splits the fluid flow into two regions: the main stream region
where a strong velocity field exists and a recirculation region where the flow is slower. The effect
of shear thinning is mostly important in the mainstream region and is maximized near the crests of
the wall corrugations [see Fig. 15(a)] as the recirculation region expands with increasing Re. As a
result, only a small part of the total fluid flow is affected by the shear thinning of the fluid. On the
other hand, due to the flow detachment at the upstream wall, the normal stresses of the polymeric
solution acquire high values [see Fig. 15(b)] as the polymeric chains become extended to conform
to the fluid flow. Therefore, for high values of Re elasticity dominates over shear thinning and the
frequency of the most unstable disturbance decreases considerably.

FIG. 15. Spatial variation of the steady (a) shear stress, τp,yx , and (b) normal stress component, τp,xx , of the
polymeric stress tensor for Re = 30.22, Wi = 1, ε = 0.25.
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FIG. 16. Effect of Ka in the stability diagrams using the ePTT model for Wi = 1, ε = 0.05. (a) Ka = 0.5,
(b) Ka = 1.28, (c) Ka = 3.75, (d) Ka = 10.

3. Effect of zero shear viscosity

In Fig. 16 we present stability maps for different values of Ka. By changing the value of the
Kapitza number while keeping the ratio L = L∗/l∗

c constant, we consider cases with varying l∗
v

[see Eq. (16) in Part I]. Therefore, for liquids with the same density, by varying the value of Ka
we consider liquids with different zero-shear viscosities; the smaller the value of Ka, the more
viscous the liquid is. In Fig. 16(a) we present the case of a highly viscous liquid with Ka = 0.5.
We observe that the neutral curve acquires an almost semiparabolic profile as for Newtonian very
viscous liquids, while the flow becomes unstable for Rec = 2.98 under long-wave disturbances. We
should note that under constant flow rate the film is thicker when its viscosity increases; this can
also be inferred from Eq. (16) in Part I. Due to the increased distance between the interface and
the substrate, the steady free surface remains relatively smooth and does not interact significantly
with the wavy wall, which explains why we do not see any signs of resonance in this map. For
Ka = 1.28 [see Fig. 16(b)], the substrate mildly interacts with the free surface of the film and thus
small fluctuations on the neutral curve arise, even if the flow remains unstable under long-wave
disturbances.

The pattern changes dramatically for liquids with lower viscosity, e.g., Figs. 16(c) and 16(d),
where we depict stability maps for Ka = 3.75 and 10 and the flow becomes unstable for Rec = 4.18
and f = 0.056 (Q = 0.45) and Rec = 2.21, f = 0.057 (Q = 0.74), respectively. In these cases, the
films are thinner and thus allowed to resonate with the topography of the substrate. As noted in
the discussion of Fig. 7 in Part I, the interaction of the steady free surface with the substrate gives
rise to a cusp which tends to destabilize the flow. In Fig. 16(d), we also notice that even at the
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FIG. 17. Steady shear stress component of the polymeric stress tensor,τp,yx , for Re = 3, Wi = 1, ε = 0.05,
Kα = 10.

most critical value of Re (Rec = 2.21) a long-wave instability arises. However, for slightly higher
values of Re there is a transition to short-wave instability in the range 2.27 � Re � 3.1. This could
be attributed to the intense shear stress field that arises close to the descending part of the wall,
producing high-velocity gradients at the liquid-air interface (see Fig. 17 where we present the steady
spatial variation of τp,yx). Due to its decreased viscosity and shear thinning, the mean flow velocity
increases and thus the film height decreases close to the descending part of the wall, producing an
intense depression at the interface. This intensifies locally the shear stresses, leading to stronger
shear thinning. With increasing Re the depression of the free surface moves downstream, reducing
the strong stress field at the crest of the wall, and the instability of the fluid flow becomes long wave
again. Finally, for Ka = 10, our steady calculations show that the resonance point of the steady free
surface with the substrate arises at Re = 29.47. For this value of Re, a hysteresis loop arises (similar
to the one described in Fig. 7 in Part I), which is the reason for the frequency discontinuity in the
stability map. Beyond this critical value of Re, a short-wave instability arises which dominates the
stability of the flow, as described in Fig. 12.

4. Effect of the Newtonian solvent

In Fig. 18 we present the effect of the Newtonian solvent viscosity in the viscoelastic fluid by
increasing the parameter β = 0.4 of the ePTT model. This increase causes a weak stabilization of
the flow, since for β = 0.1 the most critical Re was calculated to be Rec = 4.18 for f = 0.056

FIG. 18. Effect of β in the stability diagrams using the ePTT model for Wi = 1, ε = 0.05, β = 0.4.
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TABLE III. Properties of the polymeric solutions.

Viscoelastic
liquid

Density
(kg/m3)

Zero-shear
viscosity
(mPa s) β = μ∗

s
μ∗

Relaxation
time λ∗

e (s)
Kapitza

number Ka
Elasticity
number El

VS1 958 62.2 0.1 0.008 3.75 1.0
VS2 958 62.2 0.1 0.043 3.75 5.0
VS3 958 62.2 0.1 0.087 3.75 10

[Q = 0.45, Fig. 10(b)], while for β = 0.4 we get Rec = 4.65 for f = 0.057 (Q = 0.4, Fig. 18). We
notice that for disturbances with high frequency the neutral curves remain almost unaffected, while
for disturbances with low frequency the flow becomes significantly stabilized with increasing β. It
is interesting to note that, as f → 0, the critical Re was computed at 5.63 and 10.55, for β = 0.1
and 0.4, respectively. Naturally, increasing β further will lead to a neutral curve with a form similar
to that for a Newtonian fluid. However, above β = 0.4, the liquid is considered as a dilute polymer
solution in which different phenomena may arise such as polymer migration that cannot be described
by the ePTT model [46].

5. Effect of relaxation time

In order to examine the effect of the relaxation time of the viscoelastic liquid on the stability of
the flow, we define the elasticity number by scaling the relaxation time of the polymeric solution λ∗

e

with the viscous timescale t∗
v = ( μ∗

ρ∗g∗2 )1/3:

El = λ∗
e

t∗
v

≡ λ∗
e

ρ∗ 1
3 g∗ 2

3

μ∗ 1
3

(26)

The definition of this number could be advantageous for an experimentalist because it depends
only on physical properties of the liquid such as the relaxation time, zero-shear viscosity, and liquid
density. The relation between this and Weissenberg number is given by the expression:

Wi = El Re1/3St−2/3 (27)

Clearly, by changing this parameter while keeping Ka constant, we can describe the effect of the
relaxation time of viscoelastic fluid independently of the flow rate. Typical values for El are given
in Table III, corresponding to data of liquids that have been used in experiments of coating flows,
e.g., solutions of polyethylene oxide (PEO) or Poly-methyl-methacrylate (PMMA) [47–51].

Figures 19(a) and 19(b) depict the stability maps for El = 1, 5, respectively. Note that, for a
constant elasticity number, while Re increases, the Wi number varies according to Eq. (27). For
example, when El = 5, the Weissenberg number varies between 0 and 2.5 in the range of Re
depicted in Fig. 19(b). The parameter ε of the ePTT model has been set to ε = 0.20, and therefore
here we consider liquids with intense shear thinning. For El = 1 the stability map remains almost
unaffected in comparison to that for Newtonian liquids, while the most unstable mode has frequency
f = 0.055 (which corresponds to Q = 0.38) for Rec = 4.8. When El = 5 the short-wave mode
arises for 13.5 < Re < 28, with a hysteresis loop in the low end of Re and an abrupt decrease in the
frequency above the high end. When El = 10, short-wave instabilities arise also for 1 < Re < 4.
Generally, increasing El instability arises at smaller Re and for finite frequencies.

6. Flow subjected to 3D disturbances

Here, we investigate the stability of the flow when subjected to disturbances in the spanwise
direction, given that Squire’s theorem does not hold even for shear-thinning fluids (without
elasticity) flowing over a flat substrate [50]. To this end, we examine the effect of Wi under the
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FIG. 19. Effect of El in the stability diagrams using the ePTT model for ε = 0.20. (a) El = 1, (b) El = 5,
and (c) El = 10.

constant value of Re = 10, while assuming Q = 0; i.e., we examine disturbances with wavelength
in the streamwise direction equal to the wavelength of the substrate. In Fig. 20(a) we present
dispersion curves for different values of Wi. For Wi = 1, the growth rate is negative for all values of

FIG. 20. (a) Dispersion curves for disturbances in the spanwise direction for Q = 0 for Wi = 1.0, 1.5, 2.0
shown with dashed lines, while Wi = 2.5 is presented with the continuous line. (b) Disturbances of the
spanwise velocity component, uz,d (x, y), for k = 0.75, Wi = 2.5,ε = 0.15, and Re = 10.
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FIG. 21. Stability map in the (Wi, ε) plane for the onset of 3D instabilities for Re = 10, Ka = 3.75, and
β = 0.10.

k, indicating that the fluid flow is stable with respect to 3D disturbances. Increasing the value of Wi,
the growth rate of the disturbance is shifted closer to the neutral stability line, showing a tendency
of the flow to become unstable. Interestingly, at Wi ≈ 1.5, the dispersion curve crosses the neutral
stability line, indicating that the flow becomes unstable to 3D disturbances with wave number larger
than k = 0.56, while the maximum growth rate arises at k = 0.81; the cutoff wavenumber beyond
which surface tension stabilizes the flow is equal to k = 0.93. Increasing further the value of Wi, the
growth rate increases as well, while the wave number of the most unstable modes shifts to smaller
values, i.e., k = 0.79, 0.75 for Wi = 2.0 and 2.5, respectively.

Therefore, it becomes evident that for this particular case, when the flow is subjected to
L-periodic disturbances in the streamwise direction and above a specific value of Wi, the flow
becomes unstable, forming 3D structures. As shown in Fig. 20(b), the spatial variation of the z
component of the velocity disturbance, uz,d , appears to be localized around the area where the static
hump arises. It is also worth noting that the 3D instability of fluid flow appears up to the resonance
point (Re ≈ 14) because after that point the deformation of the free surface relaxes, leading to the
disappearance of the cusp in the steady free surface. The critical conditions for the onset of the 3D
instabilities as liquid elasticity and shear thining vary are shown in Fig. 21. In this figure, the bullet
and cross points in the (Wi, ε) plane indicate whether the flow is found to be most unstable to 2D or
3D instabilities, respectively; the dashed line indicates critical conditions for the transition between
the two states. We observe that the 2D disturbances are most dangerous in the case of weakly
viscoelastic liquids (low values of Wi) or for liquids that do not exhibit significant effect of shear
thinning (low values of ε and Oldroyd-B fluids). In both these limits, the steady free surface does
not exhibit a cusp and the flow was found to be most unstable under 2D long-wave disturbances.
3D instabilities arise in the top-right corner of the (Wi, ε) plane for either highly elastic liquids
or liquids with intense shear thinning. Obviously, the velocity gradients that arise near the cusp
tend to destabilize the flow also in the spanwise direction. Nevertheless, it should be mentioned
that the study in Fig. 21 concerns disturbances that have the same periodicity with the substrate
(i.e., for Q = 0). However, our parametric study above has indicated that, as far as infinitesimal
disturbances are concerned, i.e., in the limit of linear stability, long-wave 2D instabilities are always
observed first in the system, and therefore the 3D disturbances shown here most probably provide
a secondary mechanism for the destabilization of the flow. In order to be more conclusive on this
matter, further study would be required, which, however, is out of the scope of the present work.
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VI. SUMMARY AND CONCLUSIONS

We carried out a theoretical analysis of the linear stability of a viscoelastic liquid film flowing
down an inclined sinusoidal surface and performed a detailed parametric study for a wide range
of material properties. Our results are in excellent agreement with the previous theoretical [18]
and experimental [19] results in the case of Newtonian liquids flowing over flat and undulating
substrates and viscoelastic liquids over flat substrates [26]. For viscoelastic liquids, linear stability
predicts a robust stabilization of the fluid flow due to the presence of fluid elasticity. In particular,
the spatial variation of steady normal polymeric stresses of the flow creates a force that opposes
inertia and tends to damp the disturbances for all frequencies; the damping increases with increasing
Wi. Energy analysis validated the latter mechanism, while it revealed an additional mechanism
of instability which is related to the convection of the perturbation of the polymeric stress field
by the base state fluid flow. Moreover, shear thinning destabilizes the flow, by increasing the
effective inertia particularly around the maxima of the topography. Moreover, shear thinning
increases the frequency of the instability, while at moderate values of Re there is a transition from
long-wave disturbances to short-wave, i.e., disturbances with a shorter wavelength than the substrate
wavelength. This type of instability introduces an intrinsic frequency which is insensitive to external
excitations [17]. Finally, aside from 2D linear stability analysis, we determined the flow stability
when subjected to disturbances in the spanwise direction. We found that at large values of Wi the
pronouched cusp at the steady free surface becomes sharp, which triggers the instability to become
3D. The properties of this instability need further investigation, which is outside of the purpose of
this study.

The current study provides a theoretical analysis of the effect of viscoelasticity and shear thinning
on the stability of film flow over undulated topography. Experimental studies would be very useful
for verification of the findings with different polymeric solutions. From a theoretical point of view,
the effect of the inclination angle and shape of the substrate on the stability of the viscoelastic
fluid flow could be studied further. Additionally, recent studies in Newtonian liquids report that
the evolution of gravity-driven nonlinear traveling waves introduces new phenomena such as the
abrupt collapse of high amplitude waves, which generates waves with smaller amplitude [51].
However, the effects of viscoelastic mechanisms in these phenomena have not been studied yet.
Moreover, stability of thin films over hydrophobic surfaces (surfaces with microstructures forming
gas inclusions) is another subject for future work. In these flow configurations the thin film partially
wets the substrate and thus air is entrapped inside the topographical features [52,53]. The interaction
between the primary free surface and the second free surface that lies inside the cavity of the
substrate may provide a stabilization mechanism for the flow. The latter study is under way.
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APPENDIX A: FORMULATION OF THE LINEAR STABILITY ANALYSIS PROBLEM

1. Finite element discretization

In order to account for 3D disturbances, we have employed Fourier modes in the transverse ζ

direction; k denotes the wave number of the perturbation in the ζ direction. Therefore according to
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our ansatz the disturbances are given by the following finite element interpolation:

u′
d (η, ξ, ζ ) =

∑
i

ûi · [φi(η, ξ )D(kζ )], (A1)

P′
d (η, ξ, ζ ) =

∑
i

P̂iψ i(η, ξ ) cos (kζ ), (A2)

G′
d (η, ξ, ζ ) =

∑
i

Ĝ
i
d : [ψ i(η, ξ )E(kζ )], (A3)

τ ′
p,d (η, ξ, ζ ) =

∑
i

τ̂ i
p,d : [χ i(η, ξ ) E(kζ )], (A4)

x′
d (η, ξ, ζ ) =

∑
i

x̂i
dφ

i(η, ξ ) cos (kζ ). (A5)

The symbol “:” denotes the double inner product. In a fashion similar to the approach described
by [31,54], we choose a control volume consisting of the two-dimensional flow domain extended
over one wavelength in the z direction and employ weighting functions of the form φiD(kζ ) for
the momentum equations, ψ i cos(kζ ) for the continuity equations, χ iE(kζ ) for the constitutive
equations, ψ iE(kζ ) for the continuous approximation of the gradient tensor, and φi cos(kζ ) for the
mesh equations; k denotes the wave number of the perturbation in the ζ direction. The tensors D(kζ )
and E(kζ ) are given by

D(kζ ) =
⎛
⎝cos kζ 0 0

0 cos kζ 0
0 0 sin kζ

⎞
⎠, (A6)

E(kζ ) =
⎛
⎝cos kζ cos kζ sin kζ

cos kζ cos kζ sin kζ

sin kζ sin kζ cos kζ

⎞
⎠, (A7)

and their form is dictated by the incompressibility condition and the kinematic relation at the free
surface [31,54–56].

2. Linearized equations

The linearized equations are obtained using the weak formulation of the time-dependent form
of the governing equations; introducing eq. (13) and neglecting terms of order higher than the
first in the perturbation parameter δ, the following set of linearized equations is obtained from the
corresponding momentum and mass balances, respectively:∫

V

[
(Re ub · (∇u)b − St g) · ri

j − PbI :
(∇ri

j

)
b
+ τT

EV SS,b :
(∇ri

j

)
b

]
J2D,d dV

+
∫

V

[
Re

(
∂ud

∂t
+ ub · (∇u)d +

(
ud − ∂xd

∂t

)
· (∇u)b

) ]
· ri

j J2DdV

+
∫

V

[−PbI :
(∇ri

j

)
d

− Pd I :
(∇ri

j

)
b
+ τT

EV SS,d :
(∇ri

j

)
b
+ τT

EV SS,b :
(∇ri

j

)
d

]
J2D dV (A8)

−
∫

∂V
nb · (−PbI + τT

EV SS,b

) · ri
j J1D,d dA

−
∫

∂V
[nd · (−PbI + τEV SS,b) + nb · (−Pd I + τEV SS,d )] · ri

j J1D dA = 0, j = x, y, z,

∫
V

[(∇ · u)d J2D + (∇ · u)b J2D,d ]ψ i cos kζdV = 0, (A9)
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where

ri
j = e j · φiD(kζ ). (A10)

The expression for the base state and perturbation of the total stress is readily obtained from

τEV SS,i = τ p,i + 2(1 − β )γ̇ i − 2
(
Gi + GT

i

)
, i = b, d. (A11)

Moreover, J2D,d = (yb,ξ xd,η − yb,η xd,ξ ) + (yd,ξ xb,η − yd,η xb,ξ ) and J1D,d = (xb,� xd,�+yb,� yd,� )√
x2

b,�+y2
b,�

,

while dV = dηdξdζ and dA = d�dζ are the differential volume and surface area in the
computational domain, respectively; J2D and J1D are given in Part I (see Appendix). It should
be noted that integration over one wavelength in the ζ direction ultimately gives a common factor
of π/2 which can be safely ignored; this is due to the ζ dependence that arises in factors of cos2kζ

and sin2kζ in the weak form of the equations.
The disturbance of the continuous approximation of the components of the velocity gradient

tensor is determined by∫
V

(Gd − (∇u)d ) : E(kζ )ψ i J2D dV +
∫

V
(Gb − (∇u)b) : E(kζ )ψ iJ2D,d dV = 0 (A12)

The linearized PTT constitutive model becomes∫
V

[
Y (τ p,b)τ p,b + Wi

∇
τ p,b − (1 − β )

(
Gb + GT

b

)]
: E(kζ ) χ i

d J2DdV

+
∫

V

[
Y (τ p,b)τ p,b + Wi

∇
τ p,b − (1 − β )

(
Gb + GT

b

)]
: E(kζ ) χ i

b J2D,d dV

+
∫

V

[
Y (τ p,b)τ p,d + Wi

∇
τ p,d − (1 − β )

(
Gd + GT

d

)]
: E(kζ ) χ i

b J2D dV

+
∫

V

[
ε

1 − β
Wi trace

(
τ p,d

)
τ p,b

]
: E(kζ ) χ i

b J2D dV = 0. (A13)

Here, the disturbance of the upper convective derivative is defined as

∇
τ p,d = ∂τ p,d

∂t
+

(
ud − ∂xd

∂t

)
· (∇τp)b + ub · (∇τ p)d

− [τ p,d · Gb + (τ p,d · Gb)T ] − [τ p,b · Gd + (τ p,b · Gd )T ]. (A14)

In addition, χ i
b and χ i

d denote the base state weighting function χ i and its perturbation, respectively.
The former was defined in Part I (see Appendix), while the latter is given by the following
expression:

χ i
d = ψ i+ hch,b

|ub|
[(

ud − ∂xd

∂t

)
· (∇ψ i )b + ub · (∇ψ i )d

]
+

(
hch,d

|ub| − hch,b

∣∣ud − ∂xd
∂t

∣∣
|ub|2

)
ub · (∇ψ i )b,

(A15)
where |ub| and |ud − ∂xd

∂t | denote the magnitude of the base state mean velocity and its perturbation,
respectively. hch,b, denotes the characteristic length in each element at the base state domain and
hch,d denotes the disturbance in the perturbed domain.

Finally, the linearized weak formulation for the mesh generation equation is given by∫
V

[(∇xy(φi cos kζ ))b · (∇xyξ )d ][(1 − ε1) + ε1S] J2DdV

+
∫

V
[(∇xy(φi cos kζ ))d · (∇xyξ )b][(1 − ε1) + ε1S] J2DdV
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+
∫

V
[(∇xy(φi cos kζ ))b · (∇xyξ )b][(1 − ε1) + ε1S] J2D,d dV

+
∫

V
[(∇xy(φi cos kζ ))b · (∇xyξ )b]ε1 Sd J2D dV = 0, (A16)

∫
V

[(∇xy(φi cos kζ ))b · (∇xyη)d ] J2D dV

+
∫

V
[(∇xy(φi cos kζ ))d · (∇xyη)b]J2DdV

+
∫

V
[(∇xy(φi cos kζ ))b · (∇xyη)b]J2D,d dV , (A17)

where ∇xy = (∂x, ∂y, 0) denotes the 2D gradient operator for Cartesian coordinates, while the
definition for Sd is

Sd = (xb,ξ xd,ξ + yb,ξ yd,ξ ) − (xb,ηxd,η + yb,ηyd,η )
x2

b,ξ + y2
b,ξ

x2
b,η + y2

b,η

(A18)

and S has been defined in Part I (see Appendix).

Boundary conditions

Introducing Eqs. (11) and (12), we obtain the following linearized boundary conditions for the
stability problem. Along the air-liquid interface the linearized stress balance is

nd · (−PbI + τb) + nb · (−Pd I + τd ) = 2κd

Ca
nb + 2κb

Ca
nd . (A19)

This is used to replace the corresponding terms in Eq. (A8) in the surface integrals for the
corresponding boundaries. Here, nb and nd denote the outward unit normal vector to the base state
profile of the corresponding liquid-air interface and its disturbance, respectively. Similarly, 2κb and
2κd denote the mean curvature of the corresponding liquid-air interface at the base state and its
disturbance, respectively. Along the liquid-air interfaces, we also impose the kinematic condition

nb ·
(

ud − ∂xd

∂t

)
+ nd · ub = 0. (A20)

This expression is used for determining the position of the mesh nodes along the liquid-air interfaces
by introducing it as a boundary condition for the mesh generation equations; i.e., see Eq. (A4) in
Part I. Along the solid surface, we simply impose that the velocity disturbances are equal to zero.

APPENDIX B: ALGORITHM FOR TRACKING THE CRITICAL MODE

In order to track the critical value of the Reynolds number as the Bloch wavenumber Q is
varied, we employ a Newton-like algorithm similar to the one proposed by Hackler et al. [37].
The algorithm we use is given below.

(1) Solve the steady state problem for a specific value of the Reynolds number:

R(v; Re) = 0. (B1)

(2) Solve the eigenvalue problem for a specific value of the Bloch wavenumber, Q, for this value
of Re:

A(v; Re)w = λ M(v; Re)w. (B2)
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(3) Find the eigenvalue with the largest growth rate of the problem:

λdang = {max[Real(λi )], i ∈ N| i � rank(A)}. (B3)

(4) Identify the corresponding eigenvector as

wtrial = wdang. (B4)

Having determined the steady state v and the eigenpair (λdang,wdang) for a specific value of Re,
we use them as an initial guess to the following iterative procedure, with k the iteration number,

(5) Set yk as the solution vector augmented with the unknown value of Re at critical conditions:

yk =
[

vk

Re

]
. (B5)

(6) Solve the following problem to evaluate the Newton correction of the steady solution vector,
�yk : [

A ∂R
∂Re

wtrial 0

]
�yk = −

[
R(vk; Re)

0

]
. (B6)

(7) Set zk = yk + �yk .
(8) Solve the eigenvalue problem at zk:

A(zk )w = λM(zk )w. (B7)

(9) Calculate the tangent vector, ∂zk

∂s , of the tracked manifold, by solving the augmented system[
A ∂R

∂Re

wtrial 0

]
∂zk

∂s
= −

[
0
1

]
. (B8)

This system specifies that from the entire null-space of A[Null(A) ≡ {x : Ax = 0}] we choose the
∂zk

∂s that points to the direction of wtrial, while it excludes the trivial solution ( ∂zk

∂s = 0) as a solution
of the system (B8).

(10) Solve the eigenvalue problem at the position zk + ε ∂zk

∂s :

A
(

zk + ε
∂zk

∂s

)
w = λM

(
zk + ε

∂zk

∂s

)
w. (B9)

(11) Calculate the derivative of the eigenvalue with respect to the arc length of the tracked
manifold:

∂λdang

∂s
= λdang

(
zk + ε ∂zk

∂s

) − λdang(zk )

ε
. (B10)

(12) Solve the 1D linear system to calculate the pseudo arc length of the manifold:

�s = −λdang/
∂λdang

∂s
. (B11)

(13) Set

yk+1 = zk + ∂zk

∂s
�s; (B12)

(14) if �s > δ, the prespecified tolerance, repeat steps (5)–(13).
When convergence is achieved the vector yk+1 will contain the computed value of the critical

Re number and the corresponding steady state. Given a good initial guess, this algorithm converges
quadratically even if the calculated solution lies close to the hysteresis loop. After the algorithm
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converges, we increase Q at Q + dQ and use the calculated eigenvector of the previous step as the
wtrial of the current step and repeat steps (5)–(14).

Although this algorithm requires four LU decompositions per iteration and thus it may not be
as efficient as others that exist in the literature, e.g., [57], it is much easier to implement. The
perturbation parameter that has been used in the algorithm is ε = 10−5 and the algorithm terminates
when �s is smaller than δ = 10−7.
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