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Dynamics of a trapped vortex in rotating convection

J. W. Atkinson,* P. A. Davidson,† and J. E. G. Perry‡

Engineering Department, University of Cambridge, Trumpington Street,
Cambridge, CB2 1PZ, United Kingdom

(Received 30 April 2019; published 3 July 2019)

We consider axisymmetric rotating convection in a cylindrical domain, focusing on the
eye that can form at the center of a cyclonic vortex. Upon increasing the thermal forcing
we observe that the system undergoes a Hopf bifurcation from a state with a steady eye to
one in which the eye oscillates. For an aspect ratio, Ekman number, and Prandtl number of
0.1 we find that the critical Reynolds number at which this transition occurs is 398.

We examine the nature of the oscillations and propose that the behavior results from an
inertial wave trapped in the eye, with the frequencies falling within the expected range for
inertial waves, and the oscillations displaying clear similarities to a standing inertial wave
in a cylinder. We also examine the effect of Ekman number on the oscillation, finding that
there is an upper limit beyond which oscillations do not occur.
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I. INTRODUCTION

The subject of eye formation—the development of a region of calm, reversed (or subsiding) flow,
localized to the central axis of a vortex—is a particularly interesting problem. It has attracted the
attention of geophysical fluid dynamicists for a long time, with an early discussion by Morton [1].
The phenomenon is perhaps most widely recognized in the weather system known as the tropical
cyclone, but similar flows have also been observed in columnar vortices such as dust devils [2] and
waterspouts [3], and perhaps also tornadoes [4]. A review of the nature and dynamics of the tropical
cyclone, including some discussion of eyes, is given by Emanuel [5].

Though many observations have been made of the nature of the eye in the tropical cyclone,
there is still a lack of fundamental understanding as to how or why it forms. A number of different
theories have been presented to explain the phenomenon and the topic is still strongly debated; see
the exchange between Pearce [6,7] and Smith [8]. Smith [9] suggests that subsiding flow is driven
by an axial pressure gradient at the center of the cyclone imposed by radial pressure gradients
due to the swirling flow, a theory that he states complements the ideas of Willoughby [10]. Pearce
[11] considers a rather complex model with the origins of the eye explained in a different way. He
suggests that the eye is formed as a result of azimuthal vorticity generation due to axial gradients in
angular momentum. There are other theories besides the ones singled out here, each with a different
explanation and focusing on different aspects of a complex system.

Looking beyond the tropical cyclone literature, similar results have been observed for columnar
vortices by Harlow and Stein [12] and Rotunno [13,14]. They find that numerical investigations of
intense, swirling, cylindrical flow can lead to a region of reversed flow at the axis. Harlow and Stein
[12] adopt a similar explanation to Smith [9], suggesting that this arises due to an axial pressure
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FIG. 1. Sketch of the eye, eyewall, and lower boundary layer.

gradient imposed by the rotating flow. Rotunno [13] takes an approach closer to that of Pearce
[11]. He identifies the eyewall (or “core wall” as he calls it) as an intense annulus of negative
azimuthal vorticity generated by axial gradients in angular momentum. The vortex core enclosed by
this annulus then develops a downward flow in response to the azimuthal vorticity. At intense levels
of swirl with a no-slip lower boundary a disruption occurs near the base of the vortex akin to the
vortex breakdown observed in experiments [15]. Rotunno notes that when this occurs the eyewall
above the breakdown displays perturbations, likely a result of standing centrifugal waves.

It is interesting to note that in some cases Harlow and Stein [12] observe oscillations of the
eye. Though they remark upon it, they offer no discussion or explanation for this. Oscillations have
also been observed in models of dust devils by Castaño et al. [16]. In this case the oscillations are
asymmetric and occur through a sequence of Hopf bifurcations. Oscillations have also been recorded
in tropical cyclones by Chen et al. [17] who provide a description of high frequency oscillations
observed within the eye. These oscillations display similarities to those reported by Harlow and
Stein [12] with fluctuations of the vertical velocities within the eye.

One omission in much of the work of Harlow and Stein [12], Rotunno [13], and the model of
Pearce [11] is the presence of a no-slip lower boundary. This is discussed in a recent paper by
Oruba et al. [18]. They present a purely hydrodynamical explanation for the formation of eyes in
atmospheric vortices. Like Pearce [11] and Rotunno [13], they propose that the eye is formed as
a passive response to the development of an inverted conical region of intense negative azimuthal
vorticity, the so-called eyewall. The key difference between this and previous works, however, is
the origin of this negative azimuthal vorticity (see Fig. 1). While others suppose that it arises due to
axial gradients in angular momentum, Oruba et al. [18] point out that these axial gradients can make
no net contribution to the azimuthal vorticity. The negative vorticity that comprises the eyewall
is in fact generated in the lower boundary layer. To test this hypothesis they perform numerical
simulations of a simplified model problem; rotating convection in a shallow basin with a no-slip
base. They observe a secondary meridional flow, spun up by the Coriolis force, consisting of a
single large convective cell. The vorticity that is generated at the lower boundary is swept upward as
the flow converges at the central axis to produce an eyewall and then, provided the eyewall is strong
enough, an eye. They found that the flow was largely dependent on Reynolds number (and hence
the temperature difference between the top and bottom of the vortex), with only a slight dependence
on Prandtl number. The dependencies on aspect ratio, Ekman number (rotation rate), and Prandtl
number (thermal diffusivity) were explored further in a followup paper [19]. A detailed discussion
of the dynamics of the tropical cyclone boundary layer, including how it may be swept into the
eyewall, is given by Smith and Montgomery [20].

Many fluid systems undergo bifurcations in flow structure or behavior as the forcing is increased.
Canonical examples are Taylor-Couette flow [21] and Rayleigh-Bérnard convection [22]. The nature
of bifurcations in fluid mechanics is well discussed by Benjamin [23]. We observe that the cyclone
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FIG. 2. Schematic of the flow domain.

transitions from a vortex with a steady eye to a state in which the eye oscillates as the thermal
forcing is increased, eventually displaying chaotic motion.

This paper further explores the model proposed by [18]. After an overview of the model and
the governing equations in Sec. II, we present numerical simulations, the details of which are given
in Sec. III. The first results in Sec. IV concern the formation of a steady eye. We follow this with
our observations of oscillatory eyes in Sec. V. After characterizing the nature of the oscillation we
finally consider the possibility that this phenomenon can be explained by the presence of a trapped
inertial wave in Sec. VI.

II. GOVERNING EQUATIONS AND MODEL PROBLEM

Like Oruba et al. [18], we consider a shallow, cylindrical (r, φ, z), axisymmetric, domain of
height H and radius R. The domain has solid boundaries; free-slip at the upper surface and no-slip
at the base and side, which rotate at a constant rate. There is a prescribed heat flux in the vertical
direction which allows the temperature to be decomposed into the form T = T0(z) + θ (x, t ), where
θ (x, t ) is the deviation from the linear background profile T0(z) = (dT0/dz)z. The advantage of this
decomposition is that the boundary conditions for a constant vertical heat flux can now be written as
∂θ/∂z = 0 on the upper and lower surfaces. These conditions are all summarized in the schematic
of the flow domain in Fig. 2.

The reference frame co-rotates with the lower boundary at rate �. Assuming an incompressible
Boussinesq fluid of bulk density ρ0, expansion coefficient β, kinematic viscosity ν, and thermal
diffusivity α, the governing equations can be written

Du
Dt

= − 1

ρ0
∇p − 2 � × u + ν∇2u − βθg , (1)

and

Dθ

Dt
= α∇2θ +

∣∣∣∣dT0

dz

∣∣∣∣uz , (2)

where g is the gravitational acceleration, and the centrifugal force has been incorporated into the
pressure.

Performing a poloidal-azimuthal decomposition on the velocity such that up = (ur, 0, uz ) and
uφ = (0, uφ, 0), Eq. (1) can be rewritten [24] as
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where ωφ is the azimuthal vorticity, 
 = ruφ is the specific angular momentum in the rotating frame,
and

∇2
∗ = r

∂

∂r

(
1

r

∂

∂r

)
+ ∂2

∂z2

is the Stokes operator.
Making use of the characteristic velocity scale U = √

gβ(dT0/dz) H we introduce a Reynolds
number for the flow as

Re = UH

ν
. (5)

The three other dimensionless parameters that control the flow are the Prandtl number, Pr = ν/α,
the Ekman number, Ek = ν/(�H2), and the aspect ratio � = H/R.

III. METHODS

We performed numerical simulations using a finite difference method. Equations (1) and (2) are
solved using second-order spatial differences and first-order integration in time from some specified
initial condition. The numerical methods are based on those of Harlow and Welch [25], adapted
for an axisymmetric coordinate system as was done for the studies of Harlow and Stein [12]. The
simulations use a regular staggered mesh of 1000 radial × 100 axial cells. Spatial and temporal
resolution studies were performed by increasing and decreasing both the mesh resolution and time
step to ensure the results were converged. We compare our steady results of eye formation to those
of Oruba et al. [18] below and find they agree well. Following the approach in [18] we initially
chose to keep Pr, Ek, and � all fixed at 0.1 and varied Re as our main parameter of interest. Of
course, the Reynolds number is a proxy for the thermal forcing of the cyclone, setting the heat flux
through the domain.

The first results were obtained by treating the flow as an initial value problem, integrating in
time until a steady solution was obtained. For subsequent runs we took the common approach of
incrementally increasing the forcing (Re) and using the end state of one simulation as the initial
condition for the next. Provided the increase in Re between cases is not too large, this allows us
to avoid the computational effort associated with calculating the long transients during the initial
spin-up.

A number of different parameters were tracked over the course of the simulations as potential
ways of characterizing the eye. We choose as a diagnostic for the strength of the eye the maximum
downward velocity on the axis. This is the parameter that provided the cleanest time series for
measuring variation in the oscillatory cases.

IV. STEADY FLOWS

Let us begin by considering relatively weak flows that do not display an eye and gradually
increase the forcing. These steady-state results can be seen in Fig. 3 where the meridional circulation
has been plotted using the Stokes stream function, . In all cases Ek = Pr = � = 0.1. At low
Reynolds number [Fig. 3(a)] a single large meridional convection cell has formed. As Re is
increased, the boundary layer at the base intensifies, with strengthening azimuthal vorticity ωφ .
This vorticity is swept up into the bulk flow as it converges toward the rotation axis to form the
conical region of negative azimuthal vorticity known as the eyewall.

These results are similar to those of Oruba et al. [18] and we see that as Re is increased further,
the eyewall strengthens as the upward advection of vorticity dominates over diffusion. Eventually
Prandtl-Batchelor diffusion of ωφ out of the eyewall allows for the formation of an eye. The size and
strength of the eye grows as we increase Re and the boundary layer vorticity strengthens. The size of
the eye does not vary much between Re = 266 and Re = 300 [Figs. 3(d) and 3(e)] but it continues to
increase in strength. Clearly there must be a critical Reynolds number at which the steady region of
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FIG. 3. Plots of ωφ/r overlaid with meridional streamlines  for a variety of Reynolds numbers, showing
the formation of a steady eye that grows as forcing is increased. In all cases Ek = Pr = � = 0.1. Solid
streamlines represent the bulk, clockwise circulation, while dashed streamlines indicate anticlockwise motion.

reversed flow—the eye—first forms near the top of the axis. Our results suggest that for an aspect ra-
tio, Prandtl number, and Ekman number of 0.1, this critical value is Re ≈ 128, consistent with [18].

In addition to the streamlines it is instructive to also consider the contours of angular momentum.
This will later help us understand the mechanism by which oscillations are driven. These contours
are shown in Fig. 4 near the eye region where the effects of background rotation are weak (see
below). Note that due to the free-slip boundary condition, the contours of angular momentum must

FIG. 4. Plots of ωφ/r overlaid with contours of angular momentum 
 (black) and streamlines (yellow) for
a range of Reynolds numbers with Ek = Pr = � = 0.1.
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FIG. 5. Normalized total angular velocity for the flow (top) and averaged in the z direction (bottom),
Re = 300.

meet the upper surface at right angles. Near the base, however, they lie almost parallel to the lower
surface due to the material advection of angular momentum by the inflow and the no-slip boundary
condition. Diffusion is strong in the lower boundary layer and eyewall, but outside these areas
diffusive effects are weaker and we expect the angular momentum contours to more or less follow
the streamlines as per Eq. (4). This is indicated in Fig. 4(a). Close to the axis the meridional flow
is weak, and the contours of 
 peel away from the streamlines as 
 diffuses into the eye in much
the same way as ωφ . As a result the contours of angular momentum in the vicinity of the eyewall
straighten, becoming more vertical instead of following the meridional circulation. This can be seen
in Figs. 4(b) and 4(c).

As Re is increased further and a larger eye develops [Fig. 4(d)] it can be seen that the contours
of 
 move farther in toward the axis, particularly at the upper levels where the flow in the eye
sweeps them inward. This results in the contours developing a kink as can be seen in Fig. 4(d).
At this point we consider the first term of Eq. (3), ∂ (
2/r4)/ ∂z. The kinking of the contours of

 will give positive axial gradients, and therefore act as a source of positive azimuthal vorticity.
This can be seen in Figs. 3(d), 3(e), and 4(d) where the top left region near the axis has developed
positive vorticity. This steady state represents an equilibrium between competing effects; there is
the diffusion of negative vorticity into the eye from the eyewall, but the resulting flow acts to sweep
the contours of 
 inward to a point at which they become a competing source of positive azimuthal
vorticity.

Finally, we consider the angular velocity of the flow in the inertial frame of reference as a
combination of the local and background rotation, � + uφ/r. Plotting this in Fig. 5, normalized
by �, we see that the absolute rotation in the inertial frame is large near the axis and in the eye, and
weaker toward the outer boundary where it falls to the level of the background rotation. The lower
plot shows the z-averaged total angular velocity as a function of radius. It is worth taking a moment
to note the distinction between angular velocity and uφ ; though rotation near the axis is large, the
velocity is low, as for a tropical cyclone, peaking around r = 0.1R near the eyewall. In the next
section we show how oscillations develop from this steady flow.

V. OSCILLATORY FLOWS

As the forcing is increased further we observe that once the Reynolds number exceeds a second
critical value, the eye ceases to be steady. The nature of this oscillation is illustrated in Fig. 6. It
begins with the familiar recirculating eye near the axis inside the eyewall [Fig. 6(a)]. The center
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FIG. 6. Plots showing how streamlines and ωφ/r vary over one complete oscillation cycle (T ) for Ek =
Pr = � = 0.1, Re = 400.

of the recirculating region (i.e., the region of negative ) then moves radially outward toward the
eyewall [Figs. 6(b) and 6(c)]. This reaches an extreme around halfway through the oscillation cycle
[Fig. 6(d)], where the recirculating region has nearly been pinched off from the axis to exist as an
annulus between r = 0.05R and r = 0.10R. At this point the reversed flow near the axis strengthens
[Figs. 6(e) and 6(f)] expanding to reconnect with the displaced annulus [Fig. 6(g)] and returning to
the starting state of a large eye filling the region between the eyewall and the axis [Fig. 6(h)].

It is useful to examine a time series associated with the oscillations. The maximum downward
velocity on the axis follows the spatial oscillations of the eye with the largest magnitude occurring
when the eye is full, and the smallest when it is displaced toward the eyewall. The strength of the
oscillations can be obtained from the time series once it reaches a steady amplitude. This is shown
in Fig. 7. The Fourier transform of the time series yields the frequency of the oscillations (Fig. 8).

At yet higher values of Re the oscillations cause the eyewall to become significantly distorted.
As it snaps back to a fully formed state, a region of negative vorticity is pinched off near the top
of the domain and is carried radially outward along the upper surface. This behavior is illustrated
in Fig. 9, which shows streamlines for the duration of one cycle. We note that the oscillations we
observe here display qualitative similarities to those seen by Harlow and Stein [12] for columnar
vortices. Eventually, as forcing continues to increase, the system becomes increasingly aperiodic
with the peaks in the Fourier transforms becoming less clear, and the noise elsewhere in the spectrum
increasing. This corresponds to the oscillations becoming increasingly complex with fluctuations in
amplitude. This can clearly be seen in the Fourier transform at high Reynolds number in Fig. 8(d).
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We find that the critical Reynolds number at which oscillations in the eye begin, for Pr, Ek, and �

of 0.1, is Rec ≈ 398. The nature of this transition can be examined by plotting the amplitude of the
oscillations against (Re − Rec) as in Fig. 10. The amplitude scales with (Re − Rec)1/2 up to a value
of (Re − Rec)/Rec = 0.2. Beyond this point higher-order effects come into play. This is typical
behavior of the Landau equation, with the transition to an oscillatory state being a supercritical
Hopf bifurcation.

For rotating flows displaying a bifurcation, such as Taylor-Couette flow, it is common practice to
examine the dependence upon the rotation rate of the system. To this end we performed simulations
at a variety of Ek around Rec to see how the critical value for transition changes. The results of
this can be seen in Fig. 11. It was observed that the critical Reynolds number at which oscillations
begin increases with Ek until around Ek = 0.125. Beyond this it appears that only steady eyes can
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FIG. 9. Plots showing how streamlines and ωφ/r vary over one complete oscillation cycle (T ) for Ek =
Pr = � = 0.1, Re = 650.

exist. This is because oscillations are viscously damped. Increasing Ek further we found that no eye
formed for Ek > 0.23, consistent with [19]. For Ek less that 0.1, we find that the critical Reynolds
number for oscillations falls dramatically as viscous effects reduce.
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FIG. 10. Bifurcation diagram for the oscillating eye. The dashed line is proportional to (Re − Rec )1/2.
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VI. OSCILLATION AS A TRAPPED INERTIAL WAVE

We now seek to describe a physical mechanism by which this oscillation occurs. Perturbations
to an incompressible fluid rotating about a central axis are subject to restoring action through the
Coriolis force when viewed in the rotating reference frame. This makes such a fluid a wave-bearing
system, capable of supporting oscillations known as inertial waves. This phenomenon is described
at length in Greenspan [26] and Davidson [24]. Closed wave-bearing systems often display natural
frequencies and associated mode shapes. It is possible, therefore, that the observed behavior of the
eye might be explained by the presence of a “trapped” or “standing” inertial wave.

To examine this claim it is necessary to probe the dynamics of the eye a little more closely to
see whether it might be capable of sustaining inertial waves. We saw in Fig. 5 that the angular
velocity at the center of the vortex was much higher than the background rotation. We now look
more specifically at the rotation in the eye region. Averaging uφ and  in time across one complete
cycle we define the time-averaged eye as the region in which avg < 0. We then average in the z
direction over the eye to examine how uφ , averaged in both time and z, varies with r, as shown in
Fig. 12.
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FIG. 12. Variation of time and z average of (uφ/r + �)/� in the eye, Re = 480.
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FIG. 13. Rol in the eye (top) and bulk (bottom) for the case Re = 350.

We see that the mean angular velocity in the eye is significantly larger than the background
rotation. We can introduce a local Rossby number for the flow as

Rol =
√

u2
p

2 H (uφ/r + �)
,

where up is the poloidal velocity. This approach was first suggested by Morton [1] who notes that
for flows with intense swirl, the effects of rotation from the local flow could well be more significant
than those due to any background rotation. Figure 13 shows Rol for a Reynolds number just below
the critical value for oscillations to occur. We can see that Rol is small in the vicinity of the eye,
and larger in the bulk of the flow, as might be expected. A closer look at the eye region shows a
clear change in Rol that is bounded by the avg. = 0 streamline at the edge of the eyewall. It is well
known [24] that a requirement for inertial waves to be present is a small Rossby number, i.e., rapid
rotation. A study by Staplehurst et al. [27] found inertial waves emerging in a rotating fluid for a
Rossby number below 0.4. Examining Fig. 13 we see that Rol in the eye is well below this and
therefore may be capable of supporting inertial oscillations.

Henderson and Aldridge [28] and Beardsley [29] study inertial waves in a frustum (a truncated
cone), the approximate shape of the eye. They both record a base natural frequency of �/� = 1.12
for a given aspect ratio, noting that the mode shapes in the frustum appear to be a perturbed
version of those for a cylinder. They also both observe the absence of a modified first mode for
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FIG. 14. �/� for the oscillations vs Re, along with selected values for a cylinder and frustum for
comparison.
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FIG. 15. Figure 11(a) from Chen et al. [17] showing oscillations in a simulated Typhoon Hagupit. Color
shows the time-height variation of water vapor convection while the black line shows the maximum wind speed
in m s−1 (scale on right). Reproduced with permission.

a cylinder (r, φ, z) = (1, 0, 1) in their results, with the lowest mode observed both numerically
and experimentally for a frustum being (1,0,2). It is possible to calculate an analytical solution for
inertial waves in a cylinder for which an aspect ratio of R/H = 1 gives a frequency of �/� = 1.26
for the first mode (1,0,1), and 1.71 for the second axial mode (1,0,2). Comparing the natural
frequency of a cylinder and frustum of the same aspect ratio, we find that �/� = 1.42 for
mode (1,0,2) in a cylinder compared to 1.12 for the frustum discussed above. This provides some
indication of how shape changes frequency. These values are all consistent with the general result
for inertial waves that the frequency � must lie in the range 0 to 2 �, where � is the rotation rate.
Taking an estimate of the average angular velocity in the eye, we obtain an estimate of �/� = 1.54
for our Re = 400 simulation. This analysis can be repeated for other values of Re with the results
shown in Fig. 14. We see that all of the frequencies for eye oscillations lie within the required bound
for inertial waves, with values around those expected for a cylinder or frustum.

We return at this point to discuss further the observations of high-frequency oscillations in
tropical cyclones by Chen et al. [17]. They report fluctuations in a number of parameters in the eye
region with a typical period of around 2 h (between 90 and 150 min). One of these parameters is the
water vapor convection which is directly related to the vertical motion. Figure 15 shows the variation
of this property in the eye region of a simulated Typhoon Hagupit (one of the cyclones in which
high-frequency oscillations were observed) as a function of height and time. It can be seen that the
oscillations occur over the height of the cyclone with a period of approximately 2 h. If we adopt a
similar approach to the one taken for our simulations we can estimate the local rotation rate in the
core from the reported maximum wind speed. This is around 50 m s−1 at a radius of approximately
50 km which gives an angular velocity of 3.6 rad h−1. For oscillations with a period of around 2 h
this gives an estimation of �/� = 0.9 which is of the order observed in our simulations, and below
the upper bound of 2 for inertial waves. It is possible, therefore, that these oscillations are caused
by trapped inertial waves, although this hypothesis requires further investigation.

FIG. 16. Plots showing how contours of 
 evolve in the eye over one cycle (T ) for Ek = Pr = � = 0.1,
Re = 400. Color = ωφ/r.
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FIG. 17. Plots showing how contours of 
 evolve in the eye over one cycle (T ) for Ek = Pr = � = 0.1,
Re = 600. Color = ωφ/r.

Finally we consider the contours of 
 in the eye. These are plotted over the course of one
oscillation in Fig. 16. In the bulk flow the contours broadly follow the streamlines, as expected
from Eq. (4). At the top of the domain they are perpendicular to the upper boundary due to the
free-slip boundary condition. In the eye, however, the contours deviate from the streamlines. It can
be seen that over the course of one oscillation the contours go from initially being close to vertical
to leaning to the left, then to the right, before returning to their original state in a kind of “sloshing”
motion. Figure 17 shows the same phenomenon, but at a higher level of forcing where the motion
of the contours is more noticeable. Figure 18 shows ωφ/r and the contours of 
 for the first mode
of a standing inertial wave in a cylinder. Comparing the eye and the cylinder we can see that the
two follow qualitatively the same pattern. This is as we might expect given the observations of
Henderson and Aldridge [28] and Beardsley [29] that standing waves in a frustum are perturbed
versions of those in a cylinder.

FIG. 18. Plots showing how contours of 
 (top) and streamlines (bottom) evolve over one cycle (of period
T) for a standing inertial wave in a cylinder.
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Equation (3) can provide perhaps a more physical understanding of the nature of oscillations. The
back and forth sloshing of the contours of 
 leads to a variation of ωφ/r as a result of the ∂
/∂z term.
Both Rotunno [30] and Davidson [24,31] provide good discussions of how this vortex stretching
generates azimuthal vorticity. The induced variation in ωφ/r can be seen in Figs. 6, 16, and 17. The
process can be summarized as follows: The flow in the fully formed eye sweeps the contours of 


radially inward at the upper levels, causing them to slant to the left. This positive axial variation in

 generates positive ωφ that counteracts the flow in the eye causing it to be swept outward toward
the eyewall. The flow again carries with it the angular momentum causing a rightward slant to the
contours of 
. This in turn generates negative ωφ and the eye is restored before the process then
repeats.

VII. CONCLUSIONS

We have examined the system of rotating convection first proposed by Oruba et al. [18]. The
resulting flow may form an eye at the center of a cyclonic vortex. By increasing the forcing
we observed that the system can undergo a bifurcation from a state with a steady eye to one in
which the eye oscillates. For an aspect ratio, Ekman, and Prandtl numbers of 0.1 we find that the
critical Reynolds number at which this transition occurs is 398. Examining how the amplitude of
the oscillations vary with increased forcing we conclude that this bifurcation takes the form of a
supercritical Hopf bifurcation. We examine the dependence on Ekman number, finding that there is
an upper limit beyond which only steady eyes are observed. As the Ekman number is decreased the
critical Reynolds number for oscillation falls.

Examining the nature of the oscillations we propose that the behavior results from a trapped
inertial wave at the center of the vortex. The frequency of the oscillations falls within the expected
range for inertial waves, and the motions in the eye display clear similarities to those of a standing
inertial wave in a cylinder.
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