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Controlling dispersive hydrodynamic wavebreaking in a viscous fluid conduit
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The driven, cylindrical, free interface between two miscible Stokes fluids with high vis-
cosity contrast have been shown to exhibit dispersive hydrodynamics. A hallmark feature
of dispersive hydrodynamic media is the dispersive resolution of wavebreaking that results
in a dispersive shock wave. In the context of the viscous fluid conduit system, the present
work introduces a simple, practical method to precisely control the location, time, and
spatial profile of wavebreaking in dispersive hydrodynamic systems with only boundary
control. The method is based on tracking the dispersionless characteristics backward
from the desired wavebreaking profile to the boundary. In addition to the generation of
approximately steplike Riemann and box problems, the method is generalized to other,
approximately piecewise-linear dispersive hydrodynamic profiles, including the triangle
wave and N wave. A definition of dispersive hydrodynamic wavebreaking is used to obtain
quantitative agreement between the predicted location and time of wavebreaking, viscous
fluid conduit experiment, and direct numerical simulations for a range of flow conditions.
Observed space-time characteristics also agree with triangle and N-wave predictions.
The characteristic boundary control method introduced here enables the experimental
investigation of a variety of wavebreaking profiles and is expected to be useful in other
dispersive hydrodynamic media. As an application of this approach, soliton fission from
a large, boxlike disturbance is observed both experimentally and numerically, motivating
future analytical treatment.

DOI: 10.1103/PhysRevFluids.4.074804

I. INTRODUCTION

The interfacial dynamics of a viscous fluid conduit exhibit a wide range of dispersive
hydrodynamic behavior observable in other geophysical, superfluidic, optical, and condensed matter
media [1]. A viscous fluid rises buoyantly through a more viscous, stationary fluid, and, under
appropriate conditions, the interface resembles that of a deformable pipe. The interface’s dynamics
can be accurately described by the conduit equation [2–4], a nonlinear dispersive partial differential
equation that has been shown to admit a rich zoology of multiscale coherent wave solutions [5].
Experimentally, solitons [2,6,7], dispersive shock waves (DSWs), and the interactions between
them [8–10] have been observed to be in excellent agreement with conduit equation predictions. In
this sense, the viscous fluid conduit is an ideal laboratory environment for the study of dispersive
hydrodynamics.

Dispersive shock waves are coherent structures that are fundamental to dispersive hydrodynamics
[1]. The first applications of conservative, dispersive hydrodynamic models to hydrodynamic wave-
breaking occurred in the context of undular bores in water waves [11] and collisionless shocks in
plasma [12]. A common feature in both these and subsequent dispersive hydrodynamic applications,
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is the fundamentally unique nature of wavebreaking. Conservative wave dispersion compensates
nonlinear self-steepening to give rise to an expanding, oscillatory train of amplitude-ordered
nonlinear waves bookended by a large amplitude solitary wave and a packet of small amplitude
dispersive waves. To distinguish conservative, dispersive wavebreaking from its counterpart in
dissipative media that gives rise to steady, viscous shock waves [13], the term dispersive shock
wave or DSW has been adopted [1]. As in classical gas dynamics [14], the model problem for shock
generation is the Riemann problem that consists of an initial, sharp step in amplitude.

A major challenge for the experimental study of DSWs is the controlled realization
of wavebreaking that involves the spontaneous generation of oscillations when nonlinear
self-steepening enhances small-scale dispersive processes. One obstacle to the laboratory generation
of a desired wavebreaking profile is its reliable initiation from only boundary control. Laboratory
nonlinear dispersive wave environments constrained by boundary control include fluids such as
shallow water wave tanks (see, e.g., Ref. [15]) and viscous fluid conduits [6]. Also included are
nonfluid systems such as intense laser light propagation in optical fibers [16], magnetic spin waves
[17], and granular crystals [18]. It can be difficult to achieve controlled wavebreaking conditions
without boundary interactions. Here, we report on a simple mathematical observation that yields
a feasible way to achieve a variety of wavebreaking profiles away from boundaries. We track
the (long-wave) characteristics of the dispersionless conduit equation backwards in time from
the desired wavebreaking profile. The resulting solution is then used as a boundary condition for
conduit experiments to realize a variety of wavebreaking profiles at desired spatial locations. This
technique was used to generate dispersive hydrodynamic flows in a viscous fluid conduit [9,10]. In a
related work in laser propagation through a nonlinear fiber [19], experimentalists created hyperbolic
simple waves aided by the corresponding dispersionless long-wave shallow water model.

Changing between boundary and initial conditions is a useful tool in the study of nonlinear
waves. The piston shock problem is a canonical boundary value problem in the theory of classical
shock waves. Whitham reformulated the problem by tracing characteristics back from the piston to
an equivalent initial value problem that was then solved via the method of characteristics [20].
Here, we do the reverse by converting a desired initial value problem into a boundary value
problem in the context of dispersive shock waves. We use this approach to precisely realize several
wavebreaking profiles in experiment: step, box, triangle, and N-wave configurations. We find
that, despite neglecting short-wave dispersion, we can precisely control the location and time of
wavebreaking as well as the long-wave characteristics that lead up to breaking. This is supported
both theoretically by numerical simulations of the conduit equation and experimentally with our
viscous conduit setup. This control method is also used to generate a large number of solitary waves
(soliton fission) from a box profile. This relatively simple approach turns out to be quite effective
and could be applied to other dispersive hydrodynamic media. Indeed, dispersive hydrodynamic
wavebreaking and its control have played a decisive role in recent shallow water experiments [15,21]
and intense light propagation in defocusing, optical media [19,22].

The paper is organized as follows. Section II is the theoretical section and includes background
information on the conduit equation and the mathematical procedure for converting the initial value
problem into a boundary value problem. Section III is the experimental section and covers both
numerical and experimental methods and analysis. Conclusions are in Sec. IV.

II. THEORY

A. Conduit equation

Conduits generated by the low Reynolds number, buoyant dynamics of two miscible fluids with
differing densities and viscosities were first studied in the context of geological and geophysical
processes [23]. We create viscous fluid conduits with glycerine as the exterior fluid and dyed, diluted
glycerine as the interior fluid. Long-wave, slowly varying perturbations to a uniform background
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conduit result in the conduit equation [2,3]

AT + g�

8πμ(i)
(A2)Z − μ(e)

8πμ(i)
[A2(A−1AT )Z ]Z = 0, (1)

where μ(i) is the interior dynamic viscosity, μ(e) is the exterior dynamic viscosity, � = ρ (e) − ρ (i) is
the difference in exterior to interior fluid densities, and g is gravitational acceleration. This equation
approximately governs the evolution of the circular interface with cross-sectional area A at vertical
height Z and time T . The simplest wavebreaking configuration is a step decrease in conduit area

A(Z, Tb) =
{

A2, Z < Zb

A1, Z � Zb
, (2)

for some A2 > A1 = πR2
0, where R0 is the conduit radius, Zb is the breaking location, and Tb is the

breaking time. We can nondimensionalize the equation and rescale the leading area to unity via the
scalings

a = 1

πR2
0

A, z =
√

8ε

R0
Z, t = gR0�

√
ε√

8μ(i)
T, (3)

where ε = μ(i)

μ(e) is the interior to exterior viscosity ratio. Then, the conduit equation in nondimen-
sional form is

at + (a2)z − [a2(a−1at )z]z = 0, z ∈ R, t > tb. (4)

We represent the desired wavebreaking profile via the data a(z, tb) = a0(z). For example, the step
profile Eq. (2) is

a0(z) =
{

ab, z < zb

1, z � zb
, z ∈ R, (5)

where ab = A2/A1 > 1 is the jump ratio and zb, tb are the nondimensional breaking height and time,
respectively. We also consider the box profile of amplitude ab and width w,

a0(z) =
{

ab, zb − w < z < zb

1, else
, z ∈ R, (6)

the triangle profile of amplitude ab, width w, and hypotenuse slope m = ab−1
w

,

a0(z) =
{

mz + (ab − mzb), zb − w < z < zb

1, else
, z ∈ R, (7)

and the N-wave profile of maximum amplitude amax, minimum amplitude amin, width w, and slope
m = amax−amin

w
,

a0(z) =
{

mz + (ab − mzb), zb − w < z < zb

1, else
, z ∈ R. (8)

For example profiles, see Fig. 1.

B. Inviscid Burgers equation

To approximately realize the breaking confirgurations that give rise to a0(z), e.g., Eqs. (5)–(8),
we seek to identify the spatiotemporal profile for times prior to breaking t < tb. We assume that
prior to DSW formation, the third order dispersive term is negligible. A dimensional analysis of
Eq. (1) shows that the nonlinear advective term dominates the dispersive term prior to breaking if

Zb � μ(e)

g�Tb
, (9)
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(a) (b) (c) (d)

FIG. 1. Characteristic plots (large plots) and wavebreaking profiles at time of breaking (small plots).
The gray regions are areas where wavebreaking has occurred and small-scale dispersion is important so the
inviscid Burger’s solution is no longer valid. The light vertical and horizontal lines depict strong and weak
discontinuities in the profiles at the time of breaking. Shown here are step (a), box (b), triangle (c), and N-wave
(d) wavebreaking profiles.

where Zb and Tb are the dimensional breaking height and time, respectively. For the experiments
reported here, μ(e)/(g�) ≈ 0.30 s cm, Tb ∈ (80, 140) s, and Zb ∈ (15, 27) cm. Therefore, we are
well within the expected regime of validity. We will further justify the assumption of dispersionless
dynamics with numerical and physical experiments. This is a long-wave assumption that is valid
when |az|/|a| ∼ |at |/|a| � 1, when nonlinearity exceeds wave dispersion. We therefore neglect the
dispersive term, [a2(a−1at )z]z in Eq. (4), and reverse time and shift space via

z = ζ + zb, t = −(τ − tb), a = u, (10)

where u(ζ , τ ) now satisfies the time-reversed inviscid Burgers equation,

uτ − (u2)ζ = 0, τ > 0, ζ ∈ R, (11)

u(ζ , 0) = u0(ζ ) = a0(ζ − zb), (12)

which has the implicit solution

u(ζ , τ ) = u0[ζ + 2u(ζ , τ )τ ]. (13)

Then, converting Eq. (13) back to conduit equation variables and evaluating at the boundary z = 0,
we have an implicit form of the boundary condition in terms of the known initial condition a0(z),

a(0, t ) = a0[−2a(0, t ) t]. (14)

A necessary condition that precludes breaking for 0 < t < tb is a′
0(z) < 1/2tb for all z. We now

consider the specific case of step data Eq. (5). For this case, the self-similar, rarefaction wave
solution is operable

u(ζ , τ ) =

⎧⎪⎨
⎪⎩

u− : ζ � 2u−τ,

ζ

2τ
: 2u−τ � ζ � 2u+τ,

u+ : ζ � 2u+τ.

(15)

The substitution Eq. (10) along with

tb = zb

2

ab − 1

ab
, u− = 1, u+ = ab (16)
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(a) Boundary temporal profile. (b) Spatio-temporal development
of the wavebreaking profile.

FIG. 2. (a) Temporal profile of the boundary condition Eq. (17). (b) Evolution of the rescaled rarefaction
wave Eq. (17). As time moves forward, the wave approaches the desired step. The dots in (a) correspond to the
times depicted in (b), from left to right.

yields the sought-for boundary condition

a(0, t ) =

⎧⎪⎨
⎪⎩

1 : t � 0

(1 − 2t/zb)−1 : 0 < t < (ab−1)
2ab

zb

ab : t � (ab−1)
2ab

zb

. (17)

This solution and its evolution are shown in Fig. 2. Note that we have chosen the specific breaking
time tb in Eq. (16) so that a(0, t ) = 1 for t � 0. Any desired breaking time can be achieved by a
simple time shift.

C. Definition of dispersive wavebreaking point

To compare the predicted versus actual dispersive wavebreaking profile, we have performed
direct numerical simulations of the conduit Eq. (4) with the boundary condition Eq. (17) for
zb = 100, tb = 50, and ab = 2. A space-time contour plot of the simulation and its comparison with
the predicted step profile are shown in Fig. 3. Near the point of breaking, dispersion is no longer
negligible; as a result, a perfect Riemann step is not realized in the conduit equation. Therefore,
we introduce a definition of dispersive wavebreaking as follows. By an analysis of numerical
simulations of the conduit Eq. (4) for a variety of breaking points (zb, tb) and amplitudes ab, we
introduce a robust definition of the space-time location of wavebreaking from numerical simulations
and experiment using the slope, γ , at the wave front’s midpoint

γ (t ) = ∂a

∂z
(z, t )

∣∣∣∣
z=zm (t )

, where zm(t ) satisfies

a(zm, t ) = 1

2
[max

z
a(z, t )] + 1

2
[min

z
a(z, t )].

(18)

We define the breaking time for both numerical simulation and experiment as the time tb when the
slope achieves an inflection point in time: γ̈ (tb) = 0. We then define the breaking height zb as the
location where the profile achieves its maximum amplitude: a(zb, tb) = maxz a(z, tb). The breaking
point (zb, tb) identified by the dashed lines in Fig. 3 corresponds to the inflection point of the slope
γ (t ) evolution shown in Fig. 4.
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FIG. 3. Numerical simulation of the conduit equation with initial condition a(z, 0) = 1 and the boundary
condition Eq. (17) with zb = 100 and ab = 2. The predicted zb = 100 and tb = 50 are identified by the
intersection of the vertical and horizontal dashed lines. The oscillatory wave profile at the extracted time and
location of breaking tb = 51, zb = 97 (see Sec. II C) and its corresponding theoretical step profile are shown in
the lower panel.

D. Generalizations to piecewise linear profiles

This method of neglecting the dispersive term can be used to generate a variety of initial
conditions, the formulas for which are included in the Appendix. In Fig. 1, we show characteristic
plots based on the dispersionless approach to generate a step in Fig. 1(a), a box in Fig. 1(b), a
triangle in Fig. 1(c), and an N wave in Fig. 1(d).

There are some restrictions on the types of profiles we can generate. For an entire profile to be
above the z = 0 boundary at the time of breaking, we require the width of the profile to be less than
or equal to zb. For triangle waves and N waves, there is an additional width-height ratio that must
be satisfied in order for the diagonal portions to be fully realized. These conditions are listed in the
Appendix.

III. EXPERIMENT

A. Setup

The experimental apparatus shown in Fig. 5(a) consists of a square acrylic column with dimen-
sions 4textcm × 4 cm × 92 cm; the column is filled with glycerine a highly viscous, transparent,
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FIG. 4. Leading edge slope γ (t ) in Eq. (18) extracted from the numerical simulation depicted in Fig. 3
and the inset. The time of breaking tb occurs at the inflection point γ̈ (tb) = 0 of the slope as a function of
time (middle circle). Inset: three profiles in space corresponding to the marked points in time. The predicted
breaking time is tb = 50.

FIG. 5. (a) Schematic of the experimental setup. (b) Schematic of the conduit near t = tb. Dispersion leads
to the emergence of a nonmonotonic profile near the time of breaking.
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exterior fluid. A nozzle is installed at the base of the column to allow for the injection of the
interior fluid. To eliminate surface tension effects, the interior fluid is a solution of glycerine,
deionized water, and black food coloring. As a result, the interior fluid has both lower viscosity
and density than the exterior fluid (μ(i) � μ(e), ρ (i) < ρ (e) ) and we assume mass diffusion is
negligible.

Interior fluid is drawn from a separate reservoir and injected through the nozzle via a high
precision computer controlled piston pump. The interior fluid rises buoyantly. By injecting at a
constant rate, a vertically uniform fluid conduit is established. This uniform steady state is referred
to as the background conduit and is well-approximated as pipe (Poiseuille) flow, verified in Ref. [9].
Data acquisition is performed using high resolution cameras equipped with macro lenses at the
injection nozzle and the predicted breaking height. A ruler is positioned beside the column within
camera view for calibration purposes and to determine the observed breaking height.

B. Methods

To use the results from Sec. II, we rescale Eq. (17) from the nondimensional conduit equation
(lower case variables) to physical parameters (upper case variables). Following the scaling in Eq. (3)
and the Poiseuille flow relation,

Q = πg�

8μ(i)
R4, (19)

where R is the conduit radius, a volumetric flow rate profile Q(t ) is generated for the desired
wavebreaking configuration; see the Appendix. The camera near the nozzle takes images before
and after the initiation of the boundary volumetric flow profile, so background conduit diameters
are measured. The breaking camera takes several high-resolution images before, during, and after
the time of breaking. A schematic of the conduit near the height and time of breaking is shown
in Fig. 5(b). After breaking occurs, the pump is reduced to the background rate Q0, and the
conduit is left to equilibrate before the next trial while fluid is extracted from the top of the fluid
column.

The images from the camera are processed in MATLAB to extract the conduit edges as shown
in Fig. 6(a) by taking a horizontal row of pixels and calculating the maximum and minimum
derivatives for each row. As the background is white and the conduit is black, this identifies the
conduit boundary. The edge data is then processed with a low-pass filter to reduce noise due to
pixelation of the photograph and any impurities (such as bubbles) in the exterior fluid. The conduit
diameter is then calculated as the number of pixels between the two edges.

We calibrate the ratio μ(i)/� by fitting the observed diameter data and its corresponding nominal
volumetric flow rate to the Poiseuille flow relation Eq. (19). We then determine the experimental
breaking height zb and time tb using the definition in Sec. II C. Experimental profiles of prebreaking,
breaking, and postbreaking compared with the desired step profile are shown in Fig. 6(b).

C. Results for step profile

Utilizing the theoretically prescribed boundary condition Eq. (A1) that results in the step profile
Eq. (5) at (z, t ) = (zb, tb) for the solution of the dispersionless equation at + 2aaz = 0 with unit
step initial condition, we perform numerical simulations of the full conduit Eq. (4) and carry out
fluid experiments. A typical numerical simulation is depicted in the contour plot of Fig. 3. The wave
profile steepens until dispersion becomes important, coinciding with the emergence of oscillations,
which prevent the formation of a discontinuity. Nevertheless, using the method described in the
previous section to extract (zb, tb) from the simulations, the observed breaking locations and times
are within 3.75% and 1.35% relative error, respectively, of their predicted values across a range of
step ratios and breaking heights as depicted by the triangles and dashed lines in Fig. 7.

For the experiment, 13 trials were taken over the course of 4 h. The main results of this
experiment are also shown in Fig. 7. The predicted breaking heights and times (zb,in and tb,in)
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FIG. 6. (a) Processed images from a glycerine trial. Measured parameter values are μ(i) = 72 ±
1 cP, ρ (i) = 1.222 ± 0.001 g/cm3, μ(e) = 1190 ± 20 cP, ρ (e) = 1.262 ± 0.001 g/cm3, and Q0 = 0.25 ±
0.01 ml/min. The grayscale images are overlayed with the extracted conduit edges. (b) Nondimensional area
plot corresponding to the images in panel (a). The vertical line indicates the desired step front that results from
the procedure in Sec. III B. The dashed line indicates the expected step in a dispersionless system. Predictions
were fit to the found Poiseuille flow relation Eq. (19).
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(a) (b)

(c) (d)

FIG. 7. Comparison of dispersionless (long-wave) theory (dashed lines), full conduit equation numerics
(triangles), and glycerine experiments (squares) for the step wavebreaking configuration. (a) Breaking height
results and (b) relative error for experiments as a function of jump ratio ab, with the same fluid parameters as
those in Fig. 6. (c) Breaking time results and (d) relative error for those same experiments. Note the breaking
time error bars are smaller than the symbols used. The black squares correspond to an expected zb = 15.3 cm,
the gray to zb = 20.5 cm, and the white to zb = 25.6 cm.

(denoted with dashed lines) are very close to the experimentally observed values (zb,out and tb,out)
(denoted by squares). Figure 7 includes the theoretical prediction, numerical simulations, and
experiment for the breaking height (a) and the breaking time (b). All experiments were under 5%
relative error in breaking height zb and 2.5% relative error in breaking time tb. Therefore, a high
degree of wavebreaking control is achieved by our approach. Furthermore, the prediction’s accuracy
appears to be independent of the breaking amplitude Ab, which is consistent with the dimensional
analysis requirement Eq. (9) that is independent of wave amplitude.

These observations extend previous experimental comparisons of theoretical predictions for the
conduit equation involving solitons [2,6–8] and dispersive shock waves [9,10]—i.e., nonlinear,
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FIG. 8. Experimental data for triangle wave (top) and N-wave (bottom) boundary conditions. Overlay lines:
fitted characteristic data for triangle (a) and N-wave (b) profiles.
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(a)

(b)

FIG. 9. Evolution of the box profile resulting in a train of solitary waves. (a) Experiment. (b) Conduit
equation numerical simulation. Both experiment and numerical simulation utilized the boundary condition
Eq. (A2).
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dispersive waves—into the nondispersive, nonlinear regime. It is noteworthy that theoretical
predictions derived from the relatively simple inviscid Burgers model, at + 2aaz = 0, agree so well
with numerical simulations and experiment across a range of parameter values.

D. Results for triangle, N, and box profiles

Experiments were also performed for other wavebreaking profiles. Experiments on boundary
conditions for generating triangle waves Eq. (A3) and N waves Eq. (A5) showed good fidelity to
the expected shapes, as shown in Fig. 8. Moreover, we obtain quantitative agreement between the
predicted characteristics [recall Figs. 1(c) and 1(d)] and the observed curves of equiarea prebreaking
as shown by the dashed lines overlayed on the cross-sectional area contour plot. For the figure, we
fit zb and tb to those found experimentally, then generated the predicted characteristics (contours)
based on these values. We find this fitting method is equivalent to fitting μ(i)/� to the data, similar
to what was done for the step profile.

As an application of our approach to generating desired wave profiles at breaking, we show an
experimental and numerical realization of solitary wave fission [21] from the long-time dynamics
of a box profile in Figs. 9(a) and 9(b), respectively. The boundary time-series for the box profile,
Eq. (A2), results in an approximately rectangular-shaped area profile with a specified width and
height. The long-time evolution of this profile results in a train of solitary waves. The numerical
simulation in Fig. 9(b), generated by the same boundary control procedure, exhibits excellent
agreement with the experiment in Fig. 9(a) for the experimental volumetric flow rate Q0 =
0.2 ml/min if we introduce the fitted values μ(i)/� = 724 cm/min and μ(i)/μ(e) = 0.05 (measured
values μ(i)/� = 1087 cm/min and μ(i)/μ(e) = 0.02). Future work aims to explore the postbreaking
dynamics of this and other dispersive hydrodynamic problems by leveraging the boundary control
method introduced here.

IV. CONCLUSION

While previous experimental and theoretical work on the conduit equation and its corresponding
viscous two-fluid system have primarily focused on dispersive hydrodynamics postbreaking, i.e.,
when nonlinearity and dispersion are important, this work considers the simpler case of very long
waves where nonlinearity dominates the flow. A simple long-wave hyperbolic model (the inviscid
Burgers equation) is used to theoretically control nonlinear wave propagation at the interface of
a viscous fluid conduit prior to wavebreaking. The prebreaking validity of the hyperbolic model
enables the precise creation of desired wavebreaking profiles in the interior of the dispersive
hydrodynamic domain with only boundary control. Characteristics are propagated backward in time
from a desired wave profile until they reach the boundary. So long as the backward characteristics do
not overlap, it is possible to obtain a boundary condition whose forward propagation approximately
results in the desired wavebreaking profile.

To compare this dispersionless theory with the dispersionful conduit equation and experiment,
we define wavebreaking by an inflection point criterion for the wavefront’s slope. This definition
provides a bridge between the long-wave, prebreaking dynamics and the short-wave oscillations
that emerge postbreaking. Most importantly, we obtain quantitative agreement between theory,
numerical simulation, and experiment with this wavebreaking definition. For a step profile, the
observed breaking heights and times are within 5% and 2.5%, respectively, of their expected values.
For more complex profiles—the triangle and N-wave configurations—we obtain good characteristic
control observed in measured space-time contour plots. One example of postbreaking dispersive
hydrodynamics is highlighted where a large number of solitary waves emerges from a large box
profile. Numerical simulation and experiment utilizing the same box profile boundary condition
result in striking agreement and motivate further analysis of the soliton fission problem in the context
of the viscous fluid conduit system. The relatively simple characteristic method proposed here holds
promise for other dispersive hydrodynamic media.
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APPENDIX: BOUNDARY CONDITIONS FOR WAVEBREAKING PROFILES

All following profiles have a breaking time tb based on the breaking height zb of tb = zb/2.
The boundary condition a(0, t ) resulting in an approximate step profile for Eq. (4) [see Fig. 1(a)]:

a(0, t ) =

⎧⎪⎪⎨
⎪⎪⎩

1 : t � 0

(1 − 2t/zb)−1 : 0 < t < (ab−1)
2ab

zb

ab : t � (ab−1)
2ab

zb

. (A1)

For a box, this profile is cut off at the time of breaking tb = zb/2 [see Fig. 1(b)]:

a(0, t ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 : t � 0

(1 − 2t/zb)−1 : 0 < t < (ab−1)
2ab

zb

ab : (ab−1)
2ab

zb � t < zb
2

1 : t � zb
2

. (A2)

For a right triangle with height ab, width w, and hypotenuse slope m = ab−1
w

, once the maximum
desired height is reached, we begin decreasing the flow rate in a way consistent with Eq. (14) [see
Fig. 1(c)]:

a(0, t ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 : t < 0

(1 − 2t/zb)−1 : 0 � t < (ab−1)
2ab

zb

−mzb+ab
1−mzb+2mt : (ab−1)

2ab
zb � t < w

2

1 : t � w
2

. (A3)

The width-height restrictions on the triangle wave are based on having the triangle fully in the
conduit at the time of breaking as well as the nonbreaking condition a′

0(z) < 1/2tb:

1 � zb

w
� 1

ab − 1
. (A4)

For an N wave with maximum height amax, minimum height amin, width w, and slope m =
amax−amin

w
, we generate a triangle wave whose final area dips below the mean flow rate down to

amin before returning to the mean flow [see Fig. 1(d)]

a(0, t ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 : t < 0

(1 − 2t/zb)−1 : 0 � t < (amax−1)
2amax

zb

−mzb+amax
1−mzb+2mt : (amax−1)

2amax
zb � t < w−(1−amin )zb

2amin
.

zb−w
zb−2t : w−(1−amin )zb

2amin
� t < w

2

1 : t � w
2

(A5)
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The N-wave width-height restrictions are also based on having the wave fully in the conduit at the
time of breaking and the nonbreaking condition a′

0(z) < 1/2tb

1 � zb

w
� 1

amax − amin
. (A6)

Note when w → ∞ and amin = amax = ab, we arrive at Eq. (17).
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