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High-fidelity simulations are performed to study active flow control techniques for
alleviating deep dynamic stall of an SD7003 airfoil in plunging motion. The flow Reynolds
number is Re = 60 000 and the freestream Mach number is M = 0.1. Numerical simu-
lations are performed with a finite-difference-based solver that incorporates high-order
compact schemes for differentiation, interpolation, and filtering on a staggered grid. A
mesh convergence study is conducted and results show good agreement with available
data in terms of aerodynamic coefficients. Different spanwise arrangements of actuators
are implemented to simulate blowing and suction at the airfoil leading edge. We observe
that, for a specific frequency range of actuation, mean drag and drag fluctuations are
substantially reduced while mean lift is maintained almost unaffected, especially for a
two-dimensional (2D) actuator setup. For this frequency range, 2D flow actuation disrupts
the formation of the dynamic stall vortex, which leads to drag reduction due to a pressure
increase along the airfoil suction side, towards the trailing edge region. At the same time,
pressure is reduced on the suction side near the leading edge, increasing lift and further
reducing drag.
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I. INTRODUCTION

Unsteady flows over plunging and pitching airfoils with large excursions in effective angle
of attack exhibit the phenomenon of dynamic stall. This process is characterized by unsteady
separation and formation of a large leading-edge vortex that exerts high-amplitude fluctuations in
the aerodynamic loads. Comprehensive reviews of this phenomenon in the context of helicopter
rotor blades and pitching airfoils are provided in Refs. [1–4]. For the case of flapping wings, as
well as for severe impinging gusts, highly unsteady forcing induces the formation of dynamic stall
including a leading-edge vortex [5]. The evolution and interaction of such vortical structures with
the aerodynamic surfaces have a significant impact on flight stability and performance. At certain
conditions, dynamic stall can lead to negative damping that results in a limit-cycle growth of rotor
displacements. This phenomenon is referred to as stall flutter [6] and it can lead to catastrophic
mechanical failure.
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Although several studies have been conducted for pitching airfoils at high Reynolds numbers,
research on dynamic stall for plunging airfoils is more scarce, especially at low and moderate
Reynolds numbers. The study of airfoils in plunging motion finds application in design and
operation of small unmanned air vehicles and micro air vehicles and therefore we aim to extend our
knowledge on the flow features involved in fully separated low-Reynolds-number flows involving
deep dynamic stall.

High-fidelity simulations can provide an abundance of data with both high spatial and temporal
resolutions. For example, several two-dimensional computational studies are available in the
literature regarding dynamic stall under laminar, transitional, and turbulent flow conditions [3,
7–11]. For high-Reynolds-number flows, numerical simulations traditionally employ a hierarchy
of turbulence models augmented in some instances with empirical transition predictions. Visbal
and co-workers have employed implicit large-eddy simulation (ILES) to investigate the phe-
nomenon of dynamic stall for different flow configurations including plunging and pitching motion
[12–17].

In the present work we perform implicit large-eddy simulations to study the flow physics of deep
dynamic stall over a plunging SD7003 airfoil. The deep stall regime is characterized by a separation
region on the order of the airfoil length, while the light stall regime presents a separation region that
extends approximately by the airfoil thickness, with a less severe lift loss [18]. The flow condition
investigated is selected based on the availability of results from other high-fidelity simulations [12]
and particle image velocimetry [19–21]. A compressible formulation is adopted since the local
Mach number near the leading edge of a moving airfoil can be three to five times higher than that
in static conditions [1,18]. As a result, compressibility effects must be taken into consideration even
for low-Mach-number flows.

Several investigations of dynamic stall control by both active and passive means, especially for
pitching airfoils, are described in the survey in Ref. [22]. Several control strategies have been tested
including leading-edge blowing [23–25], leading-edge plasma actuation [26–28], thermoacoustic
actuation [16], vortex generators [29–31], and synthetic jets [31–33]. In some cases, fixed-wing
devices have been used, such as slots [34], leading-edge droop [30,35,36], and trailing-edge flaps
[37,38].

In this work, blowing and suction actuation is modeled at the airfoil leading edge aiming to
reduce the overall drag through modification of the dynamic stall vortex. Active flow control
strategies by means of periodic forcing can have effects such as attaching otherwise separated
flows, or avoiding separation, and increasing lift [39]. Previous works show that small disturbances
can have a considerable impact on the flow dynamics for a pitching NACA0012 experiencing
dynamic stall at high Reynolds numbers [13–15]. In the present investigation it is shown that,
for a specific frequency range of actuation, drag is substantially reduced, while lift is maintained
almost unaffected. The physical mechanisms responsible for the changes in the flow field achieved
by actuation are discussed.

II. THEORETICAL AND NUMERICAL METHODOLOGY

A. Governing equations

To simulate the flow around a moving airfoil, we solve the weakly conservative form of the
Navier-Stokes equations in a noninertial frame. In this form, source terms emerge from grid
curvature and frame movement [40–44]. Here all terms are solved in contravariant form to allow
the use of a curvilinear coordinate system {ξ 1, ξ 2, ξ 3}. All equations are nondimensionalized
by freestream quantities such as density ρ∞ and freestream speed of sound c∞. Although the
Navier-Stokes equations are nondimensionalized by the speed of sound, the displayed results
and parameters are provided nondimensionalized with respect to the freestream velocity U∞ in
accordance with [12]. All length scales are made nondimensional by the airfoil chord L. For a frame
of reference with varying velocity in the Cartesian y direction, continuity, momentum, and energy
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equations reduce to
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and

h = h0 sin(kt ) (6)

are employed, where ρ represents the density, ui is the ith component of the contravariant velocity
vector, and p is the pressure. The term h is the frame position (cross-stream motion of the plunging
airfoil), E is the total energy, μ is the dynamic viscosity, T is the temperature, k = 2π fU∞

L is the
reduced frequency, Re = ρU∞L

μ
is the chord-based Reynolds number, Ma = U∞

c∞
is the freestream

Mach number, and Pr is the Prandtl number. The dots represent temporal derivatives of the frame
position, i.e., frame velocity and acceleration. In the previous equations, covariant and contravariant
metric tensors are defined, respectively, as

gi j �
∂xk

∂ξ i

∂xk

∂ξ j
(7)

and

gi j � ∂ξ i

∂xk

∂ξ j

∂xk
, (8)

with

g = |gi j | =
(

∂xi

∂ξ j

)2

. (9)

The terms { i
jk } represent the Christoffel symbols of the second kind and details about the present

formulation can be found in Ref. [45].

B. Numerical methods

A compact sixth-order finite-difference scheme constructed for a staggered grid is used to
calculate all spatial derivatives. To determine f ′ for a given f , a tridiagonal system is solved as

α f ′
i−1 + f ′

i + α f ′
i+1 = b

fi+3/2 − fi−3/2

3	x
+ a

fi+1/2 − fi−1/2

	x
, (10)

where α = 9
62 , a = 3

8 (3 − 2α), and b = 1
8 (−1 + 22α).
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To minimize errors from unresolved scales, a sixth-order compact low-pass filter is applied
according to

ᾱ f̄i−1 + f̄i + ᾱ f̄i+1 = ā fi + b̄

2
( fi+1 + fi−1) + c̄

2
( fi+2 + fi−2) + d̄

2
( fi+3 + fi−3), (11)

where ā = 1
16 (11 + 10ᾱ), b̄ = 1

32 (15 + 34ᾱ), c̄ = 1
16 (−3 + 6ᾱ), and d̄ = 1

32 (1 − 2ᾱ). In the current
implicit large-eddy simulations, we use ᾱ = 0.46, which implies a filter that only acts on poorly
resolved high wave numbers. Therefore, this filter provides a reliable alternative to a subgrid-scale
model as discussed in [17].

Due to the staggered grid, interpolations are necessary to evaluate properties at specific grid lo-
cations. To maintain schemes with high order, a sixth-order interpolation based on finite differences
is used according to

α̃ f̃i−1 + f̃i + α̃ f̃i+1 = b̃

2
( fi+3/2 + fi−3/2) + ã

2
( fi+1/2 + fi−1/2), (12)

where α̃ = 3
10 , ã = 1

8 (9 + 10α̃), and b̃ = 1
8 (6α̃ − 1). Additional details on the finite-difference

schemes used for derivation, filtering, and interpolation can be found in Refs. [46,47].
Near the far-field boundaries, a numerical sponge is used to damp acoustic waves. At the

inlet and outlet boundaries, a Riemann invariant transformation is implemented as the far-field
condition. The airfoil surface is modeled by a no-slip adiabatic wall. Derivatives of inviscid fluxes
are obtained by forming fluxes between the grid nodes, on the staggered grid, and differentiating
each component. Viscous terms are obtained by first computing the derivatives of primitive variables
at their respective locations (see [47] for details). Components of the viscous fluxes are then
constructed at each node and differentiated by a second application of the compact scheme. Airfoil
movement is added through source terms shown in the formulation section. All schemes discussed
are implemented with periodic boundary conditions in the spanwise ξ 3 direction. Since we employ
an O grid, periodic conditions are also enforced along the ξ 1 direction, along the mesh branch cut,
where grid points are coincident.

Two time-marching methods are utilized to advance the flow in time. A compact storage explicit
third-order Runge-Kutta scheme is used away from solid walls. In the near-wall region, a second-
order implicit time marching scheme with approximate factorization derived from the Beam and
Warming method is employed. This formulation avoids time step restrictions typical of wall-normal
mesh refinement. An overlap layer is applied at the interface between explicit and implicit time
marching schemes. The low-pass compact filter is applied after each time step of both schemes.
More details about the numerical framework employed can be found in Ref. [47].

C. Actuator setup

In the present work we perform flow control using blowing and suction on the leading edge
of the airfoil. To simulate an actuator of length s ≈ 0.01L, as shown in Fig. 1(a), a jet velocity is
introduced at the actuator location, which is centered around the airfoil leading edge and is imposed
with Eqs. (13)–(15) as

Ujet

U∞
= Ujet max

U∞
F (s)G(t )P(z), (13)

with

F (s) = exp

(
− (s∗ − 0.01)2

4.5

)
, s∗ = 5(s − 0.005), (14)

G(t ) = sin(St 2πt ), (15)

where the Strouhal number is St = f L
U∞

.
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FIG. 1. Actuator setup: (a) actuator location in the x-y plane and (b) 3D view of the 2D actuator.

The jet actuation is a sinusoidal temporal function G(t ) given by a Gaussian profile F (s) along
the wall-tangential direction s and a profile P(z) along the airfoil span with maximum jet velocity
set as Ujet max. The spanwise actuation functions are chosen with the intent of approximating the
format of real slots on the airfoil surface. This would allow comparisons to experiments. We defined
the actuator chordwise location after analyzing how efficiently the shear layer and overall flow are
disturbed with different actuator positions. For a pitching airfoil, Benton and Visbal showed that an
actuator placed near the leading edge effectively modifies the flow with minimum input [16].

To assess the influence of spanwise arrangement of actuation, different spanwise jet configu-
rations are tested through modifications of the function P(z). A two-dimensional (2D) actuator
is analyzed setting P(z) = 1 [see Fig. 1(b)]. These configurations are obtained appending points
according to

Pactuator (z) = tanh

(
2(β − α)

	zactuator
z + α

)
1

2
+ 1

2
, 0 � z � 	zactuator

2
(16)

with their mirrored values. The profiles are then appended until the whole span is covered, as can
be seen in Fig. 2.

In total, four configurations are tested, two consisting of two slots, one with three slots, and one
two-dimensional actuator. The configurations with two slots have either narrow (A) or wide (B)
spanwise jets. The same narrow jets from configuration A are tested in the setup with three slots
along the airfoil span. Further details about the 3D actuators used in this work are summarized in
Table I.

Simulations with actuation frequencies of St ∈ [0.5, 25] are first performed for the 2D actuator
with the objective of understanding flow response with respect to this parameter. In order to quantify
jet actuation efforts, the coefficient of momentum is calculated according to

Cμ =
1
Tg

∫ Tg

0

∫ sn

s0

∫ zspan

0 ρ∞Ujet (s, z, t )2ds dz dt

0.5ρ∞U 2∞Lzspan
, (17)

TABLE I. Parameters of the 3D actuators from Eq. (16). Coefficients α and β are numerical parameters
which control the smoothness and stretching of Pactuator (z).

Adequate 2 slots (A) 2 slots (B) 3 slots (C)

	zactuator ≈0.08L ≈0.16L ≈0.08L
α −10.62 −3.58 −6.01
β 2.31 2.31 2.31
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FIG. 2. Profiles of the function P(z) that specifies the spanwise arrangement of actuation.

where Tg is the period of G(t ). Different values of Cμ are tested to assess the effectiveness of flow
control. Table II displays all configurations investigated in terms of Cμ for all actuator setups. For
clarity, we will refer to simulations with a specific Cμ as case 1, 2, or 3. In what follows, results are
obtained for case 2 at St = 5, unless otherwise stated.

D. Flow configuration and mesh convergence study

Large-eddy simulations are performed for an SD7003 airfoil in a plunging motion described by
Eq. (6) at Reynolds number Re = 60 000, freestream Mach number Ma = 0.1, and static angle of
attack α0 = 8◦. The plunging motion has a reduced frequency k = 0.5 and the plunge amplitude
is set as h0 = 0.5L. This specific flow condition was selected based on the availability of results
from similar high-fidelity simulations from [12]. In this reference, simulations were performed for
different span widths. It was concluded that the main flow features were fairly insensitive to span-

TABLE II. Parameters of control setups investigated. Simulations with the same Cμ are grouped under the
same case category.

Ujet max

U∞

Case Cμ (%) 2D actuator 2 slots (A) 2 slots (B) 3 slots (C)

1 1.78 × 10−1 0.8
2 4.46 × 10−2 0.4 0.90 0.67 0.74
3 1.12 × 10−2 0.2
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FIG. 3. Grids considered in the mesh refinement study (only every other grid point in the x-y plane is shown
here).

width variations due to the energetic forcing of the plunging motion. Therefore, we employ a span
length zspan = 0.4L in our calculations similarly to the baseline case from [12].

A mesh convergence study is conducted to assess the influence of grid resolution on the simulated
flows. Figure 3 shows detailed views of the two grids which are generated with approximately
70% of the surface points located along the suction side of the airfoil. This setup is employed
since turbulence appears in this region at various stages of the plunging motion and hence finer
scales need to be resolved. At the pressure side, however, the flow does not become turbulent at
any moment during the plunging motion. The trailing edge of the SD7003 airfoil is rounded in
current simulations with an arc of radius r/L = 0.0008. This procedure is required for maintaining
the metric terms employed in the structured grid smooth.

The grids parameters are listed in Table III. In this study we employ resolutions similar to those
from Visbal [12]. It is important to mention that a similar numerical approach was used in Ref. [12]
and therefore the present investigation follows the best practices needed to properly simulate the
current flow. From grid 1 to 2, we mainly improved the spanwise resolution and the concentration
of points in the wall-normal direction in the region comprised of a chord length to the airfoil
surface. This latter refinement was achieved by changing the stretching function that defines the
grid generation.

Simulations of five cycles of plunging motion are performed, but only the last four are used to
calculate the phase-averaged statistics. Figure 4 shows the phase-averaged lift, drag, and quarter-
chord pitching moment coefficients CL, CD, and CM , respectively, with respect to the effective angle
of attack α = α0 + tan−1[ kh0

L cos(kt )].
Results obtained using both grids exhibit good agreement with [12], especially considering the

variations that occur from cycle to cycle. Such variations can be seen in Fig. 5, in which aerodynamic
coefficients obtained by the first cycle are already discarded and only the last four are employed
in computations. From the present results, we consider that the coarser mesh shown in Fig. 3
has sufficient resolution to capture the flow physics. Hence, this mesh is chosen to perform the
simulations presented in this work.

TABLE III. Grids parameters. Here 	ξ 2
wall is the distance between the airfoil surface and the first grid point

in the normal direction and 	ξ 2∗ is the distance between points in the normal direction one chord away from
the airfoil.

Grid ξ 1 ξ 2 ξ 3 	ξ 2
wall 	ξ 2∗

1 441 300 60 0.00005 0.01
2 481 350 96 0.00005 0.005
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FIG. 4. Aerodynamic coefficients obtained using grids 1 and 2 and from Ref. [12] as a function of the
effective angle of attack α.

III. FLOW FEATURES OF BASELINE CONFIGURATION

This section presents results of the current ILES for the baseline uncontrolled configuration, in
which the main physical mechanisms associated with the dynamic stall vortex are described. The
current plunge motion undergoes an effective angle of attack in the range of −6◦ � α � 22◦. Due
to transients that originated from the start of the simulations, only the last four plunging cycles from
all five available are used to calculate statistics. For visualization purposes, a phase angle φ is used
to describe the airfoil position. A schematic of the airfoil motion is shown in Fig. 6. At φ = 0◦, the
airfoil has no vertical velocity and is at the topmost position of the plunging motion. At φ = 90◦, it
has the highest downward velocity in the y direction and, at φ = 180◦, it has zero vertical velocity
being at the bottommost position of the plunging motion. Finally, at φ = 270◦ it has the highest
velocity in the y direction (upward).

Figure 7 and the Supplemental Material [48] present spanwise-averaged vorticity contours at
different phases of the plunging cycle. During the downstroke, flow instabilities begin to grow in
the shear layer formed along the suction side of the airfoil with vortex shedding occurring at the
airfoil wake as shown in Fig. 7(a). As the downward motion continues, instabilities on the suction
side grow and eventually break the large spanwise-correlated structures into finer ones, leading to
a transitional flow. While this takes place, the main leading-edge vortex (LEV) begins to form as
shown in Fig. 7(b). The LEV grows over the suction side [Fig. 7(c)], increasing lift and creating a
nose-down pitching moment.

As the LEV covers the entirety of the chord, a trailing-edge vortex (TEV) forms and lifts the
LEV away from the airfoil surface, as shown in Fig. 7(d). As the LEV lifts off, an oscillation
in the pitching moment can be observed. As the airfoil motion continues, the TEV is ejected
from the suction side [Fig. 7(e)]. When the airfoil moves upward, relaminarization starts from the

FIG. 5. Cycle to cycle variations in aerodynamic coefficients (grid 1).
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y

φ = 0◦

φ = 90◦

φ = 180◦

φ = 270◦

FIG. 6. Airfoil position for different phase angles φ.

leading edge [Fig. 7(f)] and keeps going until the entire boundary layer is relaminarized [Fig. 7(g)].
Subsequently, the Kelvin-Helmholtz instability can be observed again, leading to periodic shedding
of vortices from the trailing edge.

In order to further characterize the current flow, isosurfaces of the Q criterion are shown in Fig. 8
for all cycles. The turbulent structures are colored by pressure coefficient contours. Despite subtle
cycle to cycle variations, the main features of the dynamic stall process remain unchanged, namely,
the formation of the LEV, its transport over the airfoil, the formation of the TEV, and the departure of
both vortices. Although fine turbulent structures can be observed, it is clear that large-scale coherent

FIG. 7. Spanwise-averaged vorticity contours at different phases of the plunging motion without actuation
(see also the Supplemental Material [48]).
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FIG. 8. Isosurfaces of the Q criterion colored by CP at different phases of the plunge motion without
actuation.

structures are the most prominent in the dynamic stall process. We expect such energetic structures
to play a key role in the dynamics of the present flow, severely impacting the aerodynamic loads.
For example, the leading-edge vortex is characterized by a low-pressure region which is advected
along the suction side, dynamically affecting flight stability through changes in lift and drag forces
during the plunging motion. The next section describes the efforts towards controlling the formation
of these structures to reduce overall drag and its fluctuations while keeping lift unaltered.

IV. ACTIVE FLOW CONTROL

A. Two-dimensional actuation

An assessment of 2D actuation on the flow dynamics is presented in this section. We present
the control effect based on a single cycle evaluation. Flow actuation is turned on at φ = 0◦ after
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FIG. 9. Variations in aerodynamic coefficients for different actuation frequencies St and coefficient of
momentum Cμ for 2D actuated flows. We refer to simulations with different Cμ as case 1, 2, or 3.

five plunging cycles. Figure 9 shows the averaged values of CL, CD, and CM represented by black
dots for different actuation frequencies St. The maximum and minimum values of the aerodynamic
coefficients computed during the cycle are given by the top and bottom values of each bar. Results
obtained for the baseline configuration are depicted by orange bars, while green, blue, and red
bars represent solutions computed for cases 1, 2, and 3, respectively, as described in Table II. It is
important to recall that the coefficient of momentum Cμ for case 1 is the highest investigated, while
that for case 3 is the lowest. Hence, this figure allows an assessment of the effects of 2D actuation
in terms of both actuation frequency and its intensity on the aerodynamic coefficients.

From Fig. 9 it can be noticed that the CL do not exhibit large variations for the actuation
frequencies and Cμ considered. However, significant changes in CD and CM are observed depending
on the actuation frequency. For example, large reductions in CD appear in the range 2.5 < St < 15
compared to the baseline case for all values of Cμ investigated. Frequencies higher than St = 15
or lower than St = 2.5 do not promote a significant impact on drag and pitching moment, in terms
of both mean values and maximum and minimum amplitudes. The coefficient of momentum also
has a significant impact on the results. In general, for the flows with stronger actuation disturbances
(cases 1 and 2), reductions in maximum drag are more evident. In some occasions, better results in
terms of drag reduction are observed for case 2.
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FIG. 10. Mean aerodynamic loads compared to the baseline flow, mean lift to mean drag ratio, and
aerodynamic damping using 2D actuation.

Averaged values of CL and CD normalized by their respective baseline values are displayed in
Fig. 10. This figure also shows a drag polar plot relating CL

CD
. Again, results are presented as a

function of Strouhal number and coefficient of momentum. The behavior observed for the maximum
and minimum values of aerodynamic coefficients is similar to their averaged values. For example,
with St = 3.75 and Cμ from case 1, the airfoil drag coefficient CD is reduced to 30% of the baseline.
For the same case, the lift coefficient CL only drops to 86% of the baseline. In summary, for cases 1
and 2 and Strouhal numbers in the range 2.5 � St � 15, flow actuation is able to considerably
reduce mean values of the drag coefficient without severely impacting lift. From the figure one can
conclude that the best results in terms of the mean lift to mean drag ratio are obtained for frequencies
given by St = 3.75 and 5.0.

Figure 10 also shows the impact of actuation in the aerodynamic damping �, which is calculated
as

� = − 1

αmax − α0

∮
CMdα. (18)

It can be seen that the baseline flow has negative damping, implying that energy is transferred from
the flow to the airfoil, leading to oscillations and even flutter. While some actuation frequencies, e.g.,
cases 2 and 3 at St = 0.5, lead to even more negative values of aerodynamic damping, frequencies
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FIG. 11. Aerodynamic coefficients versus effective angle of attack for 2D actuated flows with different
frequencies (case 2).

around St = 3.75 successfully revert the issue, leading to a positive damping and a stabilizing effect
on the airfoil dynamics.

In what follows, results will be discussed based only on case 2 flow actuation. Figure 11 shows
plots of aerodynamic coefficients as functions of the effective angle of attack. Results of the baseline
flow are compared to those with actuation for St = 1, 5, and 25. Hence, it is possible to evaluate
the effects of low, moderate, and high frequencies of actuation on the aerodynamic loads during any
instant of the motion. It is clear that the actuation frequency has a large impact on the flow response,
especially for instants of downward velocity.

Different moments of the plunging motion are also highlighted by circles at φ = 32.3◦, 90.0◦,
131.4◦, and 153.5◦. One should recall from Fig. 6 that φ ∈ [0◦, 180◦] represents the downstroke
motion which includes the formation, transport, and ejection of the leading-edge vortex. These
specific values of φ are shown due to important flow features that occur at such instants and that
will be used to compare the actuation setups next.

Contours of the spanwise-averaged pressure coefficient CP with isocontours of z vorticity are
shown in Fig. 12 and the Supplemental Material [48] for the same actuation frequencies as in Fig. 11
and for the baseline case. It is observed that actuation does not delay the formation of the dynamic
stall vortex but disrupts it. At φ = 32.3◦, all flows have roughly the same aerodynamic loads (notice
that the blue circles lie on top of each other in Fig. 11). However, the shear layer is clearly disrupted
by actuation, especially in the St = 5 case. When compared to the baseline case, it can be seen that
Kelvin-Helmholtz instabilities appear and grow earlier in the plunging motion for the St = 5 setup.
Actuation at other frequencies also modifies the shear-layer but instabilities do not get amplified as
much. At φ = 90.0◦ (maximum downward velocity), the formation of the leading-edge vortex does
not occur as prominently in the St = 5 case when compared to other actuation frequencies. For this
case, vortices created by actuation successfully break the large-scale coherent structure formed at
the leading edge. On the other hand, for St = 1 and 25, the vortices created by the actuation do
not effectively disrupt the formation of the LEV. In the latter case, small vortical structures end up
coalescing and forming the LEV in a similar fashion compared to the baseline flow.

At 131.4◦ we observe in Fig. 11 the highest value of CD for the baseline flow. Actuated flows
exhibit similar aerodynamic coefficients, except for St = 5. At this frequency, Fig. 12 shows a
coherent structure with higher (less negative) values of CP compared to other cases. This effect
is a consequence of the formation of smaller vortical structures by the actuation that do not coalesce
into a single dynamic stall vortex at first. This weaker LEV also induces the formation of a less
intense TEV at φ = 153.5◦. This latter instant is represented in Fig. 11 by a second peak in drag
coefficient for the baseline flow.

Figure 13 shows CP distributions (spanwise averaged) in order to better quantify pressure
differences among the various flows previously analyzed. Results are presented at φ = 131.4◦ and
153.5◦ as a function of the airfoil chord location. A vertical dashed line marks the position where
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FIG. 12. Pressure coefficient CP contours with isolines of z vorticity for spanwise-averaged flows with 2D
actuation (case 2).

FIG. 13. Comparison between span-averaged values of CP for 2D actuators with different frequencies (case
2). The vertical dashed line indicates the location of xvsn.
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FIG. 14. Position xvsn where the inward pointing surface normal at the suction side is vertical.

the surface normal on the airfoil wall (on the suction side) is vertical, as shown in Fig. 14. This
position is given by xvsn = 0.12L and it is important to differentiate how the regions over the airfoil
suction side contribute to drag reduction. We consider the surface normal pointing inward toward the
airfoil. Lift and drag generated from pressure distributions along the airfoil surface are calculated
by L = ∮

pnydS and D = ∮
pnxdS, respectively. Here nx is the component of the surface normal in

the x direction while ny is that in the y direction. Thus, a force applied in the normal direction on the
airfoil suction side, to the left of the vertical dashed line, leads to lift reduction and drag increase.
On the other hand, a normal force applied to the right of such a line results in both lift and drag re-
ductions. Pressure forces applied on the bottom side of the airfoil will always lead to a lift increase.

For the baseline case, at φ = 131.4◦, the bump in the CP distribution appears due to the advection
of the LEV over the suction side of the airfoil. This negative value of the pressure coefficient
indicates that a strong suction occurs on the top surface of the airfoil, leading to a lift and drag
increase. Similar trends are observed for the cases with St = 1 and 25. At φ = 153.5◦, a strong
suction peak is observed at the trailing edge due to the formation of the TEV and such a feature also
increases both lift and drag. Again, the solution obtained for St = 25 is very similar to that from
the baseline flow. On the other hand, for the St = 5 setup, one observes that a mild bump forms at
φ = 131.4◦, reducing both lift and drag for this case. However, a strong suction peak is present at
the leading edge of the airfoil, both increasing lift and further reducing drag. When the airfoil is at
φ = 153.5◦, a suction peak is still present at the airfoil leading edge and a minor suction effect is
observed at the trailing edge due to a less intense TEV. In summary, lower (more negative) values of
CP to the left of the vertical dashed line in Fig. 13 would result in lower pressure drag. In the same
context, higher (less negative) values of CP to the right of the vertical dashed line also lead to lower
pressure drag. Both conditions are met when flow actuation is applied at St = 5.

The full history of spanwise-averaged CP computed on the airfoil suction side is displayed in
Fig. 15 as a function of φ. In this figure a comparison is shown for the baseline and St = 5 cases.
The dark blue colors in the plots represent the low-pressure signatures from the LEV and TEV
and one can see that they are less severe in the case with control. Figure 16 shows similar maps
but colored by the friction coefficient Cf instead. For lower φ angles, it is possible to notice the
oscillatory behavior of Cf due to the initial shear layer instabilities. The dark blue contours mark
the separation region caused by the transport of the LEV, while the dark red contours in the trailing
edge are due to formation of the TEV. In the case with actuation, the LEV is weaker so the blue

FIG. 15. Comparison of CP between baseline and 2D actuated flow with St = 5.
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FIG. 16. Comparison of Cf between baseline and 2D actuated flow with St = 5.

trace is thinner and less intense than that computed for the baseline configuration. From this figure
it is also possible to see that the separation near the leading edge has an oscillatory behavior due to
flow actuation during the downstroke motion.

The St = 5 actuation leads to a disruption of the LEV which sheds small pockets of vorticity
instead of accumulating it. This effect can be observed in Fig. 17 and the Supplemental Material
[48] and it avoids the formation of a large-scale coherent structure at the leading edge, in contrast
to the baseline configuration. In summary, a significant reduction in CD and CM occurs as a result of
the features observed due to flow actuation: mitigation of the dynamic stall vortex, strong negative
values of CP upstream of xvsn, and mild values of CP downstream of xvsn for 2.5 < St < 15. Although
the flow actuation leads to a small reduction in terms of CL, it is not as prominent as the reductions
observed in CD and CM . Since a lower actuation disturbance is employed for case 2 and the best
result in terms of CL

CD
for this case is obtained for St = 5, we will further investigate this specific flow

configuration. Therefore, we can reduce the energy expenditure in the actuation while maintaining
the mean lift to mean drag ratio above 20.

B. Three-dimensional actuation

In the preceding section, the results of 2D flow actuation for the present plunging airfoil
were presented. However, results shown in the literature discuss the enhanced performance of 3D
actuation for drag reduction in airfoil flows involving static stall [49,50]. Therefore, we present a
study of different configurations of 3D actuation to assess their impact on drag reduction. Results
are shown for St = 5 and Cμ from case 2 for the actuation configurations discussed in Sec. II C.

In Fig. 18, results are shown for the aerodynamic coefficients and it can be seen that all cases with
3D actuation exhibit higher values of CL for high effective angles of attack α when compared to the
2D actuated flow. However, the values of CD are considerably lower for the 2D actuation at the same

FIG. 17. Spanwise-averaged vorticity contours at different phase angles for the St = 5 controlled case
(case 2).
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FIG. 18. Comparison of aerodynamic coefficients obtained by 2D and 3D actuation with St = 5 (case 2).

FIG. 19. The Q criterion colored by CP comparing 2D and 3D actuation with St = 5 (case 2) at various
phases of the plunge motion.
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FIG. 20. Distribution of CP over the airfoil suction side (flow is directed from left to right) for 2D and 3D
actuation with St = 5 (case 2).

angles of attack. The same can be said for CM , except for the case with two larger slots (configuration
B), which has values of moment coefficient comparable to those obtained for the 2D actuation.

Isosurfaces of the Q criterion colored by the pressure coefficient are shown in Fig. 19 at various
moments of the plunge motion. A movie with the same features is presented as Supplemental
Material [48] comparing 2D and 3D actuations. Due to its inherent three-dimensionality, 3D
actuation exhibits earlier transitional features at φ = 32.3◦ when compared to the baseline and 2D
actuation cases. All actuated flows exhibit weaker LEVs compared to the baseline, noting that 2D
actuation is the most efficient since it is able to efficiently disrupt the LEV formation at φ = 90.0◦.
At φ = 131.4◦, we can notice that both 2D actuation and that with two wider slots (B) produce
dynamic stall vortices with higher values (less negative) of pressure coefficient. With weaker LEVs,

FIG. 21. Distribution of Cf over the airfoil suction side (flow is directed from left to right) for baseline and
2D and 3D actuation with St = 5 (case 2).
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FIG. 22. Spanwise-averaged values of CP for different configurations of actuation with St = 5 (case 2).
The vertical dashed line indicates the location of xvsn.

these cases also show TEVs which are less intense, avoiding the secondary drag peak that appears
for the baseline configuration in Fig. 18 at φ = 153.5◦.

The impact of different types of actuation on the CP distribution along the airfoil suction side
can be seen in Fig. 20 and the Supplemental Material [48]. At φ = 32.3◦, despite similar values of
aerodynamic loads observed in Fig. 18, CP contours are fairly distinct. Two-dimensional coherent
structures are present in the baseline and 2D actuation cases, while all 3D actuated flows exhibit
more complex 3D structures which promote transition to turbulence earlier in the plunging motion.
When CD reaches its peak at φ = 131.4◦, a dark region of low pressure created by the LEV is present
in the baseline flow, while milder values of CP are observed in the actuated cases. In general, the 2D
actuated flow has less negative values of CP downstream of xvsn when compared to the other cases
and the CP values are more negative upstream xvsn. Similar observations can be made at φ = 153.5◦
regarding the TEV.

Figure 21 and the Supplemental Material [48] show how flow separation changes due to
actuation. While the flow is fully two dimensional in the baseline and 2D actuated cases at φ =
32.3◦, the same cannot be said for the cases with 3D actuation. After transition takes place, regions
of separation and reattachment upstream of xvsn show higher spanwise coherence in the 2D actuated
flow. Nevertheless, as can be seen at φ = 131.4◦, the separation created by the LEV is attenuated in
all control cases. At φ = 153.5◦, all the actuated flows are able to form the TEV further downstream
compared to the baseline case, reducing its overall impact on the aerodynamic coefficients.

Finally, Fig. 22 presents a comparison of spanwise-averaged values of CP for different configura-
tions of actuation. One can see that the 2D actuation leads to lower values of CP at the leading edge,
increasing lift and reducing drag. At the same time, the suction effects towards the trailing edge
are milder for this case, further reducing drag. Values of the mean lift to mean drag ratio, as well as
aerodynamic damping, are displayed in Table IV for different actuation setups. The best results of CL

CD

are found for the 2D actuation followed by that with two wider slots (B). The same trend is observed

TABLE IV. Mean lift to mean drag ratios and aerodynamic damping for different actuation configurations
with St = 5 (case 2).

Adequate 2D actuation 2 slots (A) 2 slots (B) 3 slots (C)

CL
CD

20.48 12.03 19.13 14.73

� 0.0122 −0.0318 0.0066 −0.0146
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when analyzing values of aerodynamic damping. In summary, it can be observed that when a larger
region on the leading edge is covered by the slots, making it more similar to a 2D configuration, the
better the results are in terms of drag reduction and aerodynamic damping increase.

V. CONCLUSION

Large-eddy simulations were conducted to study the flow over an SD7003 airfoil in a plunging
motion. Results from the simulations were compared to data available in the literature for similar
conditions and exhibit good agreement. In the current flow, instabilities arise after the beginning
of the downstroke motion and a leading-edge vortex is formed. Vorticity accumulates in the LEV,
which reaches a given size, and is advected along the suction side of the airfoil increasing both lift
and drag while reducing the pitching moment that induces a nose-down motion. Close to the trailing
edge, the LEV is lifted away from the airfoil surface by a trailing-edge vortex that forms and is also
advected. As the airfoil moves upward, the flow relaminarizes. Inherent variations from cycle to
cycle occur due to turbulence that develops on the airfoil suction side and thus four from a total of
five simulated cycles are phase averaged to calculate aerodynamic loads. In general, good agreement
was found between the phase-averaged quantities and those obtained from individual cycles.

Simulations with 2D and 3D blowing and suction actuation were conducted for different
frequencies which are characterized by Strouhal numbers St = 0.5–25. We also performed an
assessment of flow actuation in terms of coefficient of momentum Cμ. Results demonstrate that
actuation around St = 5 is effective in reducing both drag CD and quarter-chord pitching moment
coefficients CM with only a mild loss in lift. For this specific frequency, it is shown that the dynamic
stall vortex is broken into smaller coherent structures, leading to a pressure increase along the airfoil
suction side, towards the trailing edge region. At the same time, pressure values on the suction
side near the leading edge are considerably reduced, leading to a less severe lift loss and a further
reduction in drag. Therefore, significant reduction in CD and CM are achieved as a result of mitigation
of the dynamic stall vortex.

Flow configurations with 3D actuation showed that, despite being able to mitigate some of the
dynamic stall vortex effects, they are not as efficient in providing a high mean lift to mean drag ratio
when compared to 2D actuation. In the 3D actuated cases, transition to turbulence occurs earlier
compared to 2D actuation. This effect is due to formation of three-dimensional structures which do
not severely impact the disruption of the LEV, differently than the 2D actuated flow. Nevertheless,
all types of 3D actuation are able to modify the LEV sufficiently such that the TEV forms farther
away from the trailing edge, diminishing its impact in the overall aerodynamic loads. The present
study reveals that higher mean lift to mean drag ratios and aerodynamic damping are achieved when
the actuator covers the whole airfoil span (2D actuation). Even when considering only actuators with
variable spanwise widths and distribution, the most effective ones are those that cover the largest
spanwise surface.
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