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The study of thermocapillary driven flows is typically restricted to “open” systems,
i.e., ones where a liquid film is bounded on one side solely by another fluid. However,
a large number of natural and engineered fluidic systems are composed of solid boundaries
with only small open regions exposed to the surrounding. In this work we study the flow
generated by the thermocapillary effect in a liquid film overlaid by a discontinuous solid
surface. If the openings in the solid are subjected to a temperature gradient, the resulting
thermocapillary flow will lead to a nonuniform pressure distribution in the film, driving
flow in the rest of the system. For an infinite solid surface containing circular openings, we
show that the resulting pressure distribution yields dipole flows which can be superposed
to create complex flow patterns, and demonstrate how a confined dipole can act as a
thermocapillary motor for driving fluids in closed microfluidic circuits. For a mobile,
finite-size surface, we show that an inner temperature gradient, which can be activated
by simple illumination, results in the propulsion of the surface, creating a thermocapillary
surface swimmer.
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I. INTRODUCTION

When an interface between two immiscible fluids is subjected to a nonuniform temperature
distribution, the dependence of surface tension on temperature gives rise to tangential stresses
which drive fluid motion along the interface. This phenomena, termed the thermocapillary or
(more generally) the Marangoni effect, is of central importance in the field of microfluidics due
to the dominance of surface forces over body forces at the microscale [1]. A nonexhaustive list of
applications in this field includes the manipulation and production of droplets [2,3], thermocapillary
ratchet flows [4], patterning of nanoscale polymer films [5], and optical manipulation of microscale
fluid flow [6]. More recent works demonstrated that laser induced thermocapillary flow can be
used in order to convert light into mechanical work [7,8] or manipulate micron-sized particles
at fluid-liquid interfaces [9]. Theoretical work also suggested enclosing a fluid-liquid interface
within microdevices such as microchannels [10,11] and Hele-Shaw chambers [12], as means
of fluid transport. However, all of the above examples make use of a continuous fluid-liquid
interface, while many engineering realizations of such systems may include the interaction of
free surfaces with no-slip boundaries. While a number of theoretical studies analyzed flows over
superhydrophobic surfaces as a particular case of such interactions, predicting an effective slip
[13,14], such effectively continuous behavior can only be obtained for periodic systems. To the
best of our knowledge, thermocapillary flows over macroscale, nonperiodic solid discontinuities
have not yet been addressed.
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FIG. 1. Schematic of the system’s geometry: (a) Side view of the suspended surface with the circular
opening. A temperature gradient is induced from left to right, resulting in a gradient in surface tension in the
opposite direction. (b) Top view of the annulus.

In this work, we study analytically and experimentally the case of a thin liquid film, overlaid
by a solid surface containing a circular gap, exposing a limited free surface region. For the case
of an infinite and stationary surface, we show that the resulting pressure distribution gives rise to
dipole flow in the closed region. Such dipoles can be superposed to create more complex (but well
predicted flows). For the case of a finite mobile surface, i.e., a floating annulus, we show that the
same phenomenon results in propulsion of the object. Finally, we also show that such propulsion
can be actuated by simple illumination, creating photoactivated surface swimmers. We here present
our theoretical analysis, followed by experimental demonstration and validation.

II. PROBLEM FORMULATION

As illustrated in Fig. 1, we consider an annulus with inner radius R1 and outer radius R2, floating
on a thin liquid film of height d , viscosity μ, and density ρ, overlaying a continuous rigid surface.
A uniform temperature gradient is induced across the inner opening of the annulus, initiating
thermocapillary flow there and resulting in the propulsion of the annulus with a steady state velocity
V in the direction opposite to that of the temperature gradient. We assume the free surface in all
regions to be nondeformable, and that the inner radius R1 is much greater than d , giving rise to a
natural small parameter for the system ε = d/R1 � 1. We model the system using the steady-state
Navier-Stokes and continuity equations in a cylindrical coordinate system, whose origin coincides
with the center of the circular opening moving at a constant velocity V ,

ρ �̃u · �̃∇ �̃u = − �̃∇ p̃ + μ∇̃2 �̃u, (1)

and the continuity equation,

�̃∇ · �̃u = 0, (2)

where �̃u = (ũr, ũθ , ũz ) is the velocity vector field, p̃ is the pressure, and �̃∇ = ( ∂
∂ r̃ ,

1
r̃

∂

∂θ̃
, ∂

∂ z̃ ).
We a assume a no-slip condition at the solid-liquid interfaces, a no-shear condition outside the

annulus, and a tangential stress balance at the free surface inside the annulus, z̃ = d, r̃ < R1:

∂σ̃

∂ r̃
= σT

∂T̃

∂ r̃
= μ

(
∂ ũz

∂ r̃
+ ∂ ũr

∂ z̃

)
, (3a)

∂σ̃

∂θ̃
= σT

∂T̃

∂θ̃
= μ

(
∂ ũz

∂θ̃
+ r̃

∂ ũθ

∂ z̃

)
, (3b)
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where σT = ∂σ̃ /∂T̃ . We assume a linear temperature gradient across the inner opening of the
annulus, given by the temperature distribution

T̃ (θ ) = TC + �

2

(
1 + r̃

R1
cos θ̃

)
, −π � θ̃ � π, (4)

where � = TH − TC is the maximal temperature difference across the opening. We denote all the
dimensional variables with tilde, and define dimensionless variables in the following way:

r̃ = R1r, θ̃ = θ, z̃ = dz, ũr = Uur, ũθ = Uuθ , ũz = εUuz, T̃ = T � + T̄ , p̃ = μU

R1ε2
p,

(5)

where T̄ = TH +TC
2 is the average temperature, ε = d

R1
� 1 is the ratio of film thickness to the inner

radius of the annulus, and U = εσT �
μ

is the characteristic velocity as determined from the stress
balance at the free surface, and represents the ratio between the characteristic Marangoni and
viscous stresses. The dimensionless problem is then given by

εRe

(
ur

∂ur

∂r
+ uθ

r

∂ur

∂θ
+ uz

∂ur

∂z
− u2

θ

r

)

= −∂ p

∂r
+ ε2

[
1

r

∂

∂r

(
r
∂ur

∂r

)
− ur

r2
+ 1

r2

∂2ur

∂θ2
− 2

r2

∂uθ

∂θ

]
+ ∂2ur

∂z2
, (6a)

εRe

(
ur

∂uθ

∂r
+ uθ

r

∂uθ

∂θ
+ uz

∂uθ

∂z
+ uθ ur

r

)

= −1

r

∂ p

∂θ
+ ε2

[
1

r

∂

∂r

(
r
∂uθ

∂r

)
− uθ

r2
+ 1

r2

∂2uθ

∂θ2
+ 2

r2

∂ur

∂θ

]
+ ∂2uθ

∂z2
, (6b)

ε2Re

(
ur

∂uz

∂r
+ uθ

r

∂uz

∂θ
+ uz

∂uz

∂z

)

= −∂ p

∂z
+ ε3

[
1

r

∂

∂r

(
r
∂uz

∂r

)
+ 1

r2

∂2uz

∂θ2

]
+ ε

∂2uz

∂z2

1

r

∂ (rur )

∂r
+ 1

r

∂uθ

∂θ
+ ∂uz

∂z
, (6c)

where Re = ρUd
μ

is the Reynolds number. The temperature at the free surface now takes the form

T (θ ) = r

2
cos θ, −π � θ � π, 0 � r � 1, (7)

and the boundary conditions at z = 1 can now be written as

�∇‖T = ∂ �u
∂z

+ ε2 �∇‖�u for r < 1, (8a)

�u = 0 for 1 < r < δ, (8b)

∂ �u
∂z

= 0 for r > δ, (8c)

where �∇‖ = ( ∂
∂r ,

1
r

∂
∂θ

), δ = R2
R1

, and �u = (ur, uθ ). Since we expect the annulus to be moving at a
steady velocity V in the direction opposite to that of the temperature gradient, in a frame of reference
which is moving together with the annulus, the no-slip boundary condition at the bottom of the
chamber translates into

for z = 0, �u = V x̂. (9)
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III. SOLUTION OF THE GOVERNING EQUATIONS

We seek solutions in terms of asymptotic expansions

�u = �u0 + ε�u1 + O(ε2), uz = uz0 + εuz1 + O(ε2), p = p0 + εp1 + O(ε2), (10)

which, at the leading order in ε, yield the equations

�∇‖ p0 = ∂2�u0

∂z2
,

∂ p0

∂z
= 0, (11a)

1

r

∂ (rur0)

∂r
+ 1

r

∂uθ0

∂θ
+ ∂uz0

∂z
= 0, (11b)

with the boundary conditions at z = 1

�∇‖T = ∂ �u0

∂z
for r < 1, (12a)

�u0 = 0 for 1 < r < δ, (12b)

∂ �u0

∂z
= 0 for δ < r, (12c)

and �u0 = V x̂ = V
�∇‖T

| �∇‖T | at z = 0. Since under the chosen scaling | �∇‖T | = 2,

for z = 0, �u0 = 2V �∇‖T . (13)

The solution for the velocity at the leading order in ε is given by

�u0 =

⎧⎪⎪⎨
⎪⎪⎩

�∇‖ p0
(

z2

2 − z
) + �∇‖T (z + 2V ), 0 � r < 1,

1
2
�∇‖ p0(z2 − z) + 2V �∇‖T (1 − z), 1 < r � δ,

�∇‖ p0
(

z2

2 − z
) + 2V �∇‖T, δ � r,

(14)

which, while accounting for the boundary conditions, can be integrated to obtain an average in-plane
velocity

〈�u0〉 =
∫ 1

0
�u0 dz =

⎧⎪⎪⎨
⎪⎪⎩

− 1
3
�∇‖ p0 + �∇‖T

(
1
2 + 2V

)
, 0 � r < 1,

− 1
12

�∇‖ p0 + V �∇‖T, 1 < r < δ,

− 1
3
�∇‖ p0 + 2V �∇‖T, δ < r.

(15)

Substituting Eq. (15) into the continuity equation, while recalling that ∇2
‖ T = 0 since the tempera-

ture field in our model is linear in x, yields a Laplace equation for the pressure,

∇2
‖ p0 = 0. (16)

The symmetry of the problem suggests a solution of the form p0(r, θ ) = R(r) cos θ , which
yields a Cauchy-Euler equation for R(r), resulting in R(r) = ar + b

r , where a and b are integration
constants. We require our solution to be bounded at r = 0, yielding

p0(r, θ ) =

⎧⎪⎨
⎪⎩

a1r cos θ, 0 � r < 1,(
a2r + b2

r

)
cos θ, 1 < r � δ,(

a3r + b3
r

)
cos θ, δ � r,

(17)
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FIG. 2. (a) Theoretically predicted streamlines obtained from Eq. (20). (b) Experimentally measured
streamlines for a thermocapillary doublet flow induced in a Hele-Shaw cell by a circular opening of radius
R = 5 mm subjected to a temperature gradient of 8.8 K/cm. (c) Measurement of the temperature gradient
across the Hele-Shaw cell, using a 100 μM rhodamine B solution. For clarity of imaging, the measurement
was take in a closed cell without a circular opening. The location of the circular opening corresponding to the
dipole experiments is marked with a white circle. The color scale bar corresponds to the temperature in ◦C.

which results in the following expression for the averaged velocity:

〈�u0〉 =

⎧⎪⎪⎨
⎪⎪⎩

(− a1
3 + 1

4 + V
)
(cos θ, − sin θ ), 0 � r < 1,({

V
2 − 1

12

[
a2 − b2

r2

]}
cos θ, −{

V
2 − 1

12

[
a2 + b2

r2

]}
sin θ

)
, 1 < r � δ,({

V − 1
3

[
a3 − b3

r2

]}
cos θ, −{

V − 1
3

[
a3 + b3

r2

]}
sin θ

)
, δ � r.

(18)

IV. THERMOCAPILLARY DIPOLE

For the limiting case where δ → ∞ and V → 0, the system corresponds to a Hele-Shaw cell of
gap d with a circular opening in its upper plate. We require the velocity to be bounded at infinity, as
well as continuity of the pressure and the radial velocity component at r = 1, yielding

p0(r, θ ) =
{

3
5 r cos θ, 0 � r < 1,

3
5

1
r cos θ, r > 1,

(19)

〈�u0〉 =
{

1
20 (cos θ, − sin θ ), 0 � r < 1,

1
20 (cos θ, sin θ ), r > 1.

(20)

As shown in Fig. 2(a), the velocity field described by Eq. (20) corresponds to a doublet flow in
a Hele-Shaw cell, driven by thermocapillary stresses on the circular free surface, and is consistent
with the solution obtained by Rubin et al. [15] for nonuniform slip velocity. To implement this
configuration, we generated a stable temperature gradient using an 80 mm long aluminum plate,
one end of which was heated by a Peltier device while the other end was cooled by a liquid cooler.
The temperature was controlled using feedback from two thermocouples placed at each end. On top
of the aluminum plate we place a Hele-Shaw chamber consisting of two glass plates separated by
a distance d = 0.4 mm using a polydimethylsiloxane (PDMS) gasket, with one or several circular
openings of radius R = 5 mm in the upper plate (see Fig. 1).

To directly measure the temperature within the chamber, we filled it with 100 μM of rhodamine
B, a temperature sensitive fluorescent dye, and using a calibration curve (see Appendix) obtained
mapping of the temperature. Figure 2(c) presents the resulting temperature distribution, indicating
a 4.4 K difference across 5 mm (i.e., 8.8 K/cm). Figure 2(b) presents the experimental streak lines
obtained from fluorescent beads used as tracers in the flow, for a uniform temperature gradient of
8.8 K/cm, showing good qualitative agreement with theory. A corresponding video is provided
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FIG. 3. Experimentally measured streamlines resulting from the superposition of two 5 mm dipoles under
a uniform temperature gradient of 8.8 K/cm. The flow between the circular openings is directed from left to
right, while above and below the openings the flow is directed from right to left. As expected, two saddle points
in the velocity field are formed on the center line between the two openings. Any number of dipoles can be
superposed to dictate the flow pattern in the Hele-Shaw chamber.

in the Supplemental Material (SV1) [16]. Figure 3 depicts a superposition of two thermocapillary
dipoles, subjected to the same temperature gradient. The flow between the dipoles is directed from
left to right, opposite to the induced temperature gradient, while the return flow above and below
the openings is directed along the temperature gradient. These opposing flows give rise to two
stagnation points in the flow field where the local velocity vanishes. A corresponding video is
provided in the Supplemental Material (SV2) [16].

V. THERMOCAPILLARY PUMP

Equation (19) indicates a pressure difference between the two extremes of the circular opening.
It is convenient to define a nondimensional, average pressure difference between the two sides of
the opening:

〈p〉 = 1

π

∫ π
2

− π
2

�p(1, θ )dθ = 12

5π
, (21)

where �p(1, θ ) = p(1, θ ) − p(1, θ + π ). This suggests that if a dipole unit is confined in the
direction perpendicular to the temperature gradient, it can act as a thermocapillary motor (TCM),
driving liquids through closed microfluidic circuits. In order to test this prediction, we constructed
an octagonal confinement with a circular opening 4 mm in diameter, which was connected to a
26 mm long PDMS channel with a rectangular cross section of depth 0.5 mm and width 1 mm, and
subjected to a temperature gradient. A schematic description of the TCM experiment is shown in
Fig. 4(a). The fluid velocity was measured using particle image velocimetry (PIV) [17].

Figure 4(b) shows the measured maximal velocity in the channel as a function of the temperature
difference � across the circular opening. A corresponding video is provided in the Supplemental
Material (SV5) [16]. This proof of concept experiment demonstrates that a TCM can serve as a
pump that, in contrast to pumping mechanisms such as pressure driven or electro-osmotic flow,
is capable of driving flows in closed circuits. The velocity is linear with the temperature difference
across the channel, and reaches 15 μm/s for a 3 K temperature difference. Since the TCM ultimatley
drives the flow via a pressure difference, the modest velocity through the channel can be increased
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FIG. 4. (a) Schematic of the TCM experiment: a confined dipole configuration is subjected to a temperature

gradient �∇T , inducing thermocapillary flow across the circular opening. The resulting pressure difference
drives the liquid through a closed channel. (b) Experimentally measured maximal velocity as a function of �.

by increasing the cross section of the channel, shortening its length or increasing the temperature
gradient across the TCM.

VI. THERMOCAPILLARY SURFACE SWIMMER

When δ is finite, the geometry represents an annulus floating on the liquid surface, whose internal
opening is subjected to a temperature gradient. We expect such an annulus to reach a steady state
velocity V in the direction opposite to that of the temperature gradient. In a frame of reference
moving with the annulus we can thus write a boundary condition for the velocity of the liquid at
infinity as

lim
r→∞ 〈�u0〉 · x̂ = V. (22)

Expanding the left-hand side according to Eq. (27) yields

lim
r→∞ 〈�u0〉 · x̂ =

[
V − 1

3

(
a3 − b3

r2

)]
cos2 θ +

[
V − 1

3

(
a3 + b3

r2

)]
sin2 θ = V − a3

3
, (23)

and hence

a3 = 0. (24)

We demand continuity of the pressure and the radial velocity component at r = 1 and r = δ,
providing four additional conditions allowing to solve for the remaining coefficients in terms of
V which is yet to be resolved:

a1 = −9 + 18V − δ2(5 + 6V )

−9 + 25δ2
, a2 = −9 + 18V + 30δ2V

−9 + 25δ2
,

b2 = 3δ2(5 + 16V )

−9 + 25δ2
, b3 = 6δ2(1 − 5(−1 + d2)V )

−9 + 25δ2
. (25)

Since we assume a steady state at which the velocity of the swimmer is constant, the net force on it
must be zero. The two forces acting on the swimmer are the surface tension and the viscous drag.
The integral of surface tension over the inner perimeter of the annulus vanishes (similar to an elastic
sheet stretched across a circular opening), and since we assume the temperature outside the annulus
is uniform, the integral of surface tension there vanishes as well. Thus, the viscous drag term must
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FIG. 5. (a) Side-view schematic illustration of the surface swimmer experimental setup. The illumination
source is located at a distance D from the swimmer, controlling the power density on the swimmer. (b) Top-view
schematic of the surface swimmer. The projected light heats the black stripe on the inner side of the annulus,
inducing a temperature gradient across the opening. (c) A set of time-lapse overlaid images showing the
swimmer’s propagation under uniform illumination. (d) Experimental measurements of the maximal velocity
of the swimmer as a function of power density, actuated in tap water.

also vanish, yielding

0 =
∫ R2

R1

∫ 2π

0
μ

∂ ũ0

∂ z̃
· x̂

∣∣∣∣
z=1

r̃ d r̃ = σT �R1(δ2 − 1)

(
a2

2
− V

)
, (26)

hence

V = a2

2
= 9

80δ2
, δ > 1, (27)

and in dimensional form

Ṽ = V
dσT �

R1μ
= 9dσT �R1

20R2
2μ

. (28)

As expected, the velocity of propulsion tends to zero as δ → ∞.
This result, which strictly holds only for the case of a shallow liquid film, can be heuristically

extended for a swimmer on the surface of an infinite water bath by taking d to be the velocity
decay distance. One such estimate for the decay distance in thermocapillary driven flows is given by

Napolitano [18] to be d =
√

Rν
U , where R is the length of the free surface and U is the characteristic

velocity. For our problem

U = dσT �

Rμ
�⇒ d =

(
R2μ2

σT ρ�

) 1
3

�⇒ ε ≈ 0.1�−1/3, (29)

consistent with the assumptions of the model. If we take the liquid to be water, using δ = 5
4 as in

our experiments, the resulting predicted velocity of the surface swimmer is Ṽ ≈ 20 mm/s for a
temperature difference of � = 4 ◦C.

To implement a thermocapillary surface swimmer, we used an annulus made of white
polystyrene, with thickness ≈240 μm, an outer radius R2 = 8 mm, and inner radii between R1 = 3
and 5 mm. We painted a black stripe on its inner side [see Fig. 5(b)], and used a halogen light
source to illuminate the system in order to create a temperature gradient across the inner opening.
We recorded the motion of the swimmer by video, and measured its velocity as a function of the
projected power density, controlled by varying the distance between the light source and the liquid’s
surface. Figure 5(c) presents an overlaid set of images showing the location of the surface swimmer
as a function of time, in response to sudden exposure to a light source concentric with its location
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FIG. 6. (a) The dimensional average velocity of the surface swimmer as a function of the power density of
the light source. Circles, squares and asterisks correspond to R1 = 5, 4, and 3, respectively. (b) The dimensional
average velocity of the surface swimmer normalized by δ. Dashed lines correspond to a best fit of each data
set to a linear curve forced through the origin. The overlap of the curves in the normalized case shows good
agreement with the scaling given by Eq. (28).

at t = 0. The light absorbed by the black stripe induces a temperature gradient, pushing the surface
swimmer in the direction opposite to the location of the stripe. In all experiments we observed an
initial acceleration of the swimmer, followed by a decay of its velocity as it leaves the illuminated
region. This is shown in supplemental video SV3, whereas supplemental video SV4 shows a case
where we follow the swimmer with the light source, resulting in its continuous motion [16].
Figure 5(d) depicts the measured maximal velocity of the surface swimmer, for a given power
density of the projected light. We measured velocities of up to 28 mm/s, a significant value in the
context of microflows. We note that these experiments were conducted using plain tap water in
order to demonstrate the robustness of the system. These results are in good agreement with the
estimated value of Us ≈ 20 mm/s, obtained from Eq. (28), using our experimental parameters and
for a typical value of � = 4 ◦C. Figure 6(a) shows the velocity of different swimmers having a fixed
outer radius and different inner radii, as a function of light intensity. To allow proper comparison
between the cases, these experiments were conducted using controlled liquid properties [in contrast
to the tap water demonstration in Fig. 5(c)] using deionized water with a 100 mM salt concentration.
Figure 6(b) shows the measured velocities normalized by δ. In both figures, the dashed lines
correspond to linear best fits to each data set. The resulting slope values for the normalized velocities
are 12.3, 12.5, and 12.2 for the 3, 4, and 5 mm swimmers, respectively; i.e., the three data sets can
be described by a single linear curve, in support of the scaling scaling given by Eq. (28).

VII. SUMMARY AND DISCUSSION

In this paper we demonstrated that thermocapillary flow across a circular opening in a Hele-Shaw
type configuration induces a dipole flow inside the Hele-Shaw cell and that such flows could be
superposed to obtained two-dimensional flow patterns. A potential extension of this work is the
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design of flow patterns by distributions of dipoles of different strengths across the flow chambers.
This could be achieved using different cavity radii, all subjected to a uniform temperature gradient,
or alternatively by localized heating (e.g., by electrodes or illumination) which would allow one to
control not only the magnitude but also the direction of each dipole. It would also be of interest
to explore mass transport in such systems; since the dipole flow has a zero net mass flux, multiple
dipoles could be used, for example, to accelerate the mixing between different fluidic chambers in
microfluidic applications. We showed that a confined dipole can act as a thermocapillary motor for
driving liquids. This mechanism of pumping may be particularly useful in microfluidic applications
as it allows driving flow in a closed circuit. This in contrast to other standard mechanisms, such as
pressure driven flow or electro-osmotic flow, which are inherently directional. The TCM is modular
in the sense that it can be positioned in-line in any microfluidic channel. It would thus be of interest
to study the effects of various combinations of TCM units (in linear or parallel configurations) on
the resulting flow rate.

We have demonstrated that a mobile dipole in the form of an annulus can be turned into a
thermocapillary surface swimmer, reaching velocities on the order of 20 mm/s. Importantly, unlike
laser-induced motion requiring accurate positioning and tracking, the swimmers we present can be
actuated using simple uniform illumination from above at moderate intensities of order 1 W/cm2.
Furthermore, the swimmers do not require a specialized liquid and operate robustly in plain tap
water.

While a large body of work exists on a variety of physical mechanisms for swimmers that are
suspended in the bulk of the liquid [19], the unique physics of interfacial phenomena provides
different and interesting mechanisms for surface-based propulsion of swimmers. It is interesting to
compare the thermocapillary surface swimmer to other methods of Marangoni propulsion, such
as the thin rigid circular disk studied theoretically by Lauga and Davis [20]. There, the disk’s
propulsion was driven by an external surface tension gradient caused by the release of an insoluble
surfactant from part of the disk’s perimeter. In contrast, the thermocapillary swimmer is driven
by an internal surface tension gradient, with minimal effect on the surrounding environment. In
addition, the thermocapillary swimmer’s velocity is directed oppositely to the temperature gradient,
and is aligned with the surface tension gradient, suggesting that a combination of an external
and an internal surface tension gradients should result in an increase of the propulsion velocity.
Thermocapillary surface swimmers could potentially be produced on the microscale and in large
quantities, and it may be or interest to explore their use as a means for fluidic photoactivation. This
would, however, require further understanding of the viability of such propulsion mechanisms with
the decrease in the dimensions of the system.
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APPENDIX: MATERIALS AND METHODS

1. Temperature gradient system

In order to create a stable temperature gradient we used an 80 mm × 25 mm × 3 mm aluminum
plate, one end of which was heated by a Peltier device while the other end was cooled by a liquid
cooler (CORSAIR H110i liquid CPU cooler); see Fig. 7. We measured the temperature difference
using two thermocouples placed on each end of the aluminum plate, connected to a temperature
controller device (KR1, Ascon Tecnologic, Italy).

2. Imaging conditions and temperature calibration curve

For flow visualization, we used 2 μm fluorescent beads (Fluoro-Max, Thermo Scientific,
Fremont, CA, USA) premixed in deionized water. The fluroescence in the chamber was imaged
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FIG. 7. Photograph of the experimental setup for the thermocapillary dipole experiment. The setup consists
of an 80 mm aluminum plate, one end of which was heated by a Peltier device while the other end was cooled
by a liquid cooler. The temperature was controlled using feedback from two thermocouples placed at each end.
On top of the aluminum plate we placed a Hele-Shaw chamber consisting of two glass plates separated by
distance d = 0.4 mm using a PDMS gasket, with one or several circular openings of radius R = 5 mm in the
upper plate.

using an epifluorescent microscope (AZ100, Nikon, Tokyo, Japan) equipped with a metal halide
light source (Intensilight, Nikon, Japan) and a Chroma 49011 filter cube (545/25 nm excitation,
605/70 nm emission and 565 nm dichroic mirror). We used an AZ-Plan Apo 1× objective (NA 0.1,
WD 35 mm) in all the experiments. Images were captured using a 12 bit, 4.2 megapixel, sCMOS
camera (Zyla 4.2 sCMOS, Andor, Belfast, Ireland). We triggered the camera at intervals of 1 s with
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FIG. 8. Calibration curve relating temperature to rhodamine B intensity (in arbitrary units). We placed the
fluidic chamber on top of an indium-tin-oxide (ITO) heating device providing a controlled uniform temperature.
We changed the temperature at fixed intervals of 5◦, and for each one imaged the dye intensity in the chamber.
The images were flat-field corrected according to the intensity at room temperature, and then averaged over
a fixed area. We fit the data to a linear curve, and use it to measure the temperature gradient in the dipole
experiments.
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an exposure time of 1 s. We controlled the camera using NIS ELEMENTS software (v.4.11, Nikon) and
processed the images with MATLAB (R2011b, Mathworks, Natick, MA). For the TCM experiment,
the fluid velocity was measured using PIVLAB: Time Resolved Digital Particle Image Velocimetry
Tool for MATLAB. We measured the temperature gradient across the Hele-Shaw chamber using a
100 μM solution of rhodamine B. The intensity of rhodamine B was translated into temperature
using a calibration curve which is given in Fig. 8.

3. Thermocapillary surface swimmer

We used a fiber bundle coupled halogen light source (OSL1-EC, Thorlabs, Newton, New Jersey,
USA) to illuminate the system in order to create a temperature gradient across the inner opening.
The swimmer was placed in a transparent Petri dish, and we recorded the motion of the swimmer
by video using a consumer-grade camera located on top of a gridded surface. The velocity was
extracted manually by measuring the displacement of the surface swimmer between frames. The
power density was controlled by varying the distance between the light source and the surface of the
liquid, and measured for a given distance by an optical power meter (PM100D, Thorlabs, Newton,
New Jersey, USA).
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