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Effect of the irreversible A+B → C reaction on the onset and the growth
of the buoyancy-driven instability in a porous medium:

Asymptotic, linear, and nonlinear stability analyses

Min Chan Kim*

Department of Chemical Engineering, Jeju National University, Jeju 63243, Republic of Korea

(Received 10 March 2019; published 2 July 2019)

Taking different diffusivities into account, the effect of irreversible A+B →C reaction
on the growth of a buoyancy-driven instability in a Hele-Shaw cell is analyzed theoretically.
For the limiting cases of infinitely fast reaction, an asymptotic stability analysis is
conducted based on base density profile. To confirm the asymptotic stability analysis, under
the linear stability theory, new linear stability equations are derived and solved numerically.
In addition, fully nonlinear numerical simulations are conducted using the Fourier spectral
method. The present asymptotic and linear stability analyses and nonlinear numerical
simulations are in good agreement, and they modify the previous general classification
of stability. For some cases where a stable barrier is sandwiched by two unstable regions,
we also conducted linear and nonlinear analyses. It is interesting that for a certain case,
instabilities with different wavelengths are possible below and above a central stable
barrier.
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I. INTRODUCTION

The gravitational instability in a fluid layer is a well-known phenomenon and has a long history.
Lord Rayleigh [1] proved that the fluid layer is gravitationally unstable if the heavier fluid locates
over the lighter one. Later, Taylor [2] examined the stability properties of fictitious horizontal
interfaces between two immiscible fluids in a homogeneous isotropic porous medium. Under these
historical backgrounds, this buoyancy-driven motion is referred to as Rayleigh-Taylor instability
or gravitational fingering. Later, considering the broadening of the interface due to the diffusion,
Wooding [3] analyzed the onset of fingering in a miscible fluids saturated porous medium. This
kind of instability in a nonreactive miscible solution occurs in many engineering applications, such
as pollutant transport in groundwater and geological storage of greenhouse gas.

In reactive systems, chemical reactions can accelerate or impede the instability motion under
the gravity field [4–7]. The instability motion in reactive systems might be encountered in
many engineering applications in porous media such as in situ oil recovery, in situ groundwater
remediation and a CO2 sequestration process [8]. Recently, Almarcha et al. [9,10] and Kuster
et al. [11] experimentally analyzed the effect of gravity on the stability of a reactive interface in
a Hele-Shaw cell. In their experiments, they employed acid-base reactions which can be treated by
an infinitely fast reaction. Later, Lemaigre et al. [12] studied experimentally and numerically the
onset and growth of the asymmetric Rayleigh-Taylor and double-diffusive fingers in the acid-base
reaction system confined in a Hele-Shaw cell. Theoretically, Hejazi and Azaiez [13,14] considered
the effects of viscosity variation and transverse flow on the instabilities of a reactive front. However,
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FIG. 1. Schematic diagram of the system considered here.

their linear stability analysis strongly depends on the conventional quasi-steady state approximation
in the global (τ, z)- domain (here we call their method QSSAz). As discussed by Trevelyan et al.
[15], the conventional QSSAz cannot predict the stability characteristics accurately, especially for
the initial stage. Kim [16] analyzed theoretically and numerically the effect of the irreversible
second-order A+B →C reaction on the growth of a buoyancy-driven instability by neglecting
the effect of the different diffusivities and reactants ratio. Recently, by considering the different
diffusivities and reactants ratio, Trevelyan et al. [17] suggested a general classification on the density
profile. However, they did not try to verify their classification through systematic stability analyses.
Therefore, systematic analyses are strongly needed to understand a chemical reaction and different
diffusivities effects on the buoyancy-driven instability.

In the present study, we focused on the effects of an irreversible A+B →C reaction on the onset
and the growth of the buoyancy-driven instabilities. Because we did not require that all chemical
components have the same diffusivity, the present study explains the physicochemical phenomena
more rigorously. For the infinitely fast reaction, we derived asymptotic concentration and density
profiles and classified asymptotic stability regimes based on the density profile. For some typical
cases, we conducted linear stability analyses and nonlinear numerical simulations to prove the
validity of the present asymptotic stability results. We also conducted the linear and nonlinear
analyses for interesting cases where a stable region is sandwiched between unstable regions. For the
various cases, the present asymptotic, linear, and nonlinear stability results were in good agreement.

II. GOVERNING EQUATIONS AND BASE FIELDS

The system considered here is a Hele-Shaw cell schematized in Fig. 1. Inside a Hele-Shaw cell,
a solution of a reactant A at concentration CA0 is placed on top of a solution containing a reactant B
at concentration CB0. A chemical reaction occurs between the two chemical species A and B and a
product C is produced in the following irreversible bimolecular elementary reaction:

A + B → C. (1)

If the density of product C is different from that of either reactant, the flow system can be
hydrodynamically unstable and induce the density-driven convective motion.
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EFFECT OF THE IRREVERSIBLE A+B → C REACTION …

The governing equations are those for the conservation of mass, the conservation of momentum
in the form of Darcy’s law and the convection-dispersion-reaction mass balance equation [18]

∇ · U = 0, (2)

∇P = −μ

K
U + ρg, (3)

∂�i

∂t
+ U · ∇�i = Di∇2�i + nikr�A�B, (4)

where i = A, B,and C, and −nA = −nB = nC = 1. Here, U is the velocity vector, P the pressure, μ

the dynamic viscosity, K the permeability, ρ the density, g the gravitational acceleration vector,�i

the concentration of chemical species i, t the time, Di the diffusion coefficient chemical species i,
and kr the reaction constant of the reaction (1). The solution density is assumed to depend linearly
on the concentrations as [18]

ρ = ρr

(
1 +

∑
i
αi�i

)
, (5)

where ρr is the density of the solvent, and αi(=ρ−1
r ∂ρ/∂�i ) is the concentration expansion

coefficient of species i. The proper initial and boundary conditions are

U = 0, �A =
{
�A,0 Z < 0
0 Z > 0

, �B =
{

0 Z < 0
�B,0 Z > 0

and �C = 0 at t = 0, (6a)

U → 0, �A → �A,0, �B → 0 and �C → 0 as Z → ∞, , (6b)

U → 0, �A → 0, �B → �B,0 and �C → 0 as Z → ∞. (6c)

The above governing equation can be written in dimensionless form:

∇ · u = 0, (7)

u = −∇p + kρ̄, (8)

∂φi

∂τ
+ u · ∇φi = δi∇2φi + niDaφAφB, (9)

using the following relations:

X = lx, t = l2

DA
τ, U = DA

l
u, P = DAμ

K
p + DAμ

KαA�A0
z, �i = �A0φi and Di = DAδi,

(10)

where l{=DAν/(|g|αA�A0K )} is chosen as the length scale. In addition, k is the unit vector parallel
to g, i.e., z axis is increasing in the downwards direction, and ν(=μ/ρr ) is the kinematic viscosity.
The dimensionless density ρ̄ can be expressed as

ρ̄

(
= ρ − ρr

ρrαA�A0

)
=

∑
i

βiφi, (11)

where βi = αi/αA. The Damköhler Da, which represents the ratio of hydrodynamic to chemical
characteristic times, is defined as

Da = kr�A0l2

DA
. (12)
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By expanding u(τ, x, z) = 0 + u1(τ, x, z) and φi(τ, x, z) = φi,0(τ, z) + φi,1(τ, x, z), the base-
state concentrations φi,0(τ, z) can be obtained by solving the following reaction-diffusion equation:

∂φi,0

∂τ
= δi

∂2φi,0

∂z2
+ niDaφA,0φB,0, (13)

The proper initial and boundary conditions are

φA,0(0, z) = H (−z), φB,0(0, z) = rBH (z) and φC,0(0, z) = 0, (14a)

φA,0(τ, z) → 1, φB,0(τ, z) → 0 and φC,0(τ, z) → 0 as z → −∞, (14b)

φA,0(τ, z) → 0, φB,0(τ, z) → rB and φC,0(τ, z) → 0 as z → ∞, (14c)

where H (z) is the Heaviside step function and rB = �B0/�A0. In an instantaneous chemical
reaction, such as acid-base reaction, there exists a reaction front above or below which one of
reactants cannot exist. For this limiting case, the above reaction-diffusion equations can be rewritten
as

∂φi,0

∂τ
= δi∇2φi,0, (15)

under the condition of φA,0(τ, z � z f ) = 0 and φB,0(τ, z � z f ) = 0. Here, z f means the position
where the instantaneous reaction proceeds. The above concentration fields should satisfy the
following mass balances: ⎛

⎝ ∑
j, j �=B

φ j,0

⎞
⎠

T

=
⎛
⎝ ∑

j, j �=B

φ j,0

⎞
⎠

B

(16a)

and ⎛
⎝ ∑

k,k �=A

φk,0

⎞
⎠

T

=
⎛
⎝ ∑

k,k �=A

φk,0

⎞
⎠

B

at z = z f , (16b)

⎛
⎝ ∑

j, j �=B

δ j
∂φ j,0

∂z

⎞
⎠

T

=
⎛
⎝ ∑

j, j �=B

δ j
∂φ j,0

∂z

⎞
⎠

B

(17a)

and ⎛
⎝ ∑

k,k �=A

δk
∂φk,0

∂z

⎞
⎠

T

=
⎛
⎝ ∑

k,k �=A

δk
∂φk,0

∂z

⎞
⎠

B

at z = z f . (17b)

where the superscripts ‘T’ and ‘B’ mean the top and bottom layers, respectively. Equations (16a) and
(16b) represent the continuities of the concentrations of (A+C) and (B+C), respectively. Equations
(17a) and (17b) correspond to the flux continuities for (A+C) and (B+C), respectively.

By considering the above findings, in the large Damköhler number limit or in the large time limit,
the base-state solutions can be obtained analytically as

(φA,0, φB,0, φC,0)T =
{

1 − erfc(−ζ/2)

erfc(−ζ f /2)
, 0, rC

erfc(−ζ/
√

4δC)

erfc(−ζ f /
√

4δC)

}
for ζ < ζ f , (18a)

(φA,0, φB,0, φC,0)B =
{

0, rB − rB
erfc(ζ/

√
4δB)

erfc(ζ f /
√

4δB)
, rC

erfc(ζ/
√

4δC)

erfc(ζ f /
√

4δC)

}
for ζ > ζ f , (18b)
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where ζ = z/
√

τ and ζ f = z f /
√

τ . Here, undetermined constants, ζ f and rC can be determined as

erfc(ζ f /
√

4δB) exp

{
ζ 2

f

4

(
1

δB
− 1

)}
= rB

√
δBerfc(−ζ f /2), (19)

rC = erfc(ζ f /
√

4δC)erfc(−ζ f /
√

4δC)

2
√

δCerfc(−ζ f /2)
exp

{
ζ 2

f

4

(
1

δC
− 1

)}
, (20)

by considering the mass flux balances Eq. (17).

III. ASYMPTOTIC STABILITY ANALYSIS OR GENERAL CLASSIFICATION

Using Eq. (11) and the above relations, the following dimensionless densities can be derived:

ρ̄T
0 = 1 − erfc(−ζ/2)

erfc(−ζ f /2)
+ βCrC

erfc(−ζ/
√

4δC)

erfc(−ζ f /
√

4δC)
, (21a)

ρ̄B
0 = rBβB

{
1 − erfc(ζ/

√
4δB)

erfc(ζ f /
√

4δB)

}
+ rCβC

erfc(ζ/
√

4δC)

erfc(ζ f /
√

4δC)
. (21b)

According to Trevelyan et al. [17], there are a total of 62 different types of density profiles. It
is well-known that even a gravitationally stable density profile can induce an instability due to
differential diffusive effects, and the stability regime can be identified from the asymptotic density
profile.

Using the above density functions, we can get the following density-gradient related quantities:

∂ρ̄T
0

∂ζ
= − 1

erfc(−ζ f /2)
√

π
exp

(
−ζ 2

4

)
+ rCβC

erfc(−ζ f /
√

4δC)
√

πδC
exp

(
− ζ 2

4δC

)
, (22a)

∂ρ̄B
0

∂ζ
= rBβB

erfc(ζ f /
√

4δB)
√

πδB
exp

(
− ζ 2

4δB

)
− rCβC

erfc(ζ f /
√

4δC)
√

πδC
exp

(
− ζ 2

4δC

)
, (22b)

1

ζ

∂2ρ̄T
0

∂ζ 2
= 1

2erfc(−ζ f /2)
√

π
exp

(
−ζ 2

4

)
− rCβC

2δCerfc(−ζ f /
√

4δC)
√

πδC
exp

(
− ζ 2

4δC

)
, (23a)

1

ζ

∂2ρ̄B
0

∂ζ 2
= − rBβB

2δBerfc(ζ f /
√

4δB)
√

πδB
exp

(
− ζ 2

4δB

)
+ rCβC

2δCerfc(ζ f /
√

4δC)
√

πδC
exp

(
− ζ 2

4δC

)
,

(23b)

By setting ∂ρ̄/∂ζ = 0 and ζ−1∂2ρ̄/∂ζ 2 = 0, the following density-extremum points, ζe, and density-
inflection points, ζi, can be obtained:

(
ζ T

e

)2 − ζ 2
f = 4δC

1 − δC
ln

{
βC

2δC
erfc(ζ f /

√
4δC)

}
(24a)

and

(
ζ B

e

)2 − ζ 2
f = 4δBδC

δB − δC
ln

{
βCδB

2βBδC
erfc(−ζ f /

√
4δC)

}
. (24b)

(
ζ T

i

)2 − ζ 2
f = 4δC

1 − δC
ln

{
βC

2δ2
C

erfc(ζ f /
√

4δC)

}
(25a)

073901-5



MIN CHAN KIM

and (
ζ B

i

)2 − ζ 2
f = 4δBδC

δB − δC
ln

{
βCδ2

B

2βBδ2
C

erfc(−ζ f /
√

4δC)

}
. (25b)

Trevelyan et al.’s [17] classified the Rayleigh-Taylor (RT) instability, the diffusive-layer con-
vection (DLC), and the double diffusive convection (DD) regions. Here, using the above density
gradient functions, we systematically classify the asymptotic stability regimes. The system can be
globally unstable if the density profile decreases monotonically, ∂ρ̄/∂ζ |ζ=ζ f < 0 and ζ 2

e < 0. The
condition of ζ 2

e < 0 means that the density extrema points have imaginary value and therefore,
the first derivative of the density profile doesn’t change its sign for the whole domain. Furthermore,
the system can be locally unstable if the density profile has its extrema, ∂ρ̄/∂ζ |ζ=ζ f < 0 and ζ 2

e > 0,
or ∂ρ̄/∂ζ |ζ=ζ f > 0 and ζ 2

e > 0. The above suggestions mean that the system is stably stratified if the
density profile increases monotonically, i.e., ∂ρ̄/∂ζ |ζ=ζ f > 0 and ζ 2

e < 0. However, in the double
diffusive cases such as the salt-finger system [19], instabilities are possible even for the systems
having a monotonically increasing density profile. Here, we focused on the stability of the system
that is monotonically increasing.

Trevelyan et al.’s [17] analyzed the double-diffusive convection (DD) limit by applying the
following conventional relation:

−βC(∂φC,0/∂ζ )

(∂φA,0/∂ζ )
< δC, (26)

which is adopted from the dynamic stability limit for the salt-finger system [19]. However, as
pointed out by Huppert and Manins [19], there are some simplifications and bold assumptions.
They derived Eq. (23) by combining the linear stability condition for the bounded domain [0,1] (see
Eq. (2) of Huppert and Manins [19]), and the density profiles for the unbounded domain (−�,�)
(see Eq. (7) of Huppert and Manins [19]). However, this stability criterion cannot apply to the ternary
systems where cross-diffusion effects cannot be ignored. To overcome this limitation, Costantino
et al. [20], Vitagliano et al. [21], Kim and Song [22], and Kim and Cardoso [23] proposed that this
kind of instability is possible if the density profile is monotonically increasing with inflection points.
In the present upper layer, we employed the following conditions:

∂ρ̄T
0

∂ζ

∣∣∣∣
ζ=ζ f

> 0,
(
ζ T

e

)2
< 0 and

(
ζ T

i

)2
> 0 for ζ f > 0, (27a)

and

∂ρ̄T
0

∂ζ

∣∣∣∣
ζ=ζ f

> 0,
(
ζ T

e

)2 − ζ 2
f < 0 and

(
ζ T

i

)2 − ζ 2
f > 0 for ζ f � 0, (27b)

rather than the conventional one, Eq. (26). The above conditions are equivalent to

U1 < βC < δCU1 if δC > 1 and ζ f > 0, (28a)

U2 < βC < δCU2 if δC > 1 and ζ f � 0, (28b)

where

U1 = U2 exp

{
ζ 2

f

4

(
1 − 1

δC

)}
(29a)

and

U2 = 2δC

erfc(ζ f /
√

4δC)
, (29b)

which were already defined by Trevelyan et al. [17].
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Similarly, DD with density inversion is possible if

∂ρ̄T
0

∂ζ

∣∣∣∣
ζ=ζ f

> 0 and 0 <
(
ζ T

e

)2
< ζ 2

f for ζ f > 0, (30)

i.e.,

U2 < βC < U1 if δC > 1 and ζ f > 0. (31)

Based on the above findings, the top layer is unconditionally stable if

βC > δCU1, ζ f > 0 and δC > 1, (32a)

βC > δCU2, ζ f � 0 and δC > 1. (32b)

For the case of ζ f > 0, the above criterion, Eq. (32a) obtained from Eq. (28a), is slightly different
from Trevelyan et al.’s [17] one, i.e., βC > δCU2 and δC > 1, which is derived from Eq. (26).

If we apply the above procedure to the bottom layer, then we can obtain the stability criteria:

1

L2
<

βB

βC
<

1

L2

δB

δC
if δB > δC and ζ f � 0, (33a)

1

L1
<

βB

βC
<

1

L1

δB

δC
if δB > δC and ζ f < 0. (33b)

for the double diffusive instability without density inversion, and

1

L2
<

βB

βC
<

1

L1
if δB > δC and ζ f < 0, (34)

for the double diffusive instability with density inversion. Here,

L1 = L2 exp

{
ζ 2

f

4

(
1

δB
− 1

δC

)}
and L2 = 2δC

δBerfc(−ζ f /
√

4δC)
(35)

were already defined by Trevelyan et al. [17]. By combining Eqs. (33b) and (34), for the case of
δB > δC and ζ f < 0, double diffusive instability is possible:

1

L2
<

βB

βC
<

1

L1
if δB > δC and ζ f < 0. (36)

So, the lower layer is unconditionally stable if

βB

βC
>

1

L2

δB

δC
, δB > δC and ζ f � 0, (37a)

βB

βC
>

1

L1

δB

δC
, δB > δC and ζ f < 0. (37b)

For the case of ζ f < 0, the present stability limit, (βB/βC) > L−1
1 (δB/δC), obtained from the

existence of the density inflection point, i.e., Eq. (37b), is slightly different from Trevelyan et al.’s
[17] condition, i.e., (βB/βC) > L−1

2 (δB/δC) and δB > δC, which was derived from −βC(∂φC,0/∂ζ )
βB(∂φB,0/∂ζ ) < δC

δB
.

Since L2 > L1 for the case of δB > δC, the stability of L−1
2 (δB/δC) < (βB/βC) < L−1

1 (δB/δC) should
be checked through a thorough stability analysis.

By combining the above findings, Eqs. (32) and (36), the system is unconditionally stable if

δCU1 < βC < βBL2
δC

δB
, ζ f > 0 and δB � δC � 1, (38a)

δCU2 < βC < βBL1
δC

δB
, ζ f < 0 and δB � δC � 1, (38b)
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which is different from Trevelyan et al.’s [17] following condition:

δCU2 < βC < βBL2
δC

δB
and δB � δC � 1. (39)

The above stability limit is derived from the Eqs. (32) and (37). For the limiting cases of δB = δC = 1
or ζ f = 0, the above two conditions are identical. Furthermore, for the case of δB = δC = 1, the
above condition are identical with the following unconditionally stable condition [16]:

2 � βC � 2βB for δB = δC = 1. (40)

IV. LINEAR STABILITY ANALYSIS

A. Linear stability equations

Under the linear stability theory, the following dimensionless stability equations are obtained by
perturbing Eqs. (7)–(9):

∇2w1 = ∇2
1

(∑
i
βiφi,1

)
, (41)

∂φi,1

∂τ
+ w1

∂φi,0

∂z
= δi∇2φi,1 + niDa(φA,0φB,1 + φA,1φB,0), (42)

where ∇2
1 = ∂2/∂x2 and w1 is the vertical velocity component. The density is decomposed as ρ̄ =

ρ̄0 + ρ̄1, ρ̄0 = ∑
i βiφi,0, and ρ̄1 = ∑

i βiφi,1. The proper boundary conditions are

w1 → 0 and φi,1 → 0 as z → ±∞. (43)

It is well-known that the disturbances which are localized near the reaction front cannot be
accurately captured in the (τ, z)-domain, since the dominant operator, ∂2/∂z2, does not have
localized eigenfunctions that vanish at the infinite boundaries [24–26]. Following the standard
procedure, in the similar (τ, ζ )-domain, we can reformulate Eqs. (41)–(43) as

(D2 − a∗2)w1 = −a∗2
(∑

i
βiφi,1

)
, (44)

τ
∂φi,1

∂τ
− ζ

2
Dφi,1 + √

τwDφi,0 = δi(D
2 − a∗2)φi,1 + niDa∗(φA,0φB,1 + φA,1φB,0), (45)

under the following boundary conditions:

w1 → 0 and φi,1 → 0 as ζ → ±∞. (46)

Here, D = ∂/∂ζ , ∇2
1 = −a2, a∗ = a

√
τ , Da∗ = Daτ and a is the horizontal wave number.

For the limiting case of τ → 0, by neglecting the last term of Eq. (45), Eqs. (44) and (45) can be
reduced as

D2w1 = 0, (47)

τ
∂φi,1

∂τ
− ζ

2
Dφi,1 + √

τw1Dφi,0 = δiD
2φi,1. (48)

Here
√

τw1Dφi,0 is kept, since Dφi,0 has a nonanalytic characteristic at τ = 0. The solution of
Eq. (47) under the boundary conditions Eqs. (46) is w1(ζ ) → 0 as τ → 0. Using this solution, the
following equation can be obtained:

τ
∂φi,1

∂τ
− ζ

2
Dφi,1 = δiD

2φi,1. (49)
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Since, the above partial differential equation is linear, by letting

φi,1 =
∞∑

n=0

εi,n(τ )θi,n(ζ ), (50)

one can obtain

1

εi,n

dεi,n

d ln τ
= 1

θi,n
Liθi,n = −λn (51a)

λn = n + 1

2
for n = 0, 1, 2, · · · (51b)

θi,n(ζ ) = κnHn

(
ζ

2
√

δi

)
exp

(
− ζ 2

4δi

)
, (51c)

κn = {
√

(n!2n+1
√

π )}−1, (51d)

where Li = δiD2 + ζ

2 D and Hn’s are the nth Hermite polynomials. Since the functions θi,n’s are
orthonormal, for any functions θi,n and θi,m,

〈θi,n, θi,m〉 =
∫ ∞

−∞
θi,nθi,m exp

(
ζ 2

4δi

)
dζ = δnm, (52)

where exp(ζ 2/4δi ) is the weight function of the operator Li and δnm is the Kronecker δ.
The above results mean that the least stable disturbance is the following zeroth mode one:

φi,1 = εi,0(τ )
1√√

π
exp

(
− ζ 2

4δi

)
. (53)

Here, amplitude εi,0(τ ) is governed by

1

εi,0

dεi,0

dτ
= − 1

2τ
. (54)

Therefore, it may be concluded that in the early stage of diffusion the system is unconditionally
stable since the least stable disturbance has a large negative growth rate. This analysis, also, can be
applied to the long-wave limit a → 0 and finite time, i.e., a

√
τ 
 1.

For the case of Da∗ � 1, the above linear stability equations can be reduced as

(D2 − a∗2)wT
1 = −a∗2

⎛
⎝ ∑

j, j �=B

β jφ j,1

⎞
⎠

T

, (55a)

τ
∂φT

j,1

∂τ
− ζ

2
DφT

j,1 + √
τwT

1 DφT
j,0 = δ j (D

2 − a∗2)φT
j,1, (56a)

for the top layer (−∞ < ζ < ζ f ), and

(D2 − a∗2)wB
1 = −a∗2

⎛
⎝ ∑

k,k �=A

βkφk,1

⎞
⎠

B

, (55b)

τ
∂φB

k,1

∂τ
− ζ

2
DφB

k,1 + √
τwB

1 DφB
k,0 = δk (D2 − a∗2)φB

k,1, (56b)
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for the bottom layer (ζ f < ζ < ∞), where D = ∂/∂ζ . The matching and boundary conditions are

wT
1 = wB

1 and DwT
1 = DwB

1 at ζ = ζ f , (57a)⎛
⎝ ∑

j, j �=B

φ j,1

⎞
⎠

T

=
⎛
⎝ ∑

j, j �=B

φ j,1

⎞
⎠

B

and

⎛
⎝ ∑

k,k �=A

φk,1

⎞
⎠

T

=
⎛
⎝ ∑

k,k �=A

φk,1

⎞
⎠

B

at ζ = ζ f , (57b)

⎛
⎝ ∑

j, j �=B

δ jDφ j,1

⎞
⎠

T

=
⎛
⎝ ∑

j, j �=B

δ jDφ j,1

⎞
⎠

B

and

⎛
⎝ ∑

k,k �=A

δkDφk,1

⎞
⎠

T

=
⎛
⎝ ∑

k,k �=A

δkDφk,1

⎞
⎠

B

at ζ = ζ f , (57c)

w1 → 0 and φi,1 → 0 as ζ → ±∞. (57d)

Because the two reactants A and B cannot coexist for the infinitely fast reaction system, Eqs. (57b)
and (57c) means that the concentrations of (A+C) and (B+C), and their fluxes should be continuous.
So, it is natural that φT

B,1 = 0 and DφT
B,1 = 0 for ζ � ζ f , φB

A,1 = 0 and DφB
A,1 = 0 for ζ � ζ f . From

these relations, the above matching conditions Eqs. (54b) and (54c) can be reduced as

φT
A,1 = −φB

B,1, φT
C,1 = φB

B,1 + φB
C,1, DφT

A,1 = −δBDφB
B,1, and

DφT
C,1 = DφB

C,1 + δ−1
C δBDφB

B,1 at ζ = ζ f (58)

Here, we should stress that the continuities of the product C and its flux are not imposed at ζ = ζ f .

B. Solution methods

For the limiting case of δB = δC = 1, Kim [16] solved the above stability Eqs. (55)–(57) analyt-
ically. However, since his analytic approach cannot be applied to the present different diffusivities
case, we should introduce the following quasi-steady state approximation in the (τ, ζ )-domain, here
we refer the present QSSA as QSSAζ :

[w1(τ, ζ ), φi,1(τ, ζ )] = [w1(ζ ), φi,1(ζ )] exp(σ ∗τ ), (59)

and we solve the resulting stability equation numerically. In the present study, we have tried to solve
the stability Eqs. (52)–(55) with the numerical shooting method [27].

For the limiting case of δB = δC = 1, the neutral stability curves, which correspond to σ ∗ = 0,
obtained from the analytical approximation without the QSSA and the present numerical shooting
solution with QSSA, are compared in Fig. 2. As shown in this Fig. 2, the present numerical solution
and the previous analytical approximations are in good agreement. In other words, the present
QSSAζ is robust, and the numerical solution method is accurate.

V. NUMERICAL SIMULATIONS

Even though the above asymptotic and linear analyses give useful information on the onset and
the growth of the instabilities, a more exact solution can be obtained by solving the initial value
problem of Eqs. (6)–(8). For the infinite Da case, by assuming that both reactants cannot coexist,
Eqs. (7)–(9) can be rewritten as

∇2ψ = −ωy, (60)

∂φi,1

∂τ
+ ji = δi∇2φi,1, (61)
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FIG. 2. Comparison of neutral stability curves obtained from analytic approximation without the QSSA
and the present numerical shooting method with the QSSA for the limiting case of δB = δC = 1.

ωy = −
∑

i

βi
∂φi,1

∂x
, (62)

ji =
(

∂ψ

∂x

∂φi,0

∂z
+ ∂ψ

∂x

∂φi,1

∂z
− ∂ψ

∂z

∂φi,1

∂x

)
, (63)

under the following boundary conditions:

ψ → 0 and φi,1 → 0 as z → ±∞. (64)

Here, using the stream function ψ , we expressed the two-dimensional velocity filed as (u,w) =
(−∂ψ/∂z, ∂ψ/∂x). To solve Eqs. (60)–(64) accurately, we have employed the Fourier-spectral
numerical scheme described in Tan and Homsy [28]. The periodic boundary conditions are taken
in both the x and z direction. The use of these boundary conditions has no influence on the
dynamics of the chemical front as long as the unstable propagating front does not encounter its
periodic extension. In the present study, the calculation domain is set as [0, 2 × 103] × [−103, 103],
and 2048 × 2048 collocation points are used. Unlike the linear theory, the initiation condition
is important in the nonlinear analysis. Since, the initial growth rate analysis cannot suggest the
dominant wavenumber, in the present study, the following initial condition is employed:

φi,1 = εi,0(τ )
1√√

π
exp

(
− ζ 2

4δi

)
rand(x) at τ = τi, (65)

where ε means the initial disturbance level and rand(x) is the pseudorandom number uniformly
distributed between −1 and 1. This condition prevents unphysical conditions of φi > 1 or φi < 0,
if ε is small enough. From Eq. (53), it can be easily understood that the above initial condition
corresponds to the least stable zeroth mode of disturbance. In the present study, we set ε = 10−2.
For region of τ ∼ 0, the base concentration gradient ∂φi,0

∂z (∼δ(z)) shows the nonanalytic feature and
leads to bad convergence properties. For this reason, at all the nonlinear numerical simulations, the
disturbance given in Eq. (65) is introduced at τi = 0.1.

Here, since we are interested in the enhancement of mixing or mass transfer driven by the
instability motion, let us consider the mass transfer rate of (A + C). The dimensionless mass flux J
at the reaction front z = z f , which can be written as the sum of contributions from the base diffusion
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state, J0, and the convective motion, J1:

J = J0 + J1. (66)

The diffusional flux can be computed explicitly from the base concentration profile as

J0 = −
(

∂φA,0

∂z
+ δC

∂φC,0

∂z

)∣∣∣∣
z=z f

= 1√
πτ

{
exp

(−ζ 2
f

/
4
)

erfc(−ζ f /2)
− rC

√
δC

exp
(−ζ 2

f

/
4δC

)
erfc(−ζ f /

√
4δC)

}
. (67)

The flux from convective motion are obtained as [29]

J1 = 1

Lx

∫ Lx

0

(
− ∂φA,1

∂z
− δC

∂φC,1

∂z

∣∣∣∣
z=z f

)
dx = 1

Lx

1

Lz

∫ Lx

0

∫ Lz/2

−Lz/2
w(φA,1 + φC,1)dzdx. (68)

We defined another important quantity, the intensity of the vorticity as

|ωy| =
[∫ Lx

0

∫ Lz/2

−Lz/2
ω2

y dzdx

]1/2

. (69)

For the limiting case of δB = δC = 1, rB = 0.75, βB = 0, and βC = 1, the temporal evolutions of
total flux and the intensity of the vorticity are given in Fig. 3. As shown in this figure, the time from
which the vorticity field starts to grow is nearly the same as the critical time determined from the
present linear stability analysis (see Fig. 2). In addition, the vorticity field becomes visible from the
time at which the total flux shows its minimum.

VI. RESULTS AND DISCUSSION

For the nonreactive system, i.e., Da = 0, Trevelyan et al. [15] conducted linear and nonlinear
analyses and concluded that the system is unconditionally stable if

1 < δB < (βBrB)2/3. (70)

Recently, Kim and Song [22] drew the same result by employing the following conditions:

d ρ̄0

dζ

∣∣∣∣
ζ=0

> 0, ζ 2
e < 0 and ζ 2

i < 0. (71)

The above conditions mean that the fluid layer is gravitationally stable if the density of the system
increases according to the gravity field without its inflection points. In Trevelyan et al.’s [15] linear
stability analysis, they employed the QSSA in the (τ, z)-domain or frozen-time; here we refer to the
conventional QSSA as QSSAz. Under this QSSAz, the disturbance quantities are expressed as

[w1(τ, z), φi,1(τ, z)] = [w1(z), φi,1(z)] exp(στ ). (72)

By applying the above QSSAz into Eqs. (41) and (42), the following stability equations can be
obtained:

(
d2

dz2
− a2

)
w1 = −a2

(∑
i
βiφi,1

)
, (73)

σφi,1 + w1
∂φi,0

∂z
= δi

(
d2

dz2
− a2

)
φi,1 + niDa(φA,0φB,1 + φA,1φB,0). (74)
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FIG. 3. Temporal evolution of (a) total flux, (b) intensity of vorticity, and (c) vorticity field for the limiting
case of δB = δC = 1, rB = 0.75, βB = 0, and βC = 1. Here, τc is obtained from the linear stability analysis.
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FIG. 4. Comparison between the present QSSAζ and the conventional QSSAz (Trevelyan et al. [15])
for the nonreactive case, i.e., Da = 0. The previous numerical simulations (Trevelyan et al. [15]) are also
compared.

For the nonreactive case, i.e., Da = 0, Trevelyan et al. [15] solved the above stability equation.
They suggested that based on the QSSAz, the initial growth rate becomes

1 − a√
a2 + σ

= rBβB

(
1 − a√

a2 + (σ/δB)

)
+ 2σ

a
for Da = 0 and τ = 0. (75)

Furthermore, at the limiting case of τ = 0, the above relation can be used for the nonzero Da system
because both reactants cannot coexist with φC = 0 at τ = 0. However, the present initial growth rate
analysis without QSSA summarized in Eq. (54) yields

σ ∗ → − 1

2τ
as τ → 0. (76)

For the example case of Da = 0, δB = 3, and rBβB = 2, Eq. (75) yields

σmax = 7.4364 × 10−4 and amax = 0.05045 for τ = 0. (77)

The above relation means that this example system is initially unstable. However, the present
Eq. (76) proposed that the initial growth rate is a large negative. For this example case, the present
QSSAζ in the (τ, ζ )-domain is compared with Trevelyan et al.’s [15] QSSAz and numerical
simulations in Fig. 4. As shown in Fig. 4, it is clear that Eqs. (75) and (76) suggest the limiting
cases of the QSSAz and QSSAζ , respectively. Furthermore, Fig. 4 shows that the present QSSAζ

explains Trevelyan et al.’s [15] numerical simulation more reasonably than Trevelyan et al.’s [15]
conventional QSSAz especially for the small time region.

For the limiting case of δB = δC = 1, in the (τ, ζ )-domain, the linear stability analysis without
the QSSA was conducted for the reactive system [13]. As discussed in Fig. 2, in the (τ, ζ )-domain,
the stability characteristics obtained from analytic approximations without QSSA and the numerical
solution under the QSSAζ are consistent. However, the QSSAz in the (τ, z)-domain has not been
supported by the linear stability analysis without QSSA. Therefore, for the small-time region, the
linear stability analyses in the (τ, ζ )-domain are strongly recommended, and therefore we used
QSSAζ in the present linear analysis.

Because, as discussed by Trevelyan et al. [17], a total of 62 density profiles are possible,
we will conduct linear and nonlinear analyses for some typical cases. At first, we considered
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the possibility of the gravitational instability without an adverse density gradient. In case of the
stationary reaction front, i.e., ζ f = 0, the effect of the bottom layer density profile on the onset and
the growth of instabilities are summarized in Fig. 5. For the case of βB < U2L−1

2 δC, i.e., the RT
regime, the large density difference accelerates the onset of instabilities [see Figs. 5(a) and 5(b)]
and the growth of convective motion [see Figs. 5(a), 5(c), and 5(d)]. In addition, for the case of
U2L−1

2 δC < βB < U2L−1
2 δB, i.e., the DD regime, the onset and the growth of gravitational instability

is possible without density inversion. Furthermore, for the stability limit, βB = U2L−1
2 δB, we cannot

expect the onset of instability [see Fig. 5(b)] and the growth of the convective motion [see Fig. 5(d)].
The present findings suggest that the unconditionally stable conditions suggested by Eq. (38) and
the present linear stability analysis [see Fig. 5(b)] and the numerical simulation [see Fig. 5(c)] are
in good agreement. Even though the neutrally stable region of the top layer retards the growth of
the convective motion, it cannot prevent the convective motion from developing in the top layer [see
Fig. 5(d)].

For the neutrally stable bottom layer, the density profile of the top layer and its effect on
the critical time is given in Figs. 6(a) and 6(b). These figures also show that in multicomponent
systems, the onset of gravitational instabilities are possible without density inversion, i.e., in the
DD regime (U2 < βC < δCU2). For this case, Trevelyan et al.’s [17] general classification, Eq. (39),
and the present asymptotic stability criterion are identical since L1 = L2 if ζ f = 0, and the present
asymptotic stability analysis explains the present linear stability analysis quite well. As discussed
in the above, we cannot expect the onset and the growth of instabilities for the stability limit, i.e.,
βC = δCU2 [see Figs. 6(b) and 6(c)]. In addition, unlike the system considered in Fig. 5, the strong
stability barrier of the bottom layer prevents the convective motion from developing in the bottom
layer [see Fig. 6(d)].

For the case of ζ f < 0, i.e., the reaction front moves upward, the top layer is neutrally stable if
βC = δCU2 and δC > 1 [see Eq. (29)]. For this case, the effect of βB on the density profile, critical
time, and the temporal growth of the vorticity field are summarized in Figs. 7(a)–7(c). As shown
in Fig. 7(b), the system can be unstable even for the Trevelyan et al.’s [17] unconditionally stable
regime (U2L−1

2 δB < βB < U2L−1
1 δB). However, as shown in Fig. 7(c), we cannot confirm the validity

of the present linear analysis because the critical time from which the intensity of the vorticity starts
to grow is too large to trace it by the present numerical simulation. Comparing Figs. 5(d) and 7(d),
we cannot find any critical effect of the location of the reaction front, ζ f on the development of the
convective motion.

We also conducted a similar work for the case of ζ f > 0, i.e., the reaction front moves downward.
As shown in Figs. 8(b) and 8(c), the difference between the present work and the previous Trevelyan
et al.’s [17] general classification is not critical, because for the present case, the values of L1 and
L2 are nearly the same. Comparing Figs. 5(d), 7(d), and 8(d), we cannot find any critical effect of ζ f

except for the movement of the reaction front.
For the HCl+MOH→NaCl system, where M = Li, Na, K, and Cs, Almarcha et al. [9,10]

conducted experiments and numerical simulations to study the effect of a chemical acid-base
reaction on the growth of gravitational instabilities. According to their results, the convective
motions are strongly affected by the density profiles. As discussed by Trevelyan et al. [17], in some
special cases, the density profiles show a very interesting feature. For two exemplary cases, the
concentration and density profiles, corresponding neutral stability curves and the vertical velocity
component profiles are given in Figs. 9 and 10. The density profile given in Figs. 9(a) suggests
there exist two separate unstable regions and the density difference of the top layer is larger than
that of the bottom one. According to the present linear stability analysis, the top layer is much more
unstable than the bottom layer and the instability cannot be expected for τ < 104. As shown in
Fig. 9(b), the present QSSAζ predicts the existence of the forbidden region where instabilities are
not possible, however, the conventional QSSAz does not. This is the critical difference between the
present QSSAζ and the conventional QSSAz. The normalized vertical velocity disturbances at the
minima of the two neutral stability curves are given in Fig. 9(c). As expected from the density profile
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FIG. 5. Effect of βB on the (a) density profile, (b) critical time, (c) temporal evolution of the intensity of
vorticity, and (d) vorticity field, where numbers in the brackets correspond to [ωy,min, ωy,max], for the case of
ζ f = 0 and neutrally stable top layer.

073901-16



EFFECT OF THE IRREVERSIBLE A+B → C REACTION …

FIG. 6. Effect of βC on the (a) density profile, (b) critical time, (c) temporal evolution of intensity of
vorticity and (d) vorticity field, where numbers in the brackets correspond to [ωy,min, ωy,max], for the case of
ζ f = 0 and neutrally stable bottom layer.
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FIG. 7. Effect of βB on the (a) density profile and (b) critical time, (c) temporal evolution of the intensity
of the vorticity, and (d) vorticity field, where numbers in the brackets correspond to [ωy,min, ωy,max], for the case
of ζ f < 0, the reaction front moving upward.
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FIG. 8. Effect of βB on the (a) density profile and (b) critical time, (c) temporal evolution of the intensity
of the vorticity, and (d) vorticity field, where numbers in the brackets correspond to [ωy,min, ωy,max], for the case
of ζ f > 0, the reaction front moving downward.
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FIG. 9. Stability characteristics for the case of δB = 0.5, δC = 2.0, rB = √
2, βB = 1, and βC = 2. (a)

Concentration and density profiles, (b) neutral stability curves, (c) normalized vertical velocity disturbance
and (d) temporal evolution of vorticity field where [ωy,min, ωy,max] = [−5.2, 5.2] × 10−3.

073901-20



EFFECT OF THE IRREVERSIBLE A+B → C REACTION …

FIG. 10. Stability characteristics for the case of δB = 0.5, δC = 0.25, rB = 21/2, βB = 1, and βC = 21/2. (a)
Concentration and density profiles, (b) neutral stability curves, (c) normalized vertical velocity disturbance,
and (d) temporal evolution of vorticity field where [ωy,min, ωy,max] = [−0.01, 0.01].
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of Fig. 9(a), the instability of the top layer (negative ζ region) is confined within a narrower region
than the instability of the bottom layer. The results of the present linear analysis were validated by
the nonlinear numerical simulations. The temporal evolution of the vorticity field for the system of
Fig. 9(a) is summarized in Fig. 9(d). The bottom layer instabilities are not visible until τ < 3 × 104

As far as we know, the physical reality of the density profile given in Fig. 9(a) is not reported.
However, the density profile given in Fig. 10(a) is quite similar to that of Bratsun et al.’s [30]
concentration dependent convection (CDC) system (see Fig. 3(a) of Bratsun et al. [30]). Even though
the present neutral stability curves are quite different from Bratsun et al.’s (see Fig. 3(b) of Bratsun
et al. [30]), Figs. 10(b) and 10(c), and Bratsun et al.’s [30] experiments and numerical simulation
show that initially the instabilities are confined within the narrow region just below the reaction
front, and then the top layer instabilities become visible as time goes on. This means that the present
linear and nonlinear analyses are in good agreement with the previous experimental and numerical
work.

VII. CONCLUSIONS

For the infinitely fast reaction system, the effect of different diffusivities of reactants and product
on the onset and growth of the gravitational instability in a Hele-Shaw cell was analyzed using
an asymptotic and a linear stability theory and the nonlinear direct numerical simulation. Without
a systematic stability analysis, the asymptotic stability criteria were proposed and suggested that
the instabilities are possible without the adverse density gradients. Also, we compared the present
asymptotic stability criteria with the systematic linear stability analysis and nonlinear numerical
simulations. For some interesting cases, we performed the linear stability analyses and the nonlinear
numerical simulations and showed that two separate modes of instabilities are possible even for
the constant diffusivities system. Based on the present study, the present asymptotic, linear, and
nonlinear analyses can be used to study the stability of multicomponent systems.
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