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We study the linear stability of plane Poiseuille flow of a Bingham fluid through a
deformable neo-Hookean channel. The analysis reveals the existence of a finite-wave
instability in the creeping-flow limit, which is absent for Newtonian fluid flow in the
same geometry. Indeed, the instability in plane Poiseuille flow of a Bingham fluid closely
resembles the finite-wave instability exhibited by plane Couette flow of a Newtonian fluid
past a deformable solid. The motion of the unyielded region near the channel centerline
effectively results in a Couette-like drag flow of the fluid in the yielded region, albeit with
a parabolic base flow velocity profile. More importantly, the boundary conditions at the
interface between yielded and unyielded zones is found to be crucial for the existence of
the finite-wave instability. This is in stark contrast to Newtonian channel flow where the
conditions at the channel centerline are dictated by the symmetry or antisymmetry of the
velocity perturbations. The continuation of the predicted instability in the creeping-flow
limit is also shown to determine the stability of the flow of a Bingham fluid at higher
Reynolds number. In addition to treating the plug as a rigid solid, we also consider the plug
to be an elastic solid and show that the elastic nature of the plug does not have any effect
on the predicted finite-wave instability. We further argue, using the elastic plug scenario,
that some of the regularized models can introduce model-dependent instabilities which are
specific to the parameters used in the models.
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I. INTRODUCTION

The flow of yield-stress fluids is commonly encountered in the oil industry during drilling and
cementing operations, in food processing industries (e.g., mayonnaise) or health care products (e.g.,
toothpaste), and in polymer industries [1]. These materials show a common characteristic of the
requirement of a minimum shear stress below which they behave like a solid while above they flow
like a fluid [2,3]. Apart from these industrial applications, biological fluids such as blood exhibit
yield-stress-fluid behavior wherein the value of the yield stress depends on its constituents including
red blood cells, white blood cells, and blood platelets [4,5].

To mathematically model the behavior of the yield-stress fluids, Bingham [6] proposed a
one-dimensional model where it was assumed that the material behaves as a rigid body before
yielding and as a Newtonian fluid after yielding. Oldroyd [7] extended the Bingham model to three
dimensions by expressing the model in appropriate tensorial form. The modified Bingham model
of Oldroyd [7] consists of a plug region, which can be treated either as a rigid body or as an elastic
solid, and a yielded region, which is treated as a Newtonian fluid. In the present work we consider
both models for the unyielded region, i.e., rigid as well as elastic, and show that the instabilities
predicted here do not depend on the model employed for the unyielded region. The linear stability
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TABLE I. Summary of the linearization of the interface conditions in the literature for plane Poiseuille
flow of a Newtonian fluid. The second, third, and fourth columns respectively refer to the Taylor expansion
of base-state quantities, direction(s) of Taylor expansion, and instabilities predicted as a consequence of the
linearization of the interface conditions. Here FW, SW, WM, and IM respectively refer to the finite-wave, short-
wave, wall mode, and inviscid mode instabilities. Consistent formulation predicts the existence of short-wave,
wall, and inviscid modes for plane Poiseuille flow of a Newtonian fluid through a neo-Hookean channel.

Work Taylor expanded  Direction of Taylor expansion Instabilities
Gkanis and Kumar [10] fluid and solid normal FW and SW
Gaurav and Shankar [11] fluid normal SW, low-Re, WM, and IM
Patne et al. [12] fluid tangential and normal SW, WM, and IM

of plane Poiseuille flow of a Bingham fluid with a rigid plug was first studied by Frigaard et al. [2].
They predicted that the minimum Reynolds number for linear instability increases almost linearly
with increasing Bingham number. Nouar et al. [8] studied the same problem using the Chebyshev
collocation method and predicted that the plane Poiseuille flow of a Bingham fluid is linearly stable.
The disagreement between Frigaard et al. [2] and Nouar et al. [8] was attributed to the erroneous
numerical method employed by the former to compute the eigenvalues. Thus, while plane Poiseuille
flow of a Newtonian fluid is linearly unstable due to the Tollmien-Schlichting instability [9], it is
linearly stable for Bingham fluid flow in a rigid channel. This scenario in rigid channels points to
the importance of the yield-stress nature of the fluid on the stability of fluid flows.

The linear stability of plane Poiseuille flow of a Newtonian fluid through a deformable neo-
Hookean channel was first studied by Gkanis and Kumar [10] in the creeping-flow limit. Their
study predicted the presence of two types of instabilities, viz., a finite-wave instability for which the
critical wave number k. and critical nondimensional shear rate or moving plate velocity I'. are less
than unity and a short-wave instability characterized by k., I'. > 1. Gaurav and Shankar [11] studied
the same problem and predicted the existence of an instability at low but nonzero Re in addition to
the short-wave instability. However, their study predicted the absence of the finite-wave instability
predicted by Gkanis and Kumar [10]. The disagreement between the predictions of Gaurav and
Shankar [11] and Gkanis and Kumar [10] was ascribed to the inconsistent interface conditions used
by the latter.

Later, Patne et al. [12] demonstrated that a consistent way to derive the interface conditions
is to Taylor expand fluid base-state quantities in both flow and normal directions provided that
the solid and fluid are described in the Lagrangian and Eulerian frameworks, respectively. The
aforementioned Taylor expansion gave rise to a term in normal stress balance at the fluid-solid
interface which resulted in an interaction between the base-state pressure gradient and perturbations.
The effect of the consistent interface conditions so derived on the existing instabilities was analyzed
by Patne and Shankar [13], who showed that the low-Re instability predicted by Gaurav and
Shankar [11] is absent when the consistent formulation is used. Patne and Shankar [13] predicted
three classes of instabilities for plane Poiseuille flow of a Newtonian fluid through a neo-Hookean
channel, viz., short-wave mode dominant for Re < 1 and/or H < 1 and wall and inviscid modes
of instability dominant at high Re with respective scaling laws I' ~ Re™!/* and I' ~Re™!. A
summary of previous theoretical results concerning the stability of the plane Poiseuille flow through
a neo-Hookean channel is shown in Table I. It is worth mentioning that Gkanis and Kumar [10]
studied the plane Poiseuille flow through a neo-Hookean channel in the creeping-flow limit only,
and thus they did not study the wall modes and inviscid modes which appear when Re > 100.

The studies discussed above analyzed the linear stability of plane Poiseuille flow of either a
Bingham fluid past a rigid surface or a Newtonian fluid past a neo-Hookean surface. The effect
of the deformable wall on the stability of the flow of a Bingham fluid was not explored therein.
Furthermore, Bingham fluids are involved in food processing, petroleum, and oil industries, where
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FIG. 1. Schematic of the flow geometry studied in the present work. Here y,R* and HR* are, respectively,
the dimensional plug and solid thicknesses. At y* = R* + HR* and —R* — HR*, the deformable solid is
perfectly bonded to a rigid solid.

manipulation of their instabilities is required to achieve processing goals such as mixing, transport,
and handling. The instabilities exhibited by the flow of blood, a yield-stress fluid, through a blood
vessel (a deformable tube) can also be modeled using the interaction between a Bingham fluid
and deformable wall. The present study is also aimed at answering the question as to whether the
introduction of a deformable wall can destabilize the plane Poiseuille flow of a Bingham fluid which
is linearly stable for flow though a rigid channel [2].

The rest of this paper is organized as follows. In Sec. II we provide the governing equations for
the fluid and solid, and the linearized governing differential equations and interface conditions. The
key results obtained from our analysis are presented and discussed in Sec. III. Section IV analyzes
the effect of considering the elastic nature of the plug on the stability of Bingham fluid flows. The
salient conclusions of the present study are summarized in Sec. V.

II. PROBLEM FORMULATION

Patne et al. [12] demonstrated the utility of the Lagrangian-three-state formulation for inves-
tigating hydrodynamic stability of flows past a neo-Hookean solid; that formulation is used here
to study the flow of a Bingham fluid past a neo-Hookean solid. We consider an incompressible
Bingham fluid of (limiting) viscosity ug and density p* flowing through a channel of height 2R*,
where the asterisk superscript denotes dimensional quantities (see Fig. 1). The channel walls are
lined with a neo-Hookean solid of shear modulus G*, density p*, and thickness HR*. The densities
of the deformable solid and the fluid are assumed to be identical in the interest of simplicity. In
prior experiments [14,15] involving the flow of water through deformable channels fabricated using
polydimethylsiloxane gel, the densities of the fluid and the deformable solid were comparable, and
hence the assumption of equal densities in the fluid and solid is a reasonable one. The upper and
lower deformable walls are assumed to be perfectly bonded to the rigid solid at y* = R* + HR* and
y = —R* — HR*, respectively. The assumption of the rigid wall constraining the deformable walls
is motivated by prior experiments involving Newtonian fluids where typically a polymer gel or an
elastomer forms a deformable annular region between the flowing fluid and rigid solid [14,16].

To obtain the base-state velocity profile in the fluid, we proceed as follows. The continuity
equation is V* - v¥ = 0. The momentum equation in the yielded region is

a *
p*[ a:* +"- V*>V*} ==V Vit )

*

Here v* = (v}, vy, v}) is the velocity field, with v} the velocity component in the i direction, where

i =ux,y,z. Also, p* and t* are, respectively, the dimensional pressure and stress fields in the fluid.
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The gradient operator is V* = & ai* + ?@% + ézs%, where &; is the unit vector in the i direction.
Since the Bingham model assumes the plug region to be a rigid body, the motion of the plug is

governed by the rigid body dynamics. For stress 7%, the Bingham constitutive relation is given by

™ =n*p* fort* > 1, )

y*=0 fort* < 1§, 3)

where n* = pf + ;—“ is the viscosity of the fluid with y* = [y5y7]"/? the second invariant of
the strain rate tensor. Here t* = [r;;-t;]l/ 2 and 7, are, respectively, the second invariant of the

stress tensor and yield stress. In the base state, at y* = R*, the no-slip assumption implies v} = 0,
where an overbar signifies a base-state quantity. At the yielded-fluid—unyielded-fluid interface
O* = yoR*), Eq. (3) implies 4% — 0. In the ensuing discussion, the dimensionless parameter

dy
Yo = 75/, represents the extent of the unyielded-fluid region, with 7, the shear stress at the wall
in the base state. The flow is symmetric about the channel center and the plug region decouples
the two yielded parts of the fluid. It should be noted that even after introducing perturbations, the
assumption of the symmetry and decoupling of two parts remains valid as long as the plug region
exists [2]. This further suggests that the limit of zero yield stress (or yo — 0) is a singular limit, since
there is an abrupt transition in the nature of boundary conditions from yy — 0 to yg = 0. During the
course of the present study, we have explicitly verified that even in the case of stability of Bingham
flow in a rigid channel, the spectra for yo — 0 and yo = 0 will be substantially different due to the
discontinuous change in the boundary conditions. Interestingly, this feature is true even in the case
of Bingham flow in rigid channels, but does not seem to have been explicitly discussed in the earlier
literature [2,3,8,17,18]. Henceforth, we will consider only the upper half of the domain, i.e., y > 0.
By using the above equations and boundary conditions, the steady-state, fully developed base-state
velocity profile is given by

. Vo for 0 <y < yoR*
Ux = * (,V*—_VOR*)2 * <L * (4)
Vo[l—m] foryOR \y<R,
where V" = I;I“ (1 — yo)? is the velocity of the unyielded plug. In the ensuing analysis, it is useful
0
to carry out a coordinate transformation y* = yoR* 4 £*. Thus, the velocity profile for the yielded
zone becomes
D*:VO*I—L. (5)
* (R* — yoR*)?

This expression shows that in order to obtain a familiar parabolic velocity profile similar to that
of the plane Poiseuille flow of a Newtonian fluid, we must use R*(1 — yy) and V", respectively, as
length and velocity scales to nondimensionalize the governing equations. Similarly, pressure and
stresses are nondimensionalized by ugV;'/[R*(1 — yo)]. The dimensionless continuity equation is

V.-v=0. 6)
The dimensionless Cauchy momentum equation for the yielded region is
A
Re §+(V~V)v =-Vp+4+V.r1, (7)

where Re = p*VFR*(1 — yo)/ug is the Reynolds number. The Bingham model introduces one more
dimensionless number, namely, the Bingham number B,
fR*(1 —
B = %_ (8)
moVo

083302-4



STABILITY OF PLANE POISEUILLE FLOW OF A ...

As shown later on, the Bingham number and y are related since both represent a nondimensional
yield stress, and thus any one of these two can be chosen as an independent parameter. In the present
analysis, yp is used as the measure of the yield stress. The constitutive equation in dimensionless
form is

t=npy fort > B, )

y=0 fort < B, (10)

where n = 1 + B/y is the dimensionless viscosity of the fluid.
The base-state velocity profile for the yielded region becomes

U, =1—¢&% (1D

In this transformed coordinate &, the laminar base velocity profile in the yielded region takes the
form of a parabolic profile in the domain 0 < £ < 1. Similarly, the base-state pressure gradient and
the Bingham number in terms of y, are
2yo
1—yo
For the solid, we consider a representative particle with position vector X = (X, Y, Z) in the
undeformed state of the solid. On the undeformed solid, a stress field is induced due to flow driven
by a pressure gradient in the flow direction. Due to the stresses, a deformation field is generated in
the solid. In the deformed state, the representative particle assumes the position vector X = (¥, £, 7).
The position vectors in the current and undeformed configurations are related as X(X) = X + u(X),
where W(X) = (ily, ily, ii;)(X) is the base-state displacement of the representative particle, with
i1;(X) the components of the base-state displacement in the i direction. It should be noted that the
nondimensionalization scheme and y-axis shift for the solid is similar to that employed for the fluid.
The incompressibility condition for the solid is

p(x)=—2x, B= (12)

det (F) = 1, (13)
where F = % is the base-state deformation gradient. The dimensionless governing equations and
the Cauchy stress for a neo-Hookean solid for the steady base state are [12,19,20]

Vx-P=0, (14

G=—pd+—F B, P=F'35
=—pd+F-F', P=F".5 5)

where p, and P are, respectively, the base-state pressure acting on the solid on the deformed
area and the first Piola-Kirchhoff stress tensor in the base state. The dimensionless parameter
I' = woVo/IGR(1 — yp)] can be interpreted as the dimensionless velocity of the plug region. To
obtain the base state for the solid, the above base-state governing equations can be solved by using
the following boundary conditions. Assuming a neo-Hookean solid to be perfectly bonded to a rigid
solid at the dimensionless coordinate £ = 1 + H implies @t = 0, where H = H /(1 — y;). At the
fluid-solid interface the velocity and stress continuities provide the remaining boundary conditions.
We assume that the deformation of the solid is only in the flow direction; this is a reasonable
assumption, considering the experimental conditions [15]. Hence, the base-state quantities for the
solid in terms of the prestressed-state coordinates are

i (&) =T{2y(1 +H — &)+ [(1 + H) —E*1(1 =y}, @,(E) = (§)=0,  (16)

Pe(®) = —2%. (17)

Next we impose infinitesimal two-dimensional perturbations on the above prestressed state. In
general, we can consider three-dimensional perturbations, but as shown by Patne and Shankar [13],
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for a Newtonian fluid flow past a deformable solid, two-dimensional disturbances are more unstable
than the corresponding three-dimensional disturbances. Also, two-dimensional perturbations are
less stable than corresponding three-dimensional perturbations for the plane Poiseuille flow of a
Bingham fluid through a rigid channel [8]. Furthermore, as shown later, the Bingham fluid does
not introduce any new interaction terms between the base-state and perturbed-state quantities in
the solid governing equations or fluid-solid interface conditions in comparison with the Newtonian
fluid, but merely changes the form of the base-state quantities which result in qualitatively different
results. For these reasons, we expect two-dimensional perturbations to be more unstable than corre-
sponding three-dimensional perturbations for the current system and thus assume two-dimensional
perturbations in this study.

After the imposition of perturbations, the position vector of the representative particle is given
by x = (x, £). This is related to the position vector of the particle in the prestressed state by
the relation x(X) = X 4 w'(X, t), where u'(X) = (u, u,)(X) is the Lagrangian displacement of the
particle from its prestressed state with «,(X) and u,,(X), respectively, as the x and y components of the
displacement. The overall deformation gradient is F = F’ - F, where F' = g—; is the perturbed-state
deformation gradient. Thus, the incompressibility condition in the perturbed state is det(F') = 1.
The dimensionless perturbed-state Cauchy stress tensor and the momentum balance equations are

ReZ™ _v..p (18)
e— = Vi P,
ot?
1 T /—1
Gz_ng+FF'F1 P:F '0—’ (19)

where p, = p, + p;’,, with p;, the perturbation in the pressure. The above equations for the fluid and
solid are then linearized about the base state, and normal modes of the form

W, v}, P, 1) = (B, By, p)(E) D, (20)

(W, uy, PE, 1) = (fiy, fiy, fo) (€)™ 1)

are imposed, where k is the wave number in the x or X direction and takes only real values, while
¢ = ¢, + ic; is the complex speed of the perturbations. The base flow is temporally unstable if at
least one eigenvalue satisfies the condition ¢; > 0. The governing equations for the fluid side after
simplification are

ikv, + Do, = 0, (22)
2y0k?
Re[ik(Dy — ) + DU,3y] = —ik(1 — yo)p + (D — K)oy — —2 3, (23)
&(1 —yo)

o - . . 2yo > 2yo N
Re[ik(v, — ¢)0y] = —(1 — yo)Dp + (D* — k*)v, + < D? — D|v,, (24

’ T NEA =) 21—y )7

where D = %. Similarly for a solid, the governing equations are
ikii, + Diiy, = 0, (25)
1
—k*c*Reii, = —ik(1 — yo)* g + FL% + 2Diiy,
2.2 ~ 2 1 2~ ~

—k“c"Reily = —(1 — yo)°Dp, + FL ity — 2Dii,, (26)

where L2 = D? — 55 [yo + E(1 — yo)ID — k? — (‘l”fyg; [yo + &(1 — yo)I — 26T, with D = 4. To
solve these equations, we use following boundary conditions. In the base state, the plug region has

thickness yy and the unperturbed interface is located at & = 0. However, due to the introduction of
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the infinitesimal perturbations, there will be an infinitesimal change in the yielded region and hence
the boundary conditions are to be derived at this new plug—yielded-fluid interface represented as

§=c¢, (27)

where € is the infinitesimal change in the thickness of the yielded region due to the presence of
perturbations. The boundary conditions at the plug—yielded-fluid interface arise because (i) the stress
is undefined in the plug region and from the Bingham fluid constitutive equation p(Vv + v') = 0 and
(i1) the plug region is treated as a rigid body [2,8]. Thus, the boundary conditions at the plug—
yielded-fluid interface are [2,8]

b, =0, v,=0, (28)
Db, = —&D*D,|¢—o, (29)
Db, =0, (30)

where € is the amplitude of the perturbation of the plug—yielded-fluid interface. Considering the
four above boundary conditions along with the interface conditions, the problem may appear
overspecified, but as discussed in the literature [17], the first two boundary conditions (28) are
necessary for solving the eigenvalue problem. The other two boundary conditions are not directly
used in solving the eigenvalue problem; instead, Eq. (29) is used for determining the amplitude of
the perturbed interface (¢) and Eq. (30) is necessary for the regularization of the momentum balance
equations as & — 0 [since the denominator term y (v,) = Db, — Oasé — 0]. At& = 1,1i.e., at the
fluid-soft solid interface, the velocity and stress continuity give

B, = —ikciiy, 31)
B — 20ty = —ikciiy, (32)
1 ik ) o
FDux + T + 2iiy = (1 — yo)Dv, + (1 — yo)ikD,, (33)
(1 —yor2pe + 2 (D= —2*\a, — 23, = —(1 — yo)2p + 200 (34)
—(1— =D - ity — 2, = —(1 — Dy.
Yo) Pg T 1 —y0) 'y Yo) p 'y

For the solid, at £ = 1 + H, i.e., where the deformable and rigid solids are perfectly bonded, the
tangential and perpendicular displacements must vanish, and hence

iy =0, ii,=0. (35)

The fluid governing equations (22)—(24) and the solid governing equations (25)—(27) are solved
along with the boundary conditions (28), (31)—(34), and (35) to find the value of eigenvalue ¢ by
using either the shooting method or the pseudospectral method for fixed values of Re, yy, H, k,
and I'.

Numerical methodology

In the pseudospectral method, we expand the perturbation quantities in terms of the Chebyshev
polynomials as f &)= sz)v a,T,(&), where f (¢),n,N, a,, and T, (§) are, respectively, the pertur-
bation quantity, the index for the Chebyshev polynomials, the highest degree of the polynomial in
the series expansion, the coefficient of the nth polynomial, and the nth Chebyshev polynomial. We
substitute the expansions in the linearized differential equations and require that the differential
equation is exactly satisfied in N collocation points. The locations of the points are given by
&, = cos[ 7 ]. The resulting matrix problem is solved to obtain the eigenvalue c or the eigenfunctions
in terms of the series coefficients a,. The discretized matrices result in the following eigenvalue

083302-7



RAMKARN PATNE AND V. SHANKAR

problem:
c*Ce + cBe + Ae = 0. (36)

Here A, B, and C are the discretized matrices and e is the eigenvector. To solve the above eigenvalue
problem, we use the polyeig MATLAB routine. To remove the physically spurious eigenvalues, the
code is executed for two different values of N (e.g., N and N + 2), and we filter physically genuine
eigenvalues by setting a tolerance for comparison between the two spectra. The tolerance in our
calculations was set to O(107>). The filtered eigenvalues are then given as initial guesses to the
shooting code to validate the genuine nature of the eigenvalue.

To implement the shooting method, we integrate the domain from & = 0O up to the interface for
the fluid and for the solid, from £ = 1 + H up to the interface by using the ode45 MATLAB routine,
and then construct a square matrix of order 4 x 4 by using the interface conditions. The determinant
of the resulting matrix is set to zero to determine the eigenvalue c. We use the result from the spectral
computation as an initial guess for the Newton-Raphson iteration in the shooting procedure. If the
shooting code converges to the eigenvalue after a finite number of iterations (usually 10-20), then
it is regarded as the genuine eigenvalue.

III. RESULTS AND DISCUSSION
A. Results for Re = 0

Earlier work on the stability of plane Poiseuille flow of a Newtonian fluid through a neo-Hookean
channel [13] predicted the presence of the short-wave instability alone for Re < 1. The short-wave
instability is characterized by k. > 2 and I'. > 1 and is purely a consequence of the nonlinear solid
model with a jump in the first normal stress difference across the fluid-solid interface [21]. However,
plane Poiseuille flow of a Newtonian fluid through a neo-Hookean channel does not exhibit a finite-
wave instability in the creeping-flow limit, when the consistent formulation is used for linearized
interface conditions. The eigenmodes for the stability of the plane Poiseuille flow of a Newtonian
fluid through a neo-Hookean channel can be divided into two classes of modes, depending on the
symmetry of ¥y along the channel centerline, as varicose (odd) and sinuous (even) modes [22]. Both
varicose and sinuous modes predict the same critical parameters for the short-wave instability. For
the sake of comparison with Bingham fluid, we use the results for varicose modes.

The first question we address is whether a finite-wave-number instability is present in the
creeping-flow limit for Bingham flow in a deformable channel. In marked contrast to its Newtonian
counterpart, we find that plane Poiseuille Bingham flow in a deformable channel exhibits a finite-
wave-number instability in the creeping-flow limit. For Newtonian fluids, only plane Couette flow
exhibits this instability [13]. The presence of this finite-wave-number instability is demonstrated
through the variation of ¢; with k for the most unstable mode. Figure 2 compares c¢; of the most
unstable eigenvalue for the Newtonian and Bingham fluids and shows the presence of two types of
instabilities for the Bingham fluid. Of these two instabilities, one becomes unstable for k¥ < 1 and
I' < 1 [Fig. 2(a)] and shows characteristics similar to the finite-wave instability predicted for plane
Couette flow past a deformable solid [23], while the other instability occurs for k > 2 and I" > 1,
which are characteristic of the short-wave instability shown in Fig. 2(b).

To ascertain the nature of the instabilities shown by the flow of a Bingham fluid through a neo-
Hookean channel, we plot the neutral stability curves in k-I" parameter space for fixed values of yy
in Fig. 3. These plots show the critical wave number k. and critical dimensionless speed of the plug
I'. < 1, a characteristic of the finite-wave instability. Here I'. and k. are, respectively, the lowest
value of I" at which flow becomes unstable and the wave number corresponding to I', obtained from
neutral stability curves in k-I" space. Since the finite-wave instability is absent in plane Poiseuille
flow of a Newtonian fluid through a neo-Hookean channel [11,24], the presence of the finite-wave
instability is purely a consequence of the yield-stress nature of the fluid.

To understand the mechanism of the finite-wave instability predicted here, it is useful to examine
the Bingham flow in a deformable channel in the limit yo — 0, i.e., in the limit of vanishing
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FIG. 2. Variation of ¢; of the most unstable eigenvalue with k for 7 = 0 and Re = 0. Here y, = 0 defines a
Newtonian fluid (varicose mode). The presence of (a) finite-wave instability for H = 10and I' = 0.5 (k < 1)
and (b) short-wave instability for H = 0.1 and I = 2 (k > 5) is shown for pressure-driven flow of a Bingham
fluid in the creeping-flow limit.

but nonzero ratio of yield stress to shear stress at the wall. For a given yield-stress fluid and
imposed pressure drop, the dimensionless ratio yy can be made much smaller than unity by changing
the channel width. However, within the framework of linear stability analysis, the fluctuations
are infinitesimal, and the neglect of nonlinear terms is not based on a controlled asymptotic
approximation using a physical dimensionless small parameter (such as yg). Thus, it is appropriate
to first take the limit of infinitesimal perturbations and then consider the limit of yy < 1. In this
limit, the thickness of the unyielded layer becomes very small compared to the half-channel height
R*. Yet the boundary conditions at the yielded-unyielded interface imply that the perturbation
velocity fluctuations must go to zero, much akin to the scenario where a hypothetical rigid wall

0.4
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0.36f % ™Yo ‘s
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k

FIG. 3. Neutral stability curve in k-T" space for Re = 0 and H = 10. The figure shows the existence of the
finite-wave instability for the Bingham fluid absent for the Newtonian fluid.
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FIG. 4. (a) Reduction of the Bingham fluid problem to the plane Poiseuille flow with fictitious boundary
conditions ¥, = ¥, = 0 at the channel centerline as y, — 0. (b) Plane Poiseuille flow of a Newtonian fluid
through a channel with both deformable walls with boundary conditions for varicose and sinuous modes at
the channel centerline for y, = 0. (c) Plane Poiseuille flow of a Newtonian fluid with a deformable wall with
no-slip and no-penetration boundary conditions at the upper plate.

is present at y = 0, schematically shown in Fig. 4(a). Thus, in the limit yy — 0, the present problem
reduces to plane Poiseuille flow of a Newtonian fluid through a neo-Hookean channel with fictitious
boundary conditions ¥, = ¥, = 0 at the center of channel. We carry out the stability analysis for a
pressure-driven flow of Newtonian fluid in a channel, but with fictitious no-slip boundary conditions
at the channel centerline with vy =0 and v, = 0. With these boundary conditions, we find that
even the Newtonian flow is unstable in a neo-Hookean channel (Fig. 5), thus demonstrating the
crucial role played by the boundary conditions. However, in the case of a true Newtonian flow in a
channel [Fig. 4(b)], only conditions based on the symmetry or antisymmetry of the eigenfunctions
are valid boundary conditions at the channel centerline. For a Bingham fluid, the no-slip conditions
at the interface between yielded and unyielded regions emerge naturally. It should be noted that for
arbitrary yo, plane Poiseuille flow of a Bingham fluid does not reduce to plane Poiseuille flow
of a Newtonian fluid with one deformable wall and another rigid wall as schematically shown
in Fig. 4(c). This is because for plane Poiseuille flow of Bingham fluid boundary conditions,
Uy = Uy, = 0 are considered at the plug—yielded-fluid interface, which corresponds to the channel
centerline as yo — 0, while for plane Poiseuille flow of a Newtonian fluid with one deformable
wall, the boundary conditions ¥, = %, = 0 are considered at the upper plate.

To further illustrate the importance of the boundary conditions, we consider plane Poiseuille flow
of a Bingham fluid through a rigid channel with fictitious boundary conditions ¥, = ¥, = 0 at the
center of channel. It is well known that plane Poiseuille flow of a Newtonian fluid exhibits Tollmien-
Schlichting instability with a critical Reynolds number of 5772 which is also a sinuous mode of
instability. The limiting case of Bingham fluid flow in a rigid channel with yo — 0 is equivalent to a
Newtonian flow in a rigid channel, but with no-slip conditions at the channel centerline. During the
course of this study, we have found the latter to be linearly stable, unlike the true Newtonian channel
flow, which is linearly unstable. Thus, the limit of vanishing yield stress is a singular limit, and it
is not possible for the stability results to smoothly cross over from small values of yy to yo = 0.
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FIG. 5. Variation of ¢; with k of the most unstable mode at Re = 0, I' = 0.5, and H = 10. In the limit of
yo — 0, the finite-wave instability predicted here approaches the results for stability of plane Poiseuille flow
of a Newtonian fluid with fictitious no-slip boundary conditions ¥, = 0 and ¥, = O at the channel centerline.

This observation, however, does not seem to have been made explicitly in prior literature on the
stability of Bingham flow through rigid channels. The above discussion shows that the finite-wave
instability exhibited by the plane Poiseuille flow of a Bingham fluid through a neo-Hookean channel
is a consequence of the boundary conditions at the center of channel which arise naturally because
of the interface between yielded and unyielded regions [2].

Experiments carried out for plane Couette flow of a Newtonian fluid past a deformable
surface at low Re by Kumaran and Muralikrishnan [25] observed the presence of the finite-wave
instability, in agreement with the theoretical predictions of Kumaran et al. [23]. Thus, it can be
conjectured that the finite-wave instability predicted above for plane Poiseuille flow of Bingham
fluids should also be observed experimentally. Furthermore, the experimental results of Kumaran
and Muralikrishnan [25] were compared with theoretical predictions in the H-I", parametric space.
Hence, we plot the variation of I'. and k. with H for three representative values of yy. Figure 6
shows that the short-wave instability vanishes for sufficiently high values of yy and an increase
in yo has a stabilizing effect on the finite-wave instability. The trend exhibited by the finite-wave
instability can be explained with the aid of a simple scaling argument, which is based on earlier
results for (Newtonian) plane Couette flow past a deformable solid. These studies have shown that
the finite-wave instability occurs in a Newtonian fluid when the viscous stresses in the fluid are
comparable to the elastic stresses in the deformable solid of a given thickness H:

moVo moVo
R(1 —yp) R(1 — yo)

Furthermore, for a fixed value of y, and sufficiently high values of H, the above relation modifies to

=T ~ o). (37)

N yielded-fluid thickness [~ % (38)

solid thickness

This simple scaling argument explains the behavior exhibited in Fig. 6 for H > 1.

Figure 6 shows that the effect of an increase in yy on the short-wave instability is initially
destabilizing, but a further increase in y, has a stabilizing effect. Also, experimentally, the pressure
gradient is usually increased to probe the transition of the flow and in the present case from Eq. (17)
the pressure gradient and y are related. Thus, in Fig. 7(a) we plot the variation of I'. and k. with yy
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FIG. 6. Variation of I', and k. with H for Re = 0. The finite-wave and short-wave instabilities are the
critical modes of instability in H > 1 and H < 1 regions, respectively.

and find that the instability vanishes, for a fixed H, as yo — 1. The data of Fig. 7(a) are then used to
obtain Fig. 7(b), where we observe a collapse of the data for high values of H. The collapse of the
data shown in Fig. 7(b) also affirms the scaling I'. ~ 1/H for the finite-wave instability predicted
here.

The stabilization predicted above for high values of yj can be explained as follows. In the present
analysis, the dimensional solid thickness HR is scaled with the thickness of the yielded fluid, viz.,
R(1 — o). This yields H = H /(1 — yo), and for a fixed H, H — 0 as yo — 1, implying that the
solid thickness is effectively decreasing in this limit. This leads to the stabilizing behavior exhibited
in Fig. 7(a) as yo — 1. However, if A is fixed, thenas yg — 1, H > 1,and T ~ 1/H ~ (1 — y;) as
shown in Fig. 8. Thus, the results in the limit of H >> 1 or yo — 1 are consistent with the proposed
scaling argument.

Figure 9 shows the nonvanishing characteristic of the fluid eigenfunctions at y = 1, i.e., where
the fluid—deformable-solid interface is present. It must be noted that for plane Poiseuille flow of a

10
1 " @
10 . B
i S ' 4
[_'o :::-g ................ ei------ o-°
10° —H=0.1
---H=5
H=10
J S
10" L L L L =
10 ‘ ‘ ‘ ‘
0 0.2 0.4 0.6 0.8 1 0 02 oa o5 o8 y
Yo Yo
() (b)

FIG. 7. (a) Variation of I'. with yy. (b) Collapse of the data for H = 10 and 15 shows the existence of the
scaling I'. ~ 1/H for the finite-wave instability (I'".H vs yj).
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Bingham fluid past a rigid surface, the disturbances must vanish at y = 1. Thus, the nonvanishing
characteristic shown in Fig. 9 is solely due to the presence of the deformable surface which leads to
the exchange of the energy between the fluid and solid at the interface. This energy exchange occurs
due to the interface conditions (31)—(34) which give rise to the instabilities predicted here.

B. Results for Re > 0

For Re < 1 and H less than unity and/or for the values of yg for which finite-wave instability
does not exist, the short-wave mode is the critical mode of instability. Figure 10 shows the variation
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FIG. 9. Eigenfunction plots for the streamwise and normal components of the velocity for the neutrally
stable eigenvalue ¢ = 0.950 578 obtained at Re = 0, H = 15, yo = 0.01, k = 0.0835, and I" = 0.17141.
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FIG. 10. Variation of I'. with Re at H = 0.1 for the short-wave mode. Increasing Re has a destabilizing
effect on the short-wave instability.

of I'. with Re at H = 0.1 and shows the destabilizing effect of inertia on the short-wave mode.
Additionally, from Fig. 10 we find that the increase in yy has an initial destabilizing effect, while
a further increase in yy has a stabilizing effect, in agreement with the conclusions of Fig. 7(a).
Furthermore, the destabilizing effect of inertia increases with increasing yy. As shown later, for
Re > 1, other modes of the instability such as inviscid or wall modes dominate the short-wave
mode. Furthermore, for Re > 10, as k increases beyond 5, the number of collocation points required
to accurately resolve the spectra increases; hence it is numerically difficult to track the short-wave
mode at high Re. For this reason, we provide critical parameters for the short-wave mode for
Re < 10.

From the preceding discussion we can conclude that the finite-wave or short-wave instabilities
dominate the stability behavior for Re < 1 depending on the values of yy and H. For plane
Poiseuille flow of a Newtonian fluid through a neo-Hookean channel, for Re > 1, new modes of
instability appear which can be classified into downstream (¢, > 0) and upstream (¢, < 0) traveling
modes [13]. The upstream and downstream modes become, respectively, wall and inviscid modes
when continued to high Re [13]. Figures 11(a) and 11(b) show the destabilization of the upstream
modes for yo = 0.01 and yy = 0.5, respectively, with increasing I'. With an increase in Re, new
downstream modes are destabilized as shown in Fig. 12. In analogy with the Newtonian fluid [13],
we anticipate that the mode may evolve into wall and inviscid modes at high Re depending on
the sign of c,. This expectation stems from the fact that at high Re the stability of the system is
dominated by the inertial forces and viscous forces play a minor role.

In the preceding discussion we classified the instabilities and demonstrated the destabilization of
downstream and upstream modes due to inertia. However, from an experimental point of view, it
is the critical mode of the instability, i.e., the mode with minimum I, that is important. We next
determine the critical parameters for the finite-wave, downstream, and upstream modes and compare
them to obtain the most unstable mode to suggest the form of the instability that can be observed
experimentally.

Figure 13(a) shows the variation of the critical parameters with Re for yy = 0.01 for the finite-
wave mode. For Re > 10, I, for the finite-wave mode decreases as I, ~ Re™! while k. approaches
a constant value. The modes which show characteristic scaling I'. ~ Re™! are classified as inviscid
modes. For inviscid modes, inertial forces in the fluid and elastic forces in the solid balance each
other, and thus pV? ~ G, which yields the scaling I' ~ Re™!. In Fig. 12 we observed that with
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FIG. 11. Spectra showing the existence of upstream modes for Bingham fluid at (a) yo = 0.01 and (b) yo =
0.5. The other parameters utilized are Re = 50, k = 0.5, and H = 5.

an increase in inertia, new downstream modes are destabilized, which hinted at the possibility of
these modes being inviscid modes in analogy with the Newtonian fluid results. Figure 13(a) shows
the most unstable downstream mode (other than the finite-wave mode) tracked at high Re and on
expected lines, I'. for that mode decreases as I'. ~ Re™!, thereby showing that the downstream
modes are inviscid modes.

Apart from inviscid modes, plane Poiseuille flow of a Newtonian fluid through a neo-Hookean
channel exhibits another class of unstable modes. These modes originate from the fluid-solid
interface due to the shear work done by the fluid on the solid and show characteristic scaling
I'. ~Re™!/3 at high Re. These modes are called wall modes in the literature [11,13] and form
a characteristic wall layer near the fluid-solid interface where viscous and elastic forces balance
each other. The upstream modes predicted in Figs. 11(a) and 11(b) are classified on the basis of I",
required to destabilize the mode. Thus, the first and the second wall mode respectively refer to the
upstream modes with the lowest I'. and second lowest I'.. Figure 13(b) tracks the first two most
unstable upstream modes for yo = 0.01 to high Re and shows that the modes show a characteristic
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FIG. 12. Spectra showing the destabilization of downstream modes for Bingham fluid at y, = 0.01, Re =
50,k =1,and H =5.
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scaling I'. ~ Re™!/?

wall mode.

To ascertain the inviscid or wall mode nature of the eigenmodes, we plot the streamwise and
normal components of the velocity eigenfunctions for the most unstable inviscid and wall modes at
neutral stability points (i.e., ¢; & 0) in Figs. 14 and 15. From Fig. 14 we see that the structure of
the eigenfunctions for the inviscid mode is similar to that of a Newtonian fluid flow through a neo-
Hookean channel [13]. The invariance in the structure of the eigenfunctions for the inviscid modes
with change in the fluid is suggestive of the relatively minor role played by viscosity at high Re,
since Bingham and Newtonian fluids differ in terms of the viscosity alone. Similar eigenfunctions
for the streamwise and normal components of the velocity for the most unstable wall mode at the
critical conditions are shown in Fig. 15. Unlike the inviscid mode, the wall mode eigenfunctions

at high Re. Thus, the upstream modes destabilized due to inertia are a type of
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FIG. 14. Eigenfunction plots for the streamwise and normal components of the velocity for the neu-
trally stable eigenvalue ¢ ~ 0.953 744 + 0i obtained at Re = 1000, H =5, yo = 0.01, k =1.392, and ' =
0.000963 5.
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FIG. 15. Eigenfunction plots for the streamwise and normal components of the velocity for the eigenvalue
¢ ~ —0.201 800 + 0i obtained at Re = 1000, H = 5, yo = 0.01, k = 0.494, and I' = 0.087 67. The maximum
variation of the eigenfunctions near the deformable wall indicates the wall mode nature of the upstream mode.

show maximum variation near the deformable wall. This characteristic of maximum variation near
the wall could be attributed to the formation of a viscous layer near the wall where viscous and
elastic forces are comparable, which leads to the wall mode instability [26-29].

From Fig. 7(a) we observed that for H = 5, the finite-wave mode is stable for yo > 0.25, and
thus the short-wave mode becomes the critical mode of instability. However, as shown in Fig. 16,
the short-wave mode is not the critical mode of instability for Re > 5, because the downstream
and upstream modes destabilized due to the inertia govern the stability of the system. Thus, for
5 < Re < 25 the first wall mode is the critical mode of instability, while for Re > 25 the inviscid
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FIG. 16. Variation of critical parameters (I'. and k.) with Re at H =5 and yy = 0.5 for inviscid and

wall modes. The inviscid and wall modes are, respectively, the critical modes of instability for Re < 10 and
Re > 10.
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FIG. 17. Variation of I'. with Re at H = 15 for (a) finite-wave and (b) first wall modes. The finite-wave
mode is the most unstable inviscid mode while first wall mode is the most unstable wall mode.

mode governs the stability of the system. To conclude, in the absence of the finite-wave instability,
short-wave, wall mode, and inviscid modes of the instability determine the stability of the system in
various ranges of Re, depending on the values of H and y.

In order to understand the change in the above stability picture with a change in the solid
thickness, a similar analysis of the instabilities is carried out for H = 15 in Figs. 17(a) and 17(b).
Figure 17(a) shows the variation in ', with Re for the finite-wave mode for three values of y, since
this is the most unstable downstream mode. We observe that at low Re, the curves for different plug
thickness yg are separate provided yy is sufficiently high, but with an increase in Re the individual
curves merge and show characteristic scaling of the inviscid modes. The merging of the curves
observed at high Re is due to the dominance of the inertial forces over the viscous forces, thereby
decreasing the influence of the viscosity variation with yy.

Similarly, Fig. 17(b) shows the variation of I, with Re for the first wall mode. Unlike finite-wave
or downstream modes, the wall modes for different values of yy do not collapse on a single curve at
sufficiently high Re. Rather, an increase in y, has a strong destabilizing effect on the wall modes, in
contrast to inviscid modes. The lack of collapse of the curves for wall modes is due to the relatively
high value of T, required for the destabilization of wall modes, which can be explained as follows.
The interaction terms between the base state and perturbed state introduced by the neo-Hookean
model are proportional to the powers of I', and with a change in yy, the solid base state changes
[refer to Eq. (16)]. For an inviscid mode, a very low value of I'. undermines the effect of these
interaction terms and inertia dominates the stability behavior. However, for the wall modes these
interaction terms are sufficiently large to make a difference due to relatively high I'.. Hence, the
curves for the inviscid mode at different y, collapse, while the curves for wall modes do not. In
other words, even at high Re, for wall modes the influence of the viscosity remains large enough to
affect their behavior.

Origin of the finite-wave mode

In Sec. III B we observed that if the finite-wave instability exists for a given yo and H in the
creeping-flow limit, then it always continues to an inviscid mode at high Re. This gives rise to two
possibilities at high Re: (i) A new mode originates due to fluid-deformable wall coupling and is
destabilized due to the shear work done by the fluid at the fluid-solid interface and (ii) a mode that
is already present in the spectra for the Bingham flow through a rigid channel is destabilized due to
the introduction of the deformable solid.
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FIG. 18. Spectra at Re = 104, k=1, H =25, and yo = 0.01 showing the destabilization of the inviscid
modes of the Bingham fluid which manifests as finite-wave instability. (a) Destabilization of a downstream
fluid-solid coupled mode which gives rise to the finite-wave mode with an increase in I'. The eigenvalues
are shown for 1075 < T' < 10~ such that for each step I increases in steps of 1075, At I' = 10> the mode
is stable (blue dot at ¢ ~ 2.75 — 0.0017i); it moves towards the ¢; = 0 line with increasing I and becomes
unstable at I' = 10~*. (b) The invariable nature of the rigid spectra is shown with respect to variation in the
deformability of the wall.

To determine the origin of the instability, in Fig. 18(a) we track the finite-wave mode by
increasing I in steps of 107> and observe that the finite-wave mode originates from the fluid-solid
coupled spectra and is not related to the spectrum of Bingham fluid in a rigid channel. To affirm
the origin of the finite-wave mode and to understand the effect of deformability on the fluid spectra
(present in a rigid channel), we plot [Fig. 18(b)] the variation of the fluid spectra with I". The
invariance of the fluid spectra with change in I" shows that the deformability of the channel wall does
not have any effect on the fluid modes and the unstable modes are due to the coupling present in the
system, thereby showing that the fluid-deformable wall coupling is responsible for the instabilities
predicted in the present work.

C. Estimation for experiments

In this section we provide estimates for parameters wherein the instabilities can be observed
in experiments using Carbopol solutions. For practical applications, where the properties of the
fluid and deformable wall are specified, the above analysis is not directly applicable since both Re
and I' are dependent on the velocity. Thus, we define a flow-independent parameter ¥ = Re/I" =
p*G*R**(1 — yo)*/&? and plot the variation of critical Re with X as shown in Figs. 19(a) and 19(b),
respectively, for yp = 0.01,0.5and H = 5.

It is well known that the solutions of Carbopol in water exhibit yield stress [30-32]. To proceed
further, we use the data for 0.6 wt.% Carbopol in water from Dinkgreve et al. [32]. In the earlier
experiments on flow through a deformable channel, the channel half-height was of O(10?) pm, the
shear modulus of the deformable channel was of O(10*) Pa, and the density p* ~ 103 kg/m? [15].
For the fluid, the density of Carbopol solution p* ~ 10 kg/m?, the limiting viscosity range is my ~
0.1-10? Pas, and the yield stress is O(10) Pa [32].

For these parameter values, ¥ varies in the range 10(1 — yo)>*~10*(1 — yo)? corresponding to
the range of the limiting viscosity. To estimate yy = 7} /7,; for rj ~ 10 Pa the driving pressure
gradient may vary, which determines t,, (which is proportional to applied pressure gradient), thereby
determining y,. For yo = 0.01, ¥ ~ 10-10*, which corresponds to a critical Reynolds number
4-115 from Fig. 19(a). Similarly, for yo = 0.5, £ ~ 2.5-2500, which corresponds to a critical
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Reynolds number of 3-75 from Fig. 19(b). The low Re at which instability is predicted to occur
in a Bingham fluid makes future experimental investigations plausible.

IV. STABILITY OF THE PLANE POISEUILLE FLOW OF A BINGHAM FLUID
WITH AN ELASTIC PLUG

The Bingham fluid model used thus far assumes a rigid plug before yielding and a Newtonian
fluid after yielding as proposed originally by Bingham [6]. It is more realistic to treat the plug as
an elastic solid before yielding. The elastic nature of the plug was identified and modeled for the
first time by Oldroyd [7] by using a linear viscoelastic model for the plug. Thus, in this section we
study the linear stability of the plane Poiseuille flow of a Bingham fluid through a rigid channel.
The schematic of the geometry is the same as the one shown in Fig. 1, but with rigid walls instead
of deformable walls.

Although Oldroyd [7] modeled the plug by using a linear elastic model, here we model the elastic
plug using the purely elastic neo-Hookean model. The use of the neo-Hookean model is due to the
availability of a consistent Eulerian formulation in the literature [13]. The Eulerian formulation is
preferred for the elastic plug since the translational motion of the plug can be easily factored out
in the formulation if we have an Eulerian frame of reference. Thus, we can concentrate only on the
deformation in the solid which is of interest in the present work. The Bingham model with Oldroyd’s
correction, by using the nondimensionalization scheme outlined in Sec. II, in dimensionless form is

1

T=—p I+ F—(fT -£)"! fort < B, (39)
P

t=ny fort>B, (40)

where the subscript p signifies quantities defined for the plug region. The quantity f = % is the
deformation gradient in the Eulerian frame of reference, with X and x the coordinates of a particle
in the undeformed and current state, respectively. In Eq. (39), p,, is the pressure field in the plug
region and I', = uoVp/G,R is the dimensionless plug velocity with G, as the shear modulus of
the plug. Thus, the plane Poiseuille flow of a Bingham fluid past a rigid surface is comprised of a
coupled system with a yielded fluid and an elastic plug. In the following discussion we show that
the consideration of an elastic plug instead of a rigid plug does not give rise to any new instability.
This is accomplished by using the interface conditions between the yielded and unyielded regions.
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We assume a representative particle in the undeformed state of the solid with position vector
X = (X,Y, Z), and after deformation its position vector becomes X = (x, y, 7). The position vectors
of the particle in the two states are related by the relation

Xx) =x —ux), (41)

where u(x) is the Eulerian displacement of the particle and it is specified by the motion describing
the deformation. For the base state u(x) = u(x), while for the perturbed state u(x) = u’(x).

As shown later, to understand the effect of consideration of an elastic plug, the exact form of the
base state is not necessary. Two-dimensional infinitesimal perturbations are imposed on an arbitrary
base state described as v, = v,(y), it, = (), and a constant pressure gradient in the x direction,
dp/dx = dp,/dx. The infinitesimal perturbations are then assumed to take the normal modes of the
form

(.l P, 1) = (i, By, ) (). (42)

The plug-fluid interface is present at y = yy; thus the base-state quantities required in the interface
conditions need to be derived at the same location. The linearized interface conditions are

by = —ikcily, (43)

Ux + (DVx)|ymyylly = —ikelity + (Dity)ly=y, ity], (44)
Ty = —ik(Dity)* [y, iy + Gy, (45)

=P+ Ty = —Pg+ Gy, (46)

where D =d/dy and (.)|,—,, implies that the enclosed quantity should be evaluated at y = yo.
However, for a Bingham fluid (see Sec. II), (Dv)|,=y,, = 0, and from interface conditions in the
base state (Diiy)|y—y, = 0. Thus, the above linearized interface conditions simplify to

¥, = —ikcily, (47)
b, = —ikciiy, (48)

&) = 6y (49)

—P+ &) = =Py + 6y (50)

An examination of these equations shows the absence of any term involving an interaction between
the base state and perturbation quantities. The absence of these interaction terms precludes the
coupling between the fluid and plug terms at the interface. It should be noted that the shear work
done by the fluid at the fluid—deformable-solid interface causes the energy transfer from fluid to the
deformable solid due to the fluid-solid coupling present at the interface and the energy so transferred
is then returned to the fluid in a form that destabilizes the flow [25]. The same coupling [particularly
the second term on the left-hand side of Eq. (44)] was the reason why Kumaran [33] predicted
the finite-wave instability for the viscous plane Couette flow past a deformable solid. However, the
absence of the coupling terms in the interface conditions obtained rules out any energy exchange
mechanism thereby stabilizing the system. Thus, the plug and yielded regions are decoupled for
the Bingham model with Oldroyd’s correction. From the standpoint of linear stability analysis, this
means that the stability of fluid flow in the yielded region is unaffected by the elastic nature of the
plug.

For computational ease, regularized models, such as the Papanastasiou model [34], have been
developed for which the yielded-fluid—plug-region interface does not have a discontinuity in the
stress, unlike an ideal yield-stress fluid. The continuity introduced by the regularized models,

083302-21



RAMKARN PATNE AND V. SHANKAR

however, gives rise to a nonzero velocity gradient at the yielded-fluid—plug-region interface (y = yy),
depending on the parameters considered. Thus, if the parameter values are such that the velocity gra-
dient is sufficiently high, then it may introduce a coupling between the base state and perturbations to
result in an instability. A similar prediction regarding the parameter-dependent instability was made
by Frigaard and Nouar [18] by carrying out a detailed linear stability calculation. They examined
various viscosity regularization models for the Bingham fluid for predicting the hydrodynamic
instabilities. The study of Frigaard and Nouar [18] concluded that the stability characteristics of
the flow are incorrectly predicted by the use of viscosity regularization method models since the
predicted instabilities are dependent on the parameters used in the models. In the present work, we
reach the same conclusion, but using very general arguments.

V. CONCLUSION

In the present work we have analyzed the linear stability of plane Poiseuille flow of a Bingham
fluid through a neo-Hookean channel. The analysis predicts the existence of the finite-wave
instability in the creeping-flow limit that is absent for the plane Poiseuille flow of a Newtonian
fluid through a neo-Hookean channel. The limiting case of a Bingham fluid with yy — 0 shows
that the finite-wave instability is due to the presence of the no-slip boundary conditions at the
plug—yielded-fluid interface. Since the existence of the plug region is characteristic of the fluid
model itself, it could be speculated that a similar finite-wave instability would be present for
Bingham fluid flow through a neo-Hookean tube or past a neo-Hookean solid down an inclined
plane.

The existence of the finite-wave mode is a function of yy and H such that an increase in yy
and a decrease in H have a stabilizing effect. Additionally, we predicted the existence of a short-
wave instability similar to Newtonian fluid flow past a deformable surface leading to the conclusion
that the short-wave instability is an inherent feature of the neo-Hookean model as the instability
originates from the jump in the first normal stress difference at the fluid-solid interface. Furthermore,
at fixed H, an initial increase in yy has a destabilizing effect on the finite-wave mode, but higher
values of yj have a stabilizing effect. The stabilizing effect on the instabilities with an increase in yy
is due to the decrease in the effective thickness of the deformable solid.

For Re < 1, the stability picture remains similar to the creeping-flow limit, but a further increase
in Re gives rise to the destabilization of additional downstream and upstream modes. We computed
the critical parameters for these unstable modes at increasing Re and found that the downstream
and upstream modes belong to the class of inviscid and wall modes, respectively. At high Re, the
continuation of the finite-wave mode shows scaling similar to an inviscid mode and has the lowest I,
among all inviscid modes, thereby becoming the most unstable inviscid mode. Furthermore, among
all the inviscid and wall modes, if the continuation of the finite-wave mode to higher Re exists for a
given value of H and yy, then it is always the critical mode, i.e., the mode with the lowest I'... In the
absence of the finite-wave mode the short-wave, wall, and inviscid modes can be critical modes of
the instability depending on yg, Re, and H.

To study the effect of an elastic plug on the instabilities, we used the Bingham model with
Oldroyd’s correction. The analysis reveals that the dynamics of the plug and yielded regions is
decoupled due to the vanishing of the velocity gradient at the plug—yielded-fluid interface for an
ideal Bingham fluid. The regularized models, such as the Papanastasiou model, have nonzero values
of the velocity gradient, which can give rise to spurious instabilities as these are dependent on the
parameter values taken at the plug—yielded-fluid interface.

To summarize, the instabilities exhibited by plane Poiseuille flow of a Bingham fluid through
a neo-Hookean channel are qualitatively different from those exhibited by a Newtonian fluid.
Interestingly, the scenario in a deformable channel is just the opposite of what happens for
Newtonian and Bingham flows in a rigid channel. For flow in a rigid channel, Newtonian flows
are unstable but Bingham flows are stable, while the present study has shown that, for Re « 1,
Newtonian flow in a deformable channel is stable to finite-wavelength disturbances, but pressure-
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driven flows of Bingham fluids are unstable. For biological fluid flows or flows of complex fluids
with yield stress, the non-Newtonian character of the fluid must therefore be taken into consideration
to understand the development of disturbances. The present study also provides estimates for
parameter regimes under which the predicted instabilities can be realized in experiments.
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