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This paper investigates the scaling of turbulent kinetic energy (TKE) and temperature
variance production in a differentially heated vertical channel (DHVC). In a DHVC, TKE
is produced by two distinctively different mechanisms: buoyancy production and shear
production. In the present work, identity equations are derived for the global integrals of
shear-produced TKE and temperature variance production. The derived identity equations
agree well direct numerical simulation (DNS) data. At sufficiently high Rayleigh number
the global integral of the shear-produced TKE is found, based on the DNS data, to scale
as

∫ δ

0 Rwu
dU
dz dz ≈ 0.385uτU 2

max. Here z is the wall-normal direction, δ is the channel
half-width, U is the mean streamwise velocity in the x direction, Umax is the maximum
mean streamwise velocity, and uτ is the friction velocity. Rwu = −〈wu〉 is the Reynolds
shear stress, where w is the velocity fluctuation in the z direction, u is the velocity
fluctuation in the x direction, and angle brackets 〈 〉 denote averaging operation. The global
integral of the buoyancy-produced TKE at sufficiently high Grashof number is found to
scale as

∫ δ

0 gαRuθ dz ≈ u2
τUmax where g is the gravitational acceleration, α is the thermal

expansion coefficient, and Ruθ = −〈uθ〉 is the covariance of the streamwise velocity
fluctuation u and the temperature fluctuation θ . The global integrals of temperature
variance production and temperature dissipation εθ are found to grow with the Grashof
number in a logarithmic-like fashion as

∫ δ

0 Rwθ
d�

dz dz = ∫ δ

0 ε
θ

dz ≈ [0.5ln(Gr) − 1.8]uτ θ
2
τ

where � is the mean transformed temperature, Rwθ = −〈wθ〉 is the wall-normal turbulent
transport of heat, θτ is the friction temperature, and Gr is the Grashof number. Based on
the characteristics of the flux Richardson number, a four-layer structure is proposed for
the TKE budget equation in a DHVC.

DOI: 10.1103/PhysRevFluids.4.081501

I. INTRODUCTION

In pressure-driven turbulent flow through a pipe or channel, or shear-driven turbulent flow over
a flat plate, the turbulent kinetic energy (TKE) is produced by Reynolds shear stress times the mean
shear, commonly called shear production [1]. In the turbulent natural convection confined within a
horizontal channel, i.e., turbulent Rayleigh-Bénard convection, TKE is produced by buoyancy only,
since the mean shear is zero. For turbulent flow in a differentially heated vertical channel (DHVC),
both buoyancy production and shear production contribute to TKE generation. Hence, DHVC is an
interesting case to study the two mechanisms of TKE generation.

Given the difficulties in experimentally studying TKE production in a DHVC, an ideal tool
is numerical simulation and, in particular, direct numerical simulation (DNS). There have been a
number of excellent DNS studies of DHVC, for example, by Versteegh [2], Kiš [3], and Ng [4].
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FIG. 1. Sketch of a differentially heated vertical channel (DHVC). �
def= Thot − T is the mean transformed

temperature. Under ideal conditions, the mean flow is antisymmetric about the channel center line.

Using DNS data, Versteegh and Nieuwstadt [5] investigated the TKE budget in a DHVC. They
interpreted the budgets in terms of physical processes and found that the shear production is negative
in a near-wall region. They also compared the turbulence budgets with the first linear instability
mode. The turbulence transport equations, including Reynolds stresses and heat fluxes, were also
comprehensively investigated by Kiš and Herwig [6] using DNS data. The budget equation was
further studied by Ng et al. [7].

Applying the Grossmann-Lohse (GL) theory, Ng et al. [8] divided a DHVC into two regions:
a boundary layer and a bulk region. Different scaling for the kinetic and thermal dissipations are
developed for the two regions [8].

Despite decades of research, however, the underlying physics of the turbulent flow and heat
transfer in a DHVC is still not well understood. A better understanding of TKE and temperature
variance production will contribute to the development of turbulence models for momentum and
heat transfer. Proper scaling is crucial in the understanding of a turbulent flow and heat transfer
[9]. The major motivation of the present work is to identify the scaling properties of the TKE and
temperature variance productions.

The rest of the paper is organized as follows. In Sec. II identity equations are derived for the
global integrals of shear-produced TKE and temperature variance production. The global integral
equations are then compared with DNS data. In Sec. III scaling for the buoyancy-produced TKE
is determined. Based on the characteristics of buoyancy and shear production of TKE, a four-layer
structure is proposed for a DHVC. Section IV summarizes the work.

II. IDENTITY EQUATIONS FOR SHEAR-PRODUCED TKE AND TEMPERATURE
VARIANCE PRODUCTION

As illustrated in Fig. 1, natural convection within a DHVC occurs between two vertical walls
infinite in the x and y directions. Gravity is in the vertical direction, pointing downwards. The
wall-normal z direction originates at the left wall, which is kept at a constant temperature Thot,
hotter than the right wall temperature Tcold. The temperature difference between the two walls is
denoted as �T = Thot − Tcold. Under ideal conditions, the fluid viscosity ν, thermal diffusivity k,
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and thermal expansion coefficient α are assumed to be constant. The Boussinesq approximation is
employed to relate buoyancy force to the temperature variation.

In the present work, a tilde denotes the instantaneous flow variable, an upper case letter denotes
the mean flow variable, and a lower case letter denotes the fluctuation [1]. For example, in ũ = U +
u, ũ is the instantaneous velocity in the x direction, U is its mean, and u is its fluctuation. In t̃ = T +
t , t̃ is the instantaneous temperature, T is the mean temperature, and t is the temperature fluctuation.

The no-slip boundary condition dictates Uz=0 = 0 and Tz=0 = Thot. To formally match the no-slip

velocity boundary condition, a transformed temperature is introduced as θ̃
def= Thot − t̃ [10]. The

mean transformed temperature is �
def= Thot − T , and the transformed temperature fluctuation is θ =

−t . The no-slip thermal boundary condition using the transformed mean temperature is �z=0 = 0.
Readers are referred to Versteegh [2] and Wei [10] for details on the derivation of the governing

equations. The mean momentum balance (MMB) equation in the x direction and the mean thermal
energy balance (MHB) equation are

0 = ν
d2U

dz2
+ dRwu

dz
+ gα(�ctr − �), MMB, (1a)

0 = k
d2�

dz2
+ dRwθ

dz
, MHB, (1b)

where Rwu = −〈wu〉 is the wall-normal turbulent transport of streamwise momentum, commonly
called kinematic Reynolds shear stress. Rwθ = −〈wθ〉 is the wall-normal turbulent transport of heat.
Angle brackets 〈 〉 denote Reynolds averaging. �ctr = 0.5�T is the mean transformed temperature
at the channel center line.

The total shear stress and total heat flux can be obtained by integrating the MMB Eq. (1a) and
the MHB Eq. (1b) along the wall-normal direction and applying boundary conditions as

ν
dU

dz
+ Rwu = u2

τ − gα
∫ z

0
(�ctr − �) dz, (2a)

k
d�

dz
+ Rwθ = uτ θτ , (2b)

where uτ
def=

√
τw
ρ

=
√

ν dU
dz |z=0 is the friction velocity defined by the wall shear stress τw. Equation

(2a) was presented by Shiri and George [11]. θτ is the friction temperature defined as θτ
def= |qw |

ρcpuτ
=

k
uτ

d�
dz |z=0. Here qw is the wall heat flux, ρ is fluid density, and cp is heat capacity. Equation (2b)

indicates that the total heat flux in a DHVC is a constant in the wall-normal direction.
Identity equations for the integrals of TKE production and temperature variance production can

be obtained in two steps [12]: first, multiplying the MMB Eq. (1a) by U and multiplying the MHB
Eq. (1b) by � to produce

0 = ν
d2U

dz2
U + dRwu

dz
U + gα(�ctr − �)U, (3a)

0 = k
d2�

dz2
� + dRwθ

dz
�. (3b)

Second, integrating Eqs. (3a) and (3b) along the wall-normal direction and applying boundary
conditions yields

0 =
{
ν

dU

dz
U − ν

∫ z

0

(
dU

dz

)2

dz

}
+

{
RwuU −

∫ z

0
Rwu

dU

dz
dz

}
+ gα

∫ z

0
(�ctr − �)U dz, (4a)

0 =
{

k
d�

dz
� − k

∫ z

0

(
d�

dz

)2

dz

}
+

{
Rwθ� −

∫ z

0
Rwθ

d�

dz
dz

}
. (4b)

Note that integration by parts is applied to simplify the integrals.
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Substituting the total shear stress and total heat flux relations in Eqs. (2a) and (2b) into Eqs. (4a)
and (4b) yields∫ z

0
Rwu

dU

dz
dz + ν

∫ z

0

(
dU

dz

)2

dz = gα
∫ z

0
(�ctr − �)Udz +

[
u2

τ − gα
∫ z

0
(�ctr − �)dz

]
U, (5a)

∫ z

0
Rwθ

d�

dz
dz + k

∫ z

0

(
d�

dz

)2

dy = uτ θτ�. (5b)

As shown in Fig. 1, the mean velocity U is antisymmetric about the channel center line with
Uz=δ = 0. As a result, the global integral, from z = 0 to channel center line z = δ, can be expressed
as ∫ δ

0
Rwu

dU

dz
dz + ν

∫ δ

0

(
dU

dz

)2

dz = gα
∫ δ

0
(�ctr − �)U dz, (6a)

∫ δ

0
Rwθ

d�

dz
dz + k

∫ δ

0

(
d�

dz

)2

dz = uτ θτ�ctr. (6b)

Recently Wei [10,13] found that a proper velocity scale in the outer layer of a DHVC is the
maximum streamwise velocity Umax, a proper scale for the kinematic Reynolds shear stress is
uτUmax, and a proper scale for the Rwθ and Ruθ is uτ θτ . The mean temperature � is scaled by
the friction temperature θτ [14]. The scaled variables are denoted as

η ≡ z

δ
; U ∗ ≡ U

Umax
; R∗

wu ≡ Rwu

uτUmax
; �+ ≡ �

θτ

; R+
wθ ≡ Rwθ

uτ θτ

; R+
uθ ≡ Ruθ

uτ θτ

. (7)

The symbol η denotes outer-scaled distance, and the superscript + denotes variables scaled by
friction temperature and/or friction velocity, as in studies of turbulent wall-bounded flows. Using
the scaled variables, the global integrals can be written as∫ 1

0
R∗

wu
dU ∗

dη
dη + 1

Reτ

∫ 1

0

[
dU ∗

dη

]2

dη = gαθτ δ

uτUmax

∫ 1

0
(�+

ctr − �+)U ∗ dη, (8a)

∫ 1

0
R+

wθ

d�+

dη
dη + 1

Peτ

∫ 1

0

(
d�+

dη

)2

dη = �+
ctr. (8b)

Here Reτ = δuτ /ν is a Reynolds number based on the friction velocity and channel half-width. Peτ

is a Péclet number defined as Peτ = δuτ /k = Pr Reτ where Pr = ν/k is the Prandtl number. Next
we will evaluate the identity Eqs. (8a) and (8b) using data from three independent DNS studies by
Versteegh [2], Kiš [3], and Ng [4].

Figure 2(a) shows that the DNS data agree well with the identity Eq. (8a). There is small but
noticeable scatter among the three DNS studies, in the shear-production term in particular. One
possible cause for the scatter is the domain size used in different simulations. The domain size of
Versteegh [2] was 12 × 6 × 1, that of Kiš [3] was 24 × 12 × 1, and that of Ng et al. [4,8] was
8 × 4 × 1 (more discussions on the effect of domain size can be found in Kiš and Herwig [6] and
Ng et al. [8]).

DNS data indicate that, at sufficiently high Grashof number Gr � 105, the global integral of
shear-produced TKE can be approximated as∫ 1

0
R∗

wu
dU ∗

dη
dη ≈ 0.385 or

∫ δ

0
Rwu

dU

dz
dz ≈ 0.385 uτU 2

max. (9)

The constant value of the global integral of shear-produced TKE in the normalized variables can
be understood as follows: at high Rayleigh number, R∗

wu and U ∗ become “self-similar” in the outer
layer of a turbulent DHVC, i.e., independent of the Rayleigh number [10]. Moreover, the near-wall
region in which a different scaling is required occupies an ever-smaller fraction of the channel
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(a () b)

FIG. 2. (a) DNS data to evaluate TKE identity Eq. (8a). DNS data of Versteegh are triangles �, DNS
data of Kiš are circles ◦, and DNS data of Ng are stars . (b) DNS data to evaluate the temperature variance
production identity Eq. (8b). Black × symbols denote the the magnitude of

∫ 1
0 ε+

θ
dη. The dissipation data are

from DNS of Kiš [3] only.

as the Rayleigh number increases [10]. Hence, the global integral of shear-produced TKE will be
dominated by the outer layer and will approach a constant value in the normalized variables, or
O(uτU 2

max) in dimensional form. More DNS, over a wider range of Rayleigh number and Prandtl
number, is required to check the validity and more precisely determine the numerical factor in
Eq. (9).

Figure 2(b) shows that the identity Eq. (8b) for the temperature variance production is supported
very well by the DNS data. At low Grashof number, Gr � 4 × 105, the dissipation of temperature
variance by mean temperature gradient is larger than the production term. At sufficiently high
Grashof number, the global integral of the temperature variance production increases with the
Grashof number in a logarithmic-like fashion:∫ 1

0
R+

wθ

d�+

dη
dη ≈ 0.5ln(Gr) − 1.8 or

∫ δ

0
Rwθ

d�

dz
dz ≈ [0.5ln(Gr) − 1.8]uτ θ

2
τ . (10)

It is known that in a turbulent channel flow, the passive scalar variance production is strongly
influenced by the Prandtl number [12]. All DNS data used in the present work are for Pr ≈ 0.7;
Prandtl number effects on the global integral of the temperature variance production in a DHVC
remain to be studied.

Assuming a statistically steady state, the temperature variance budget equation [1,6,15,16] is

∂

∂t

( 〈θ2〉
2

)
= k

∂2

∂z2

(
1

2
〈θ2〉

)
− 1

2

∂〈wθ2〉
∂z

+ Rwθ

∂�

∂z
− k

〈
∂θ

∂x j

∂θ

∂x j

〉
, (11)

where the terms on the right side are the diffusional transport, turbulent transport, production,
and dissipation term, respectively. For brevity the dissipation of temperature variance is denoted
hereafter as εθ = k〈 ∂θ

∂x j

∂θ
∂x j

〉. The diffusional and turbulent transport terms only redistribute the
temperature variance, and their integrals from 0 to δ are both zero. Hence, the global integral
of dissipation

∫ δ

0 ε
θ

dz equals the global integral of production
∫ δ

0 Rwθ
d�
dz dz. As a result, at

sufficiently high Grashof number, the global integral of temperature variance dissipation can also
be approximated: ∫ δ

0
ε

θ
dz ≈ [0.5ln(Gr) − 1.8]uτ θ

2
τ . (12)

081501-5



TIE WEI

(a () b)

FIG. 3. (a) Flux Richardson number versus η = z/δ. (b) Flux Richardson number multiplied by U +
max =

Umax
uτ

. Insets on the top right show the region away from the wall. Data are from DNS of Kiš [3].

In other words, the global integral of temperature variance dissipation when normalized by uτ θ
2
τ

also increases with Grashof number in a logarithmic-like fashion, as shown in Fig. 2(b).
More DNS data, over a wider range of Raleigh numbers and Prandtl numbers, will be required

to scrutinize the identity equations and better determine the numerical “constants” in Eq. (12). Next
we will determine the scaling of the buoyancy-produced TKE.

III. SCALING OF THE BUOYANCY-PRODUCED TKE

Assuming homogeneity in the x-y plane, the TKE budget equation for a DHVC is [15,16]

∂

∂t

( 〈ujuj〉
2

)
= ν

∂2

∂z2

( 〈ujuj〉
2

)
− ∂

∂z

〈
w

(
ujuj

2
+ p

ρ

)〉
+ Rwu

∂U

∂z
+ gαRuθ − ν

〈
∂ui

∂x j

∂ui

∂x j

〉
. (13)

The first and second terms on the right side are the viscous and turbulent transport term, respectively.
Rwu

dU
dz is commonly called shear production of TKE, and gαRuθ is commonly called buoyancy

production of TKE. The last term on the right side is viscous dissipation of TKE, for brevity denoted
as εk = ν〈 ∂ui

∂x j

∂ui
∂x j

〉.
In studies of a stratified atmospheric boundary layer (ABL), a flux Richardson number is often

used to characterize the role of buoyancy and shear in TKE production. Following the convention
commonly used in ABL studies [9,16], a flux Richardson number for a DHVC is defined as

Rif
def= gα〈ut〉

〈wu〉 dU
dz

= −gα(−〈uθ〉)

−〈wu〉 dU
dz

= − gαRuθ

Rwu
dU
dz

. (14)

In a DHVC, the buoyancy-produced TKE is gαRuθ because gravity is in the x direction, but the
turbulent wall-normal heat flux term in the MHB Eq. (1b) is Rwθ [8]. In contrast, in a stratified
ABL, the buoyancy production term is gαRwθ because gravity is in the z direction, and Rwθ is also
the turbulent wall-normal heat flux term in its MHB equation. An ABL is considered stably stratified
if Rif > 0, neutral if Rif = 0, and unstably stratified if Rif < 0.

Figure 3(a) presents the variation of the flux Richardson number Rif in the wall-normal direction
of a DHVC. The buoyancy production term gαRuθ is positive across the whole channel, meaning
that the buoyancy-produced TKE in a DHVC is always a source term. However, the shear-produced
TKE in a DHVC may be positive or negative, depending on the signs of the Reynolds shear stress
Rwu and the mean shear dU

dz . Thus, the shear-produced TKE may be a source or sink term, and Rif
may be positive or negative depending on the wall-normal location.
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(a) (b)

FIG. 4. (a) Ratio (filled symbols) between the global integrals of buoyancy-produced TKE and the shear-
produced TKE as a function of Grashof number. Open symbols are data of 1

U+
max

. (b) Ratio of global integrals

weighted by U +
max.

Based on the characteristics of Rif as shown in Fig. 3(a), the left half of a DHVC can be divided
into four layers, and the layer structure is symmetric about the channel center line. In Layer I, a thin
layer adjacent to the wall, Rwu > 0 and dU

dz > 0, so shear-produced TKE is positive and Rif < 0.
In Layer II, between Layer I and the peak U location, Rwu < 0 and dU

dz > 0, so shear-produced
TKE is negative and Rif > 0. This negative shear production layer was reported by Versteegh and
Nieuwstadt [5] and Kiš and Herwig [6]. Layer III centers around the peak U location (see Fig. 1)
where dU

dz ≈ 0 and Rif → ±∞. In Layer IV, between the peak U location and the channel center
line, Rwu < 0 and dU

dz < 0, so shear production of TKE is positive and Rif < 0. More DNS data are
required to more precisely identify the width of each layer and the dependence on Rayleigh and
Prandtl numbers.

Using the normalized variables in Eq. (7), the flux Richardson number can be presented as

Rif = − uτ

Umax

gαθτ δ

uτUmax

R+
uθ

R∗
wu

dU ∗
dη

or U +
maxRif = − gαθτ δ

uτUmax

R+
uθ

R∗
wu

dU ∗
dη

. (15)

Figure 3(b) presents the flux Richardson number multiplied by U +
max. In Layer IV, Fig. 3(b) shows

that U +
maxRif from different Grashof numbers collapse well. The deviation at Gr = 4.75 × 104 is

likely caused by the low Grashof number effect, similar to the low Reynolds number effect in forced
turbulent flows [10].

At the channel center line, DNS data indicate

U +
maxRif |ctr ≈ −1.6 or Rif |ctr ≈ − 1.6

U +
max

. (16)

Thus, the flux Richardson number Rif becomes smaller with increasing Grashof number, because
U +

max increases with Grashof number [see Fig. 4(a)].

A. Scaling of the global integral of buoyancy-produced TKE

The global integral of buoyancy- and shear-produced TKE can be obtained by integrating gαRuθ

and Rwu
dU
dz from z = 0 to z = δ. The ratio between the global integrals of buoyancy- and shear-

produced TKE is ∫ δ

0 gαRuθ dz∫ δ

0 Rwu
dU
dz dz

= 1

U +
max

gαθτ δ

uτUmax

∫ 1
0 R+

uθ dη∫ 1
0 R∗

wu
dU ∗
dη

dη
. (17)
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This ratio is shown in Fig. 4(a) as a function of Grashof numbers. DNS data indicate that as Gr �
5 × 104, buoyancy-produced TKE becomes smaller than shear production, and the ratio decreases
further with Grashof number. In other words, buoyancy contributes less and less to the total TKE
production as Grashof number increases.

Figure 4(b) shows that the ratio Eq. (17) at sufficiently high Grashof number can be approxi-
mated as ∫ δ

0 gαRuθ dz∫ δ

0 Rwu
dU
dz dz

≈ 2.6

U +
max

. (18)

Applying Eq. (9), the global integral of buoyancy-produced TKE can be approximated as∫ δ

0
gαRuθ dz ≈ u2

τUmax. (19)

IV. SUMMARY

Turbulent kinetic energy (TKE) and temperature variance are some of the most important
quantities in understanding the underlying physics of turbulent flow and heat transfer. In a turbulent
DHVC, TKE is produced by two distinctively different mechanisms: buoyancy production and shear
production. In this work, starting from the mean momentum equation and the mean thermal energy
equation, the global integral equations (8a), (8b) are derived for the TKE production and temperature
variance production and are found to agree well with three independent DNS studies. The derived
equations are general, independent of Rayleigh or Prandtl numbers.

The presently available DNS data have relatively moderate Rayleigh number (105 � Ra � 109)
and are at the same Prandtl number Pr ≈ 0.7. Based on these DNS data, the global integral of the
shear-produced TKE is found to scale as

∫ δ

0 Rwu
dU
dz dz ≈ 0.385uτU 2

max, and the global integral of

the buoyancy-produced TKE is found to scale as
∫ δ

0 gαRuθ dz ≈ u2
τUmax. More DNS studies over a

wider range of Rayleigh and Prandtl numbers are required to evaluate the validity of the scaling and
better determine the “constants”; it will be of particular interest to see whether the findings will vary
with the Prandtl number.

A flux Richardson number Rif is defined as the ratio of buoyancy-produced and shear-produced
TKE. Depending on the wall-normal location, Rif can be positive or negative. Based on the
characteristics of the Rif , a four-layer structure is proposed for the TKE budget equation in a DHVC.

The global integrals of temperature variance production and dissipation are found, based on
the DNS data, to grow with the Grashof number in a logarithmic-like fashion:

∫ δ

0 Rwθ
d�
dz dz =∫ δ

0 ε
θ

dz ≈ [0.5ln(Gr) − 1.8]uτ θ
2
τ . These findings will be useful for future studies of the buoyancy-

driven turbulent flow and heat transfer in a DHVC.
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