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We present laboratory experiments of surface wave turbulence excited by paddles in the
deep water regime. The free surface is seeded with buoyant particles that are advected and
dispersed by the flow. Positions and velocities of the floaters are measured using particle
tracking velocimetry. We study the statistics of velocity and acceleration of the particles,
mean vertical displacements, single-particle horizontal dispersion, and the phenomenon
of preferential concentration. Using a simple model together with the experimental data,
we show that the time evolution of the particles has three characteristic processes that
dominate the dynamics at different times: drag by surface waves at early times, trapping
by short-lived horizontal eddies at intermediate times, and advection by a large-scale mean
circulation at late times.
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I. INTRODUCTION

The disordered state of waves observed in the ocean surface is often considered a paradigmatic
manifestation in nature of wave turbulence [1], and has been a key motivation in the last decades
for the development of weak turbulence theories. In these theories, which have found multiple
applications in fluid dynamics as well as in other areas [1–3], a self-similar energy spectrum
and turbulent behavior arises as a result of weak nonlinear interactions between waves of small
amplitude. Recent laboratory experiments in the weak turbulent regime have shed new light on this
problem, probing the dispersion relation of the waves, as well as the nature of the nonlinear coupling,
in problems that range from bending waves in thin plates [4,5], to gravity-capillary waves in free
surface flows [6–10]. While in these laboratory experiments surface waves are often generated
using servo-controlled paddles or “wavemakers,” more recently waves have also been excited using
horizontal winds [11,12], generating laboratory conditions more akin to those found in oceanic
and geophysical flows. For a range of parameters, these studies measured dispersion relations that
remain close to the theoretical linear dispersion relations of the systems, confirmed the development
of turbulence in the cases in which the flows were stirred with paddles, and in some cases found
energy spectra compatible with those predicted by weak turbulence theory.

In natural scenarios in which turbulence manifests itself, transport processes (such as the mixing
of passive scalars, of Lagrangian and inertial particles, and of floaters in the ocean) are often
dominated by the convective action of the velocity fluctuations. These processes are generally
studied in homogeneous and isotropic turbulence (see, e.g., [13] and references therein), where
they are known lo lead to particle dispersion and diffusion [14,15], and to the so-called preferential
concentration of particles [16]: Particles with different density than the fluid have the tendency to
distribute inhomogeneously in space, accumulating in clusters which have been widely observed
in experimental and numerical studies [17–20]. However, in the presence of waves there is little
knowledge of how waves and eddies couple to affect particle diffusion and dispersion (see, e.g.,
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a discussion in the context of wave turbulence in [21]). Recently, the dispersion of Lagrangian
particles [22–24], and the clustering of neutrally buoyant inertial particles and floaters [25–27] have
been studied in numerical simulations of the bulk of stably stratified flows, which display a mix of
turbulent eddies and internal gravity waves. However, with the exception of some recent laboratory
experiments studying particles in Faraday waves [28,29] and clustering of floaters in standing waves
or in random superpositions of waves [30], available measurements of buoyant particles in free
surface flows come mostly from oceanic observations.

There are several types of measurements of the velocity and the acceleration in oceanic flows.
Eulerian measurements as those obtained from, e.g., acoustic Doppler profilers, which can resolve
turbulent fluctuations and, consequently, give access to vertical structure functions and other relevant
turbulent characteristic quantities [31]. However, measurements in the ocean are often done using
buoys and floaters which, for motions with typical horizontal scales sufficiently larger than the size
of the floater (with sizes between 30 cm to 1 m), are believed to provide information on Lagrangian
properties of the flow, such as vertical and horizontal velocities (with their variances), as well as
the Lagrangian velocity spectrum of internal waves which for the vertical velocity component is
compatible with the empirical Garret-Munk spectrum, a flat spectrum with a peak at the buoyancy
frequency [32,33]. Another effect also reported in buoyant particles dispersed by the ocean is that
of preferential concentration [34,35]. The role of surface waves in all these processes is important,
and recent observational and numerical results indicate that current models of mixing in the upper
ocean, where turbulence enhances the fluxes and exchanges of momentum, heat, and moisture
towards the atmosphere, need to be revised to account for the influence of the surface waves [36].
Laboratory experiments and numerical simulations of turbulent flows with surface waves can thus
play a central role in providing new information on this problem, as some required quantities are
hard to measure in oceanic observations. Moreover, recent results show that phenomena such as
flow dissipation and drag (which have an important impact in the mixing and transport of particles)
are highly intermittent, as shown from numerical simulations of oceanic flows even at very large
horizontal scales, with regions in the flow with high dissipation dominating the energy and enstrophy
budgets [37].

In this work we present laboratory experiments of surface wave turbulence in the deep water
regime, with the surface of the fluid seeded with buoyant particles or floaters. The displacement
and velocity of each floater is measured using particle tracking velocimetry (PTV). We study the
statistics of the floaters’ velocity and acceleration, the particles’ velocity power spectrum, the mean
squared vertical and horizontal displacements, and the formation of clusters of particles using a
Delaunay tessellation. For the mean squared vertical and horizontal displacements, we also present
a simple model that captures the main features of the experimental data: a ballistic growth of the
dispersion at early times dominated by the waves, a saturation at intermediate times in the horizontal
dispersion associated with trapping of the floaters by short-lived midsize eddies, and a growth of
the horizontal dispersion at late times resulting from the advection of the floaters by a large-scale
mean circulation that develops in the vessel. Together, the observations and the model allow us to
disentangle the different physical effects contributing to the dispersion of floaters by the flow.

The structure of the paper is as follows: In Sec. II we describe the experimental setup and briefly
characterize the surface wave turbulence observed in the experiments. Section III presents results
on velocity and acceleration of the floaters, including probability density functions (PDFs) and
power spectra. In Sec. IV we study single particle displacements and compare the results with those
obtained from a simple model built upon a random superposition of waves and a continuous-time
random walk process. Section V provides a brief study of preferential concentration of floaters in
the experiments. Finally, Sec. VI presents our conclusions.

II. EXPERIMENTAL SETUP

The laboratory experiments were done in an acrylic vessel (made of polymethyl methacrylate,
or PMMA) of 198 × 77 × 36 cm3, with wall thickness of 1 cm (see Fig. 1). This vessel was filled
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FIG. 1. Experimental setup. (a) The water tank with the paddles to generate surface waves, and the two
cameras used for PTV. (b) A picture of a floater, with a cut showing its cross section.

with distilled water from a double-pass reverse osmosis system to remove ions and dissolved or
suspended solid particles from the water, to which we added TiO2 to dye it white in order to increase
contrast with the floaters. Water in the vessel was replaced regularly with water from the double-
pass reverse osmosis system, to control and limit surface contamination and its possible effects
on wave damping and dissipation [38,39]. In all cases, the liquid column was kept at a height of
5 cm, resulting in conditions such that waves were in a deep water regime, with dispersion relation
ω2 ≈ gk tanh(kh0), where ω is the angular frequency, g is the gravity acceleration, k is the wave
number, and h0 is the height of the surface at rest.

A turbulent steady state of surface waves was generated and sustained by two acrylic piston-type
wavemakers, driven by independently servo-controlled LinMot linear servomotors with a peak force
of 47 N and an accuracy of 0.01 mm. The surface area of the wavemaker paddles was 15 × 10 cm2;
both plates were immersed to a depth of approximately 30 mm. The wavemakers were driven by
means of a random signal with a white frequency spectrum within the range from 0 to 4 Hz (as often
done in experiments of gravity-capillary wave turbulence; see e.g., [6]). The signal used for the
forcing thus determines a characteristic temporal scale of ≈0.25 s. The same maximum amplitude
A for the wavemaker motion was imposed to both paddles, and its value was varied throughout
the different experimental runs. In particular, experiments with values of 5, 10, 15, and 20 mm of
maximum amplitude A are considered in the present study, with the aim of studying regimes with
different amplitude of the waves, and with different strengths of the nonlinear coupling between
waves. Note the amplitude A corresponds to the maximum possible amplitude of the displacement
of the paddle measured from the position at rest. As a random signal in time was used, actual mean
displacements were smaller (as an example, for the maximum amplitude A of 10 mm, the standard
deviation of the position of the paddle from rest was 2.7 mm). In all cases, the choice of the forcing
(and in particular, of the range of frequencies excited) was such that it reduced capillary effects in
the system, and that it excited a turbulent steady state with gravity waves.

To characterize the turbulent state generated by the forcing, we performed measurements of
the water surface height deformation using a fringe projection profilometry technique [4] with a
SA3 Photron ultrafast camera. This technique allows us to compute the wave steepness, as well as
spatiotemporal and wave number spectra of the squared surface wave height. For all values of the
forcing amplitude A, the r.m.s. wave steepness (which measures the strength of the nonlinearity)
is smaller than 3%. Figure 2 shows the spatiotemporal spectra E (k, ω) for two cases (with A = 10
and 20 mm), and the wave number spectrum E (k) for all values of the forcing amplitude A. The
spatiotemporal spectra show accumulation of energy in the vicinity of the theoretical dispersion
relation of the waves, confirming a significant fraction of the energy in the system is in the form
of wave excitations, and with a broadening associated with the strength of the nonlinearities. For

074805-3



NICOLÁS F. DEL GROSSO et al.

FIG. 2. Eulerian energy spectra of surface deformation obtained using the fringe projection profilometry
technique. (a) Spatiotemporal spectrum of the potential energy E (k, ω) (or, equivalently, power spectrum of
the surface deformation amplitude) for the experiments with A = 10 cm. Darker colors correspond to larger
energy densities. The green solid line indicates the theoretical dispersion relation for the system. (b) Same
for the experiments with A = 20 cm. (c) Eulerian wave number spectrum E (k) of the surface deformation
amplitude for all forcing functions A considered in the study. An E (k) ∼ k−5/2 power law is indicated as a
reference.

A = 10 mm, significant excitations can be seen up to k ≈ 300 m−1. For A = 20 mm, a stronger
excitation over the dispersion relation, reaching much larger wave numbers (together with stronger
excitations at low frequencies) can also be seen. The wave number spectra E (k) in Fig. 2(c) show
a broad peak followed by a range compatible with ∼k−5/2 scaling, from k ≈ 60 m−1 up to k ≈
300 m−1. This power law is compatible with the solution to the Hasselmann equation for gravity
waves, or equivalently, with the so-called Zakharov-Filonenko spectrum in wave number space
(corresponding to a frequency spectrum ∼ω−4) [3,40]. A broader power spectrum (with a smaller
peak at low wave numbers) is observed for the experiment with A = 5 mm; as the forcing amplitude
is increased the peak also increases and broadens, and the width of the range compatible with the
power law decreases.

Interestingly, note that forcing frequencies up to 4 Hz yield (through the full dispersion relation
of the system and taking into account capillary effects) forced wave numbers up to kF ≈ 60 m−1

(corresponding to wavelengths of ≈10 cm). Also, considering that the crossover between the gravity
and capillary wave regimes takes place at a frequency f ≈ 13.5 Hz, we obtain an associated wave
number for the crossover of kC ≈ 367 m−1 (or a crossover wavelength of λC ≈ 1.7 cm, below which
the effects of the capillary waves become relevant; note this length is different from the capillary
length LC ≈ 2.7 mm associated with the formation of capillary meniscus). Thus, the range of wave
numbers compatible with ∼k−5/2 scaling seems to be bounded by these two wave numbers, kF

and kC .
From the spectra in Fig. 2(c) we can provide another estimation of the amplitude of the

turbulent fluctuations, by setting apart the integrated amplitude of the peak of the spectrum η =
[2

∫
k<60 E (k)dk]1/2 from the amplitude of the fluctuations δη = [2

∫
k�60 E (k)dk]1/2. Their ratio

δη/η is close to 5% in all cases. As a reference, in the turbulent ocean the ratio of turbulent
to nonturbulent excitations ranges from 1% to 10% [36], while in the turbulent solar wind (an
example in which waves and mean flows coexist) the relative amplitude of fluctuations to the mean
magnetic field is also close to 10% [41]. Even for strong hydrodynamic turbulence, experiments
with turbulent fluctuations of 10% amplitude are not uncommon. Typical experiments of isotropic
and homogeneous turbulence in wind tunnels have a ratio of turbulent fluctuations to mean velocities
of 10% or less [42], while von Kármán experiments designed to reach very high Reynolds numbers
with significant fluctuations can achieve values of this ratio of ≈30% [43].
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Once the experiment described above reached a turbulent steady state, the flow was seeded with
over 100 floaters (of these, 52 were used on average for the study, as this is the approximate number
of floaters observed simultaneously in the central region of the vessel where the measurements
were made). The floaters were three-dimensional-printed spherical shells of black polyvinyl chloride
(PVC), with a diameter of 15 mm, a wall thickness of 1 mm, and a weight of (0.84 ± 0.04) g (see
Fig. 1). The particle color was chosen to facilitate their detection, in conjunction with the use of
TiO2 powder used to dye the water white. The size of the particles was chosen of the order of
the crossover wavelength λC , in such a way that particle motions were affected mostly by gravity
waves (which have longer wavelengths). Particles were designed to have good buoyancy, and low
interaction with each other and with the fluid. The specific gravity of the particles was ρp/ρw ≈ 0.5
(where ρp is the mean density of the particles and ρw is the density of water at 4 ◦C), and as a result
half of each particle was submerged while the other half was above the surface. Also, note that even
though Archimedes’ principle ensures that the specific gravity computed over only the half of the
particle that is submerged is equal to one, capillary effects can also make the floaters inertial (i.e.,
in practice, heavier or lighter than the displaced water) [30].

Particle tracking was done using the PTV technique. Images were captured with a 120-Hz
acquisition frequency using two ultrafast cameras (a 1024 PCI Photron camera and a SA3 Photron
camera). Both cameras were synchronized using an external trigger, and the experiment was
illuminated using two high-power halogen lamps with low flicker. Three-dimensional particle
trajectories were then reconstructed from the images using a computer cluster, from which particle
velocities and accelerations could also be computed. Each experimental run consisted of 23 s of
acquisition time, and a total of seven experiments were performed for each maximum forcing
amplitude A explored (resulting in a total of 28 experiments considered for the present study).

III. VELOCITY AND ACCELERATION

We start characterizing particle velocities and accelerations. As will be seen later, significant
information on the flows in the experiments can be obtained from the PTV measurements. Figure 3
shows the probability density functions (PDFs) of the three Cartesian components of the floaters’
velocity and acceleration, for experiments A10 and A20 (respectively, with maximum spatial
displacement of the paddles of A = 10 mm and A = 20 mm; see Table I). For the PDFs in Fig. 3,
the mean velocities and accelerations were subtracted, and the results were normalized by their
corresponding dispersions.

In Table I we also provide the mean absolute values and standard deviation of each component
of the particles’ velocity and acceleration. Each “experiment” is labeled by its maximum amplitude
A (note that, as already mentioned, each one of them actually corresponds to an ensemble of seven
experiments). As the forcing amplitude is increased linearly (from top to bottom of the table), all
quantities in Table I show a monotonic (nonlinear) increase with A. The growth in the mean absolute
horizontal velocities and in their dispersions as A is increased is associated with two physical
effects that become evident from visual inspection of the particles’ trajectories, and also from the
discussions that follow: As A is increased, midsize horizontal eddies develop in the flow, as well
as a large-scale circulation in the entire vessel that advects the particles in the x-y plane with a
well-defined mean velocity. However, as we will see later, this large-scale circulation in the vessel
has a small velocity, and thus the main contribution to the observed increase in horizontal velocities
as A is increased is related to drag of the particles by the waves and to advection by midsize eddies.
The vertical velocity (as well as its dispersion) also increases with increasing A, as also do all
Cartesian components of the acceleration and their corresponding dispersions.

After subtracting these mean components, the PDFs of the fluctuating velocity in Fig. 3 are
close to a normal distribution, although a small asymmetry can be seen in the PDFs of vx and
vy towards negative values of the velocity. PDFs of the acceleration components are also close to
Gaussian, although a weak asymmetry can now be seen instead in the vertical acceleration. As a
result, values of the skewness and kurtosis for these quantities are close to normal values (skewness
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FIG. 3. (Top) PDFs of the Cartesian components of the fluctuating velocity of the floaters for (a) experiment
A10, with maximum spatial displacement of the paddles of A = 10 mm, and (b) for experiment A20, with
maximum spatial displacement of the paddles of A = 20 mm. Velocities are normalized by their dispersions,
and thus are dimensionless. (Bottom) PDFs of the Cartesian components of the fluctuating acceleration of the
floaters in the same experiments, for (c) A = 10 mm, and (d) A = 20 mm. As for the velocity, the accelerations
are normalized by their corresponding dispersions. Labels for the three Cartesian components are given in the
insets. In all cases, we also show as a reference a normal distribution centered around zero with dispersion of
unity, represented by the solid black curve and denoted as N (0, 1).

of the acceleration is between ≈− 0.3 and 0, and of the velocity is between ≈− 0.2 and 0, while
the kurtosis of the acceleration and velocity components varies between 3 and 3.4 with no clear
dependence on the forcing amplitude A).

As the floaters move with the free surface in the vertical direction, and are advected and dragged
by the fluid in the horizontal direction, we can use the measured velocity components to obtain
horizontal kinetic energy spectra of the particles Ex( f ) and Ey( f ) (corresponding, respectively, to
the power spectra of the particles velocities vx and vy), and a vertical kinetic energy spectrum Ez( f )
(obtained from vz, which, as the particles move together with the surface, provides an estimation of
the surface Lagrangian vertical velocity spectrum). The resulting spectra are shown in Fig. 4(a) for
experiment A10, and Fig. 4(b) for experiment A20. There are only minor differences in the spectra
as A is varied. In both cases shown, horizontal spectra display a power law for small frequencies, a
peak near the forcing frequency at ≈3 Hz, and then a fast power law decay for higher frequencies
compatible with a ∼ f −4.5 decay. The vertical spectrum also displays the peak at ≈4 Hz, followed by
the same power law at higher frequencies, but for low frequencies the spectrum is flat. Interestingly,

074805-6



STATISTICS OF SINGLE AND MULTIPLE FLOATERS IN …

TABLE I. Labels, parameters, and characteristic values for all experiments. The maximum forcing
amplitude A is listed, followed by the mean absolute value of each velocity (vα , for α = x, y, or z) and
acceleration (aα) component, and the corresponding standard deviation of each component of the particles’
velocity (σvα

) and acceleration (σaα
). The forcing amplitude increases linearly from the top row to the bottom

row of the table. The values or vα and σvα
are expressed in units of mm s−1, while those for aα and σaα

are
given in units of mm s−2.

Experiment A (mm) 〈|vx|〉 〈|vy|〉 〈|vz|〉 〈|ax|〉 〈|ay|〉 〈|az|〉 σvx σvy σvz σax σay σaz

A05 5 24.28 20.36 38.78 444.1 373.7 766.5 30.65 25.65 48.84 588.4 471.7 965.8
A10 10 38.56 37.19 60.56 660.4 657.1 1179.7 49.20 46.84 76.60 834.1 824.6 1486.7
A15 15 44.05 44.29 67.81 718.5 755.8 1297.3 55.80 55.99 85.32 906.7 950.3 1624.5
A20 20 48.48 48.33 71.16 748.6 787.1 1327.5 61.25 61.06 89.91 941.5 987.1 1666.5

these spectra are qualitatively similar to those found in oceanic observations using buoys, such as,
e.g., those from 1-m buoys in the Pacific northwest [33].

Finally, in Fig. 5 we show a time history of the power gained or lost by a particle, dE/dt , and
its PDF for all particles in experiment A10. To reduce numerical errors, the power dE/dt was
estimated as the dot product between the particle speed and acceleration. The PDF is symmetric
but with strong tails, deviating significantly from a normal distribution, indicating that particles
can gain or lose energy regardless of their velocities, in an intermittent fashion. However, note
the non-Gaussianity of dE/dt can simply arise from the fact that the power gained or lost by the
particles is a nonlinear function of Gaussian quantities. The time series of the instantaneous power
is compatible with the observed probability distribution, as short periods of time in which dE/dt
reaches large values can be seen in the figure.

IV. PARTICLE TRAJECTORIES AND DISPERSION

A. Experimental results

As already mentioned, in each realization of the experiments we followed the three-dimensional
trajectories of approximately 52 particles. Figure 6(a) shows as an illustration the resulting
trajectories for just one realization of an experiment. The trajectory of one individual particle is
highlighted, and projected into the horizontal and vertical planes. For clarity, and to distinguish
some typical features of the particles’ trajectories, the evolution of another particle is shown in

FIG. 4. Kinetic energy spectra of the floaters, for each Cartesian component of the velocity, for experiments
A10 (a) and A20 (b). A power law E ( f ) ∼ f −4.5 for frequencies larger than 4 Hz is shown as a reference.
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10−3

10−2

10−1

100

P
D

F

A = 10 mm

A = 20 mm

N(0, 1)

(a) (b)

FIG. 5. (a) Instantaneous power dE/dt gained or lost by a particle in experiments A10 (with maximum
forcing amplitude A = 10 mm). The inset shows a detail of the time series. (b) PDF of the instantaneous
power gained or lost by the particles, in experiments A10 and A20. The shape of the PDF is the same for both
experiments. For completeness, it is worth mentioning that the σĖ value associated with the two experiments
is σ A10

Ė
= 0.14 mW and σ A20

Ė
= 0.18 mW, respectively. A normal distribution is shown as a reference by the

black solid curve, and labeled as N (0, 1).

Fig. 6(b) only for its vertical displacement z(t ) as a function of time, and in Fig. 6(c) for two
particles at different times in the x-y plane (all from the same realization of the experiment). The
behavior in Fig. 6(b) is typical of all particles, a wavelike motion (with multiple timescales) can be
clearly seen in the vertical direction. Instead, in the x-y plane we can differentiate multiple features.
Particles move back and forth in a fast timescale, associated with the waves. But particles also follow
circular trajectories, which can be associated with transient trapping of the particles by horizontal
eddies in the flow (other “trapping” events can be caused by superposition of waves traveling in
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FIG. 6. (a) Three-dimensional trajectories of 52 particles in experiment A10, in light gray and blue. The
trajectory of one particle is highlighted in black, and projected into the x-y, x-z, and y-z planes. Note, in the
projection onto the x-y plane, the coexistence of three phenomena: fast oscillations associated with waves,
circular trajectories associated with eddy trapping, and a slow drift. (b) Vertical position z of a particle as a
function of time in the same experiment. All other particles follow a similar vertical behavior. (c) Horizontal
trajectories of two particles in the same experiment. Note the circular motions in the particle trajectories.
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FIG. 7. Temporal average, in an Eulerian grid, of the horizontal velocities of all particles in the observed
region of experiment A10. Note the mean large-scale circulation that develops in the experiment.

different directions or by nodal regions of quasistanding waves, although as we will show below,
all these events can be modeled simply by considering the effect of the eddies). Finally, particles
in Fig. 6(c) can be also seen to slowly drift in one direction. This mean displacement is generated
by the large-scale circulation that develops in the vessel. To illustrate this effect, Fig. 7 shows a
mean horizontal (Eulerian) velocity field for the observed region in experiment A10, reconstructed
by interpolating the particles’ velocities into a fixed array of points and by computing an average in
time. The presence of a global circulation can be observed. Thus, three phenomena can be identified
from the particles trajectories: displacement of the particle by waves in the vertical direction (as
well as a fast modulation in the same timescales in the x-y plane), circular trajectories associated
with the presence of horizontal eddies in the x-y plane, and a slow and coherent drift in the same
plane. Indeed, from visual inspection it can be seen that as A is increased, the paddles not only excite
surface waves, but also excite midsize horizontal eddies that detach from the side of the paddles,
as well as the slow circulation with a characteristic length of the size of the vessel and that slowly
builds in time as the experiment progresses.

With all these trajectories we can compute the single-particle vertical and horizontal displace-
ment, respectively, defined for each particle as

δzi = zi(t ) − zi(0), δri = ri =
√

[xi(t ) − xi(0)]2 + [yi(t ) − yi(0)]2, (1)

where the subindex i labels the particle. Figure 8 shows the resulting joint probability distribution
P(r, t ), of finding a particle being displaced a horizontal distance r at a time t , again for experiment
A10. As can be seen from the figure, the maximum of the PDF increases with time, which can
be expected: as time evolves the most probable horizontal displacement r increases, as floaters are
dispersed by the turbulence. However, there are three distinct regimes (separated by the vertical
lines in the figure): at early times the most probable value of r increases with time, then it saturates,
and finally it increases again. Figure 8 also shows P(r, t ) for the four experiment sets at a fixed time
and as a function of r. The observed PDFs are close to a Rayleigh distribution. This is the expected
distribution for particles performing a random walk in the horizontal plane, and compatible with a
diffusion process in the free surface of the fluid. In addition, note that as the amplitude of the forcing
A is increased, the most probable displacement (i.e., the position of the peak of the PDF) increases.
However, note also that there is a strong dispersion of r around these values.

The mean quadratic displacements can be obtained from the PDFs or as the second-order moment
of the single-particle vertical and horizontal displacements,

〈δz2〉(t ) = 〈[zi(t ) − zi(0)]2〉, 〈δr2〉(t ) = 〈[xi(t ) − xi(0)]2 + [yi(t ) − yi(0)]2〉, (2)
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FIG. 8. (a) Isocontours of the joint probability distribution P(r, t ) of particles being displaced a horizontal
distance r = δr at a time t , in experiment A10. The two vertical lines separate three different regimes as
explained in the text. (b) PDFs of the horizontal displacements P(r, t ) at a fixed time and as a function of the
displacement r, for all the experiments.

where the average is performed over all particles. Figure 9 shows the resulting horizontal and vertical
quadratic displacements, first for experiment A10 and then for all experiments. Let’s consider first
the experiment with fixed forcing amplitude A. The mean quadratic vertical dispersion has a ballistic
behavior up to a characteristic time of half of the inverse of the fundamental frequency ≈3 Hz. This
behavior corresponds to the particles being displaced vertically by the most energetic waves, for half
a wave period (i.e., until the maximum in the amplitude of the waves is reached). Then, the ballistic
behavior in 〈δz2〉 is followed by a saturation towards a mean stationary value for longer times. This
can be expected: At the beginning floaters are quickly displaced vertically by the surface waves,
but once the slowest wave reaches its maximum, floaters can only oscillate vertically around the
equilibrium position. Thus, the value of 〈δz2〉 for long times is just proportional to the mean squared
amplitude of the waves. In the horizontal direction the behavior is more interesting: At early times
the mean squared horizontal displacement also grows ballistically, 〈δr2〉 ∼ t2, and also saturates at
the first characteristic time. Then 〈δr2〉 remains approximately constant or grows very slowly for a
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FIG. 9. (a) Mean quadratic vertical and horizontal displacement of the floaters in experiment A10, as
indicated in the inset. Note the three regimes, separated as a reference by the two vertical lines. These
lines indicate, from left to right, the inverse of half the frequency of the most energetic waves, and the
particle velocity correlation time. (b) Mean quadratic vertical and horizontal displacement of the floaters in
all experiments.
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short period of time, and at a later time it starts to grow again but slightly slower than ballistically
in time (〈δr2〉 ∼ t1.6 from a best fit adjustment, an exponent close to the arithmetic average of the
random walk and ballistic exponents). Note that the time evolution of 〈δr2〉 is just the second-order
moment of the joint probability P(r, t ) shown in Fig. 8, and thus also follows the same dynamics.
When looking at all the experiments (also shown in Fig. 9) we see that the overall shapes of 〈δz2〉(t )
and of 〈δr2〉(t ) do not change as we vary the amplitude of the forcing A, but that the amplitudes of
〈δz2〉 and of 〈δr2〉 are sensitive to A, increasing as A is increased.

The mean squared vertical displacements at all times, and the mean squared horizontal
displacements at early times, are compatible with the dispersion of particles expected from a
random superposition of linear waves [24,44]. Indeed, and as already mentioned, the early time
displacements are ballistic in time, have amplitudes that grow with A, and saturate in a time
proportional to the inverse frequency of the dominant waves. However, in the horizontal plane we
see three different regimes. At short times, we have a ballistic regime (again with amplitudes that
grow with A, and which in this case are larger than what can be expected from ballistic motion
generated by the mean large-scale flow). At intermediate times, we observe a saturation of the
mean quadratic displacement. And later, we see a slightly slower than ballistic growth. These
three regimes are separated by two characteristic times: a first time t1 ≈ 0.15 s associated with
the inverse of half the frequency of the most energetic waves (i.e., proportional to the time it takes
for these waves to reach its maximum amplitude), and a second time t2 ≈ 0.35 (for experiment A10)
associated with the particle velocity correlation time, as obtained directly from the correlation of the
measured velocity time series. Both times are indicated by vertical lines in Figs. 8(a) and 9(a).

B. A simple random walk model

Based on the experimental results described previously, in this section we build a model that
reproduces the evolution of the particles’ dispersion in both the horizontal and the vertical directions.
This model will help us separate the three contributions to the displacement of floaters that were
already evident from the experimental observations described above: the effect of the waves, the
effect of short-lived horizontal eddies of midsize (i.e., smaller than the size of the vessel, although
not necessarily with a single scale), and the effect of the mean large-scale circulation of the size of
the domain that also develops in the experiment. The model is based on previous models for particle
dispersion developed for isotropic and homogeneous turbulence [14,15], and extended later for the
coexistence of waves and eddies in stably stratified turbulence [23,24].

In the vertical direction we assume floaters move together with the fluid surface, whose evolution
can be approximated pointwise as a random superposition of waves (i.e., of harmonic functions).
Thus, the linear vertical displacement for each particle can be written as

δzi(t ) = zi(t ) − zi(0) =
∑

ω

A0ω
−1[cos(ωt + φω,i ) − cos(φω,i )], (3)

where A0 is the amplitude of the waves, and φω,i is a random phase for the ith particle and the
frequency ω (note we can absorb inside this phase any spatial dependence associated with traveling
waves). Following the observations of the vertical velocity spectrum in Fig. 4, the sum of frequencies
in Eq. (3) was done over uniformly distributed random frequencies between 2 and 4 Hz (as the
observed vertical kinetic energy spectrum has a peak around these frequencies), and with amplitudes
A0 = (2〈v2

z 〉/Nω )1/2 [which results in a flat kinetic energy spectrum and in an r.m.s. vertical velocity
compatible with the experiments, where 〈v2

z 〉 is the mean quadratic velocity already reported, and Nω

is the number of random waves considered in the sum in Eq. (3); the dependence of the amplitudes
in the sum as ω−1 results from integrating in time the constant amplitude of all harmonic modes in
the velocity to get spatial displacements]. From δzi(t ), the mean quadratic vertical displacement can
finally be obtained as

〈δz2〉(t ) = 〈
δz2

i

〉
(t ), (4)
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FIG. 10. Mean quadratic displacements in the vertical (solid lines) and horizontal directions (dashed lines),
for forcing amplitudes A = 10, 15, and 20 mm (from bottom to top), as obtained from the experiments, and
multiplied by an arbitrary factor to separate them vertically (color labels are as in Fig. 9). In black lines, we
show the mean quadratic displacements in the vertical (solid) and horizontal directions (dashed) obtained from
the model. The case with A = 5 is similar and not shown for simplicity. The gray dash-dotted lines indicate a
ballistic displacement of the particles predicted solely from the general circulation in each of the experiments.
Note that for all times these ballistic displacements are insufficient to explain the observations, and only at late
times the observed displacements approach the predictions from the mean flow.

where the average on the right-hand side is done over an ensemble of particles. The results of this
simple model for the vertical displacements can be seen in Fig. 10, where the model is compared
against the experimental results. The random superposition of waves correctly reproduces the
ballistic growth at early time, the time of saturation of 〈δz2〉(t ), and the fluctuations around a mean
value observed at later times.

We now proceed to consider the case of horizontal displacements. Here the waves are not
sufficient to capture the dynamics in the three observed regimes. Following the observations, we
consider a model with three components: (i) drag of the floaters by the waves, (ii) trapping by
short-lived eddies, and (iii) advection by a mean large-scale circulation. For the waves we consider
a random superposition of harmonic functions as that given by Eq. (3), but we now assume these
waves displace the particles horizontally a distance δr (wav)

i (t ) with an associated mean velocity vs

(instead of vz), which is caused by the Stokes drift. To estimate the r.m.s. value of vs we consider
the Craik-Leibovich approximation [45,46] (or equivalently, an averaged Lagrangian approximation
[47,48]), leading to

vs =
〈∫

vω · ∇vω dt

〉
, (5)

where vω is the velocity field associated with the gravity waves. If we estimate vω as the propagation
velocity of a traveling wave, then from Eq. (5), by means of dimensional analysis, and using the dis-
persion relation for deep water waves, we can estimate vs ∼ kv2

z T ∼ 2πv2
z /c, where T ≈ 0.33 s is

the period of the most energetic waves (with f = 3 Hz), k is their wave number, and c ≈ 470 mm s−1

is their phase velocity obtained from the dispersion relation. For each experiment, the Stokes drift
velocity obtained from this approximation is of the order of the observed values for σvx and σvy in
Table I, which is consistent with the fact that fast oscillations observed in the particles’ velocities
(and displacements) should be associated with drag by gravity waves.

To the displacement resulting from the waves, a continuous time random walk (CTRW) process
was added to take into account trapping and displacement of the floaters by short-lived eddies,
following [15,23]. At each step t , a particle is trapped and advected for a time tt by an eddy of
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radius rt with a velocity vt . The time interval tt during which a particle is trapped in each step
is a random variable uniformly distributed between 0 and 0.35 s (the observed floaters’ velocity
correlation time). The radius of the eddies rt that trap the floaters are also randomly distributed,
with a distribution following Kolmogorov scaling P(rt ) ∼ r4/3 for r � L and 0 for r > L, where L
is a characteristic length which we associate with the amplitude of the wavemakers’ displacement
A. Note that as a result, we consider a multiscale superposition of eddies that can trap the particles,
each with a trapping (or living) time tt ; if some events of trapping can also result from superposition
of long or quasistanding waves (see, e.g., [30]) we will assume that our simple CTRW process can
also mimic its result). Finally, the distribution of the random velocities of the eddies vt is given by
a Rayleigh distribution with mean value 〈vt 〉 = L/T , which in practice is also close to fmaxL where
fmax is the frequency where the observed Lagrangian vertical velocity spectrum has its maximum
(≈3 Hz). In each step, the floaters displace in a circle until, after the time tt , they are trapped by
another eddy. Thus, the net horizontal displacement for each particle, resulting from the trapping by
the eddies in each step, is δrCTRW

i = 2rt | sin(θt )|, where θt = vt tt/rt is the central angle of motion
of the particle while trapped.

Finally, to model the contribution from the large-scale coherent circulation in the vessel, we
model that circulation using a velocity,

v(circ)(x, y) = u0 sin

(
2πx

Lx

)
cos

(
2πy

Ly

)
x̂ − u0

Ly

Lx
cos

(
2πx

Lx

)
sin

(
2πy

Ly

)
ŷ, (6)

where Lx and Ly are the lengths of the tank in each direction and u0 is the characteristic velocity of
the circulation obtained from simple inspection of the particle trajectories (see Fig. 6; in practice,
u0 is in all cases one order of magnitude smaller than the observed values of vx, vy, σvx , and σvy

in Table I). The advection of randomly placed particles by this circulation δr(circ)
i is obtained from

direct integration.
The total mean quadratic horizontal displacement is finally given by

〈δr2〉(t ) = 〈(
δr(wav)

i + δr(CTRW)
i + δr(circ)

i

)2〉
, (7)

where again the left-hand side average is computed over an ensemble of particles.
Figure 10 shows the mean squared horizontal displacements obtained from this model together

with the results from the experiments, for the cases with A = 10, 15, and 20 mm (the case with
A = 5 is similar and not shown for simplicity). Note that while the curves are multiplied by arbitrary
factors to separate them vertically and help the comparison, the same factors were used for the model
and the experimental data in each case, and thus there is no prefactor adjusted to get the correct
amplitudes. The model is able to capture the three regimes, and further confirms that these three
physical effects are responsible for the general evolution of the particle displacements. Indeed, each
component of the model (drag by the waves, trapping by short-lived eddies, and advection by the
large-scale mean circulation) is needed to reproduce the three regimes observed in the experiments:
The effect of the waves is required to explain the early ballistic regime, trapping by short-time eddies
captures the midtime saturation, and the late time dispersion cannot be reproduced without taking
into account the slow advection by the mean circulation (whose contribution is, however, negligible
at early times as also shown in Fig. 10). Note that the model presented here is not intended as a
fundamental model for the transport of floaters in free surface flows (some choices, although based
on the experimental observations, are somewhat arbitrary), but as a proof of concept pointing at the
basic physical ingredients at work that result in the dispersion seen in Figs. 8 and 9.

V. PREFERENTIAL CONCENTRATION OF FLOATERS

Finally, as a first approach to the study of multiparticle statistics of floaters dispersed by free
surface flows, we briefly study the phenomenon of preferential concentration and of formation of
clusters in the experiments: Does this flow exhibit preferential concentration of the floaters, or are
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FIG. 11. Delaunay tessellation for an instantaneous configuration of floaters, using a small number of
particles in experiment A10.

they randomly distributed in space? To answer this question we consider the position of particles in
the x-y plane and perform a Delaunay tessellation on the images frame by frame, using the position
of the particles in the plane as vertices. The Delaunay tessellation (or, other tessellations such as the
Voronoï tessellation [19], which in fact is the dual of the Delaunay tessellation) allow quantification
of the mean area occupied by the particles, and can be used instead of measurements of mean particle
density to characterize inhomogeneities in the particle distribution (see, e.g., [30]). An example of
the Delaunay tessellation for one frame in experiment A10, and for just a few particles, can be seen
in Fig. 11.

In order to study cluster formation we computed the PDFs of the areas of the triangles,
normalized by the mean of the distribution, as shown in Fig. 12 for experiments A10 and A20.
Interestingly, the shape of the PDFs seems insensitive to the strength of the forcing A. Moreover,
it can be shown [49] that for a random distribution of points, the distribution of areas S (properly
made dimensionless) obtained from a Delaunay tessellation follows the Gamma distribution,

P(S) = ba

�(a)
Sb−1e−bS, (8)
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FIG. 12. PDFs of the areas of the triangular cells resulting from the Delaunay tessellation, in experiment
A10 (a) and A20 (b). As a reference, a best fit using a Gamma distribution function is shown in both panels.
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where � is the gamma function, a = 〈S〉2/σ 2
S , a = 〈S〉/σ 2

S , and σS is the standard deviation of S.
For uniformly distributed random points, a = 1 and b = 1/〈S〉 [35]. Figure 12 shows a best fit to
the observed PDFs using the Gamma distribution. The PDFs are compatible with this distribution
with a = (1.7 ± 0.3) for all forcing amplitudes, a signature of a relative excess of larger areas, and
thus indicating the presence of clusters in the flow. Using the criteria proposed in [35] for data that
follows a Gamma distribution, we further determined a critical dimensionless area Ac = 0.23. Thus,
only floaters forming a triangle of dimensionless area smaller than Ac (i.e., to the left of the peak of
the distribution) belong to a cluster.

Based on the PDFs we can conclude that surface wave turbulence, albeit with possible contri-
butions from eddies and the large-scale circulation in the vessel, generates clustering of floaters.
However, the reasons behind the observed preferential concentration are not easy to disentangle.
The independence of the observed PDFs with the forcing amplitude A (which controls the strength
of the large-scale mean circulation and of the horizontal eddies, and affects the mean quadratic
particle displacements as discussed in previous sections), suggests that midsize eddies and the
large-scale circulation do not play a dominant role in the observed clustering. Particles in the surface
of the fluid can also experience effective compressibility effects, which can result in floaters being
attracted to contracting regions of the flow [50], albeit in practice a weak effective compressibility
reduces the preferential concentration. Finally, capillarity can also result in the agglomeration of
small particles (as capillarity makes particles with similar wetting attractive) [51]; however, in our
case the particles’ diameter is of the order of the gravity-capillary crossover length λC , and we do
not observe particles sticking together in the experiments). We are thus left with the effect of the
Stokes drift by traveling surface waves, of standing waves, and of the random superposition of waves
expected in a wave turbulent flow. It has been shown that inhomogeneities of a transported quantity
can grow exponentially in wave turbulence [21], although for a potential flow the growth is slow
(note, however, that our flow has solenoidal contributions). More probably, a faster mechanism
for the accumulation is the breakdown of Archimedes’ law associated with capillarity, which
makes the floaters inertial [30,52]. Such preferential concentration was observed in experiments
of wave turbulence with small particles in [30], where the accumulation was studied using particle
concentrations.

VI. CONCLUSIONS

While in recent years there have been significant advances in the experimental study of surface
wave turbulence in the Eulerian framework [6–12], the study of this problem in the laboratory from
the point of view of Lagrangian trajectories or of buoyant inertial tracers has received significantly
less attention [28,29]. Here we presented laboratory experiments of surface wave turbulence excited
by paddles in the deep water regime, with the surface of the fluid seeded with buoyant particles
or floaters. For different forcing amplitudes, all resulting in r.m.s. wave steepness (which measures
the strength of nonlinearities) smaller than 3%, we performed an ensemble of seven experiments
for each forcing, and simultaneously measured particle trajectories for 23 s and for an average of
52 floaters in each experiment realization. The displacement, velocity, and acceleration of each
floater was obtained using particle tracking velocimetry with two ultrafast cameras and a 120-Hz
acquisition frequency. We studied the statistics of the floaters’ velocity and acceleration, the velocity
power spectrum, the mean squared vertical and horizontal displacements, and the formation of
clusters of particles using a Delaunay tessellation.

The statistics of all components of the floaters’ velocity and acceleration is close to Gaussian,
with no dependence on the forcing amplitude, at least for the range of values considered in our
experiments. The observed kinetic energy frequency spectra are reminiscent of those found in
oceanic measurements using buoys [32,33], and display a rather shallow or flat spectrum for
frequencies smaller than those of the surface waves excited by the paddles (<3 Hz), a peak around
this frequency, and a power law decay compatible with E ( f ) ∼ f −4.5 for higher frequencies. While
for low frequencies (�1 Hz) the power spectrum of the vertical velocity vz is flat, a shallow
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dependence with the frequency f is observed in the power spectrum of the horizontal velocity
components vx and vy. Given the length of our vessel of 198 cm, for frequencies f � 10−1 s−1

no waves can be expected to be associated with these excitations, and thus such low frequency
excitations observed in the power spectrum of vx and vy can only be associated with the contribution
from horizontal eddies and a slow advection by a large-scale circulation that builds over time in
the entire vessel. The squared amplitude of these modes is, however, from 2 to 20 times smaller
(depending on the frequency and on the experiment) than the peak squared amplitude of the forced
wave modes with f ≈ 3 Hz.

The measured mean squared vertical and horizontal displacements of the particles display two or
three separate behaviors at early, intermediate, and late times. On the one hand, the mean squared
vertical displacement shows a ballistic growth at early times (before the half period of the strongest
waves), followed by a saturation at a level proportional to the mean squared amplitude of the waves.
On the other hand, the mean squared horizontal displacement shows a ballistic growth at early
times, a saturation at intermediate times, and a second growth with time at late times (after the
floaters’ velocity correlation time is reached). We also presented a simple model for these observed
displacements. For vertical displacements, assuming that the vertical position of the particles follows
a random superposition of harmonic waves suffices to quantitatively reproduce the observations. For
horizontal displacements the model is built upon the following: (i) drag by a random superposition
of waves, (ii) a continuous-time random walk process associated with eddy turbulence, and (iii)
a slow deterministic displacement. This model properly captures the three behaviors seen in the
experimental data, and successfully associates each behavior with a physical process: The ballistic
growth of the dispersion at early times is dominated by the effect of the waves, the saturation at
intermediate times is caused by the trapping of the floaters by short-lived midsize eddies, and the
growth at late times results from the advection of the floaters by the large-scale mean circulation in
the vessel. The success of this simple model in capturing the dispersion at different times not only
allowed us to disentangle the different physical effects contributing to the dispersion of particles
in the flow, but also confirms the utility of continuous time random walk models [14,15,23,24]
to generally describe the statistical displacement of particles in turbulent flows. However, it is
important to note that for these experiments the models were mostly used as a way to identify
dominant physical processes acting on different timescales, as parameters were obtained or adjusted
from the experimental observations.

Finally, and as a first approach at studying multiparticle statistics in these flows, the Delaunay
tessellation allowed us to identify the formation of clusters. Independently of the amplitude of
the forcing, and with criteria used in previous studies of preferential concentration of particles
(see, e.g., [35]), the statistical results indicate that clusters of floaters are indeed generated in the
experiments. Overall the results show that valuable information on free surface flows, as well as on
their transport and dispersion properties, can be obtained from measurements from particle tracking
velocimetry using buoyant particles, richly supplementing information accessed in previous studies
using Eulerian or surface deformation measurements.
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