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Efficiency limits of the three-sphere swimmer
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We consider a swimmer consisting of a collinear assembly of three spheres connected
by two slender rods. This swimmer can propel itself forward by varying the lengths of
the rods in a way that is not invariant under time reversal. Although any non-reciprocal
strokes of the arms can lead to a net displacement, the energetic efficiency of the swimmer
is strongly dependent on the details and sequences of these strokes, and also the sizes of
the spheres. We define the efficiency of the swimmer using Lighthill’s criterion, i.e., the
power that is needed to pull the swimmer by an external force at a certain speed, divided by
the power needed for active swimming with the same average speed. Here, we determine
numerically the optimal stroke sequences and the optimal size ratio of the spheres, while
limiting the maximum extension of the rods. Our calculation takes into account both far-
field and near-field hydrodynamic interactions. We show that, surprisingly, the three-sphere
swimmer with unequal spheres can be more efficient than the equally sized case. We also
show that the variations of efficiency with size ratio is not monotonic and there exists
a specific size ratio at which the swimmer has the highest efficiency. We find that the
swimming efficiency initially rises by increasing the maximum allowable extension of the
rods, and then converges to a maximum value. We calculate this upper limit analytically
and report the highest value of efficiency that the three-sphere swimmer can reach.
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I. INTRODUCTION

Optimal swimming at small scales has been an immense topic of interest due to both its
application in biomedial engineering [1], and the possible insight it may provide into evolutionary
processes of microorganisms [2,3]. From the beating pattern of a single cilium [4,5] to the body
shape of a micro-organism [6], efficiency has been shown to be a key factor in better understanding
the realm of micro-organisms.

Efficiency is also important for artificial swimmers. While for diffusiophoretic swimmers
efficiency is often discussed from thermodynamical perspectives [7–9], for swimmers that rely on
body deformations (or strokes) for locomotion, swimming (or hydrodynamic) efficiency is used
as a measure for optimizing the propulsion mechanisms [10–12]. Specifically, energy dissipation
scales quadratically with speed, and so fast propulsion necessitates optimal swimming strokes.
These strokes, to be able to have any net effect, must be nonreciprocal: they should not remain
unchanged under a time reversal. This constraint, colloquially referred to as the scallop theorem
[13], stems from the absence of inertia and the consequent linearity of the field equations. Within
the past few decades, several theoretical models have been proposed that can evade this constraint,
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FIG. 1. Schematic of the three-sphere swimmer considered in this study. The swimmer can propel by
opening and closing its arms, and we refer to their instantaneous lengths as L1 and L2.

with the aim of either explaining the swimming strategies of micro-organisms [14,15] or finding the
simplest techniques for locomotion (see [16] for a review). Among these, the Najafi-Golestanian
three-sphere swimmer has proven quite useful in manifesting a simple approach for creating a
nonreciprocal motion, using only two degrees of freedom [17]. The swimmer consists of three
equally sized spheres connected by two vanishingly thin rods. This collinear assembly propels itself
forward following a four-step motion wherein the rods change their length between two prescribed
values in a nonreciprocal fashion. After a full cycle, the swimmer thereby returns to its original
configuration, but has translated forward [18]. Owing to its simplicity, many have adapted/extended
this model swimmer to further investigate the propulsion mechanisms: from the experimental
realization [19,20], to including near-field effects of a finite sphere size [21], to introduction of
elasticity (in the rods [22,23], spheres [24], or fluid [25]), an adjacent wall [26,27], reinforcement
algorithms [28], or even inertia [29–31]. The stochastic adaptation of this swimmer has also been
used to describe the molecular swimming [32–34] and the motion of enzymes [35,36].

The efficiency of the three-sphere swimmer with minimal arm-length variations (as originally
proposed [17]) is relatively low [37], and so optimizing this swimmer has also attracted some
attention [38]. In a series of studies [39–41], Alouges and coworkers looked into optimal strokes
for axisymmetric swimmers at low Reynolds number, taking the three-sphere swimmer as one of
their primary models. By casting the optimization problem in the language of control theory, they
discussed the optimal strokes for the swimmer with equally sized spheres, for which the translation
per period is prescribed. In this work, we intend to relax this constraint and look at the maximum
feasible efficiency of the three-sphere swimmer when it is allowed to select not only its strokes, but
also the radii of its spheres. By accounting for the full hydrodynamic interactions, we show that
there exists a specific size ratio of the spheres at which the swimmer has the highest efficiency.
We also show that the value of this size ratio remains unchanged when we vary the maximum
permissible arm length. We finally look at a limiting case to determine the maximum efficiency that
the three-sphere swimmer can ever reach, and then use it to prove that the optimal size ratio holds
even when the swimmer is allowed to extend its body indefinitely.

The paper is organized as follows. We first introduce the generalized three-sphere swimmer
model wherein the spheres can be of different sizes and the arms can change their length from
zero to a maximum that we prescribe. Then after solving the full hydrodynamic interactions using
a boundary element method, we optimize the swimming strokes and evaluate the variations of the
swimming efficiency with respect to the size ratio of the spheres. We then look into the effects of
the maximum allowable arm lengths on the swimming efficiency, and finally introduce a limiting
case that can accurately set the upper limit for the efficiency of the three-sphere swimmer.

II. GOVERNING EQUATIONS

A. Model swimmer

We consider a swimmer comprising of three spheres connected by two rods in an otherwise
quiescent viscous fluid of viscosity μ, as shown in Fig. 1. The spheres on the sides are of radii
r1 and the radius of the middle sphere is r2. The rods, which are hydrodynamically unimportant,
are of lengths L1 and L2, and can vary their length from zero to Lmax. The arms undergo periodic
length variations (i.e., strokes) which lead to propulsion of the whole body, provided they are
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nonreciprocal. Here, we want to find the specific strokes and size ratio (i.e., r1/r2) that optimize
the propulsion mechanism of the swimmer. For the concept of optimal swimming, we follow the
classical work of Lighthill [15], in which the efficiency is defined as the ratio of the required power
to pull the swimmer at a certain speed and the actual expended one during active locomotion with
the same average speed.

As the first step, we look into the hydrodynamic interactions between the spheres and then use
that to determine the efficiency. At any instant of the motion, the rods apply forces fAe, fBe, and fCe
on the spheres A, B, and C, where e is a unit vector representing the axis of symmetry. Relying on
the linearity of the Stokes equations and defining UAe, UBe, and UCe as the instantaneous velocities
of the spheres, we may write the drag law as⎡

⎣ fA

fB

fC

⎤
⎦ =

⎡
⎣RAA RAB RAC

RBA RBB RBC

RCA RCB RCC

⎤
⎦

⎡
⎣UA

UB

UC

⎤
⎦ (1)

or in short F = RU . Note that here, R is the resistance tensor mapping translational velocities to
forces and is solely a function of the relative positions of the spheres and their sizes. We assume
that the swimmer can indeed swim without the presence of any external force, and recalling that the
motion is overdamped, one can claim

fA + fB + fC = 0. (2)

We can close the equations by defining L̇1e and L̇2e as the relative velocities of the spheres, and so
we have

UB − UA = L̇1, UC − UB = L̇2. (3)

We have now arrived at a system of six equations [Eqs. (1) to (3)] with six unknowns (F and U ).
Thus, we can explicitly find the instantaneous forces and velocities of the spheres in terms of L̇1 and
L̇2, provided the resistance tensor is known. Once solved over a full cycle, we can also find the net
translation of the system. Defining L̇ = [L̇1, L̇2], the solution takes the form

U = C L̇, (4)

where the 3 × 2 matrix C is a function of components of R, and can be explicitly found from Eqs. (1)
to (3). Now, the Lighthill efficiency reads

η = 6πμreffŪ 2

P , (5)

where the power expended by the swimmer

P = 1

T

∫ T

0
U · Fdt = 1

T

∫ T

0
(L̇

� C�) R (C L̇)dt, (6)

and T is the period. The average speed of the swimmer can be defined as the net translation of any
reference point on the swimmer (e.g., sphere B) per one complete cycle. Thus, we may define it as

Ū = 1

T

∫ T

0
(0, 1, 0)� · C L̇ dt . (7)

Characteristic for the Stokes hydrodynamics, Ū only depends on the form of the trajectory and the
cycle time, but not on the details of the velocity profile through the cycle.

The effective radius reff determines the Stokes drag that is used to calculate the equivalent
dissipation, if the swimmer is pulled by an external force with speed Ū . For a swimmer that
undergoes large body deformations, such as the three-sphere swimmer considered here, the
definition of the swimmer’s drag coefficient is not clear. We choose reff = 3

√
2r3

1 + r3
2 as the radius

of a sphere with the same total volume as the three spheres of the swimmer combined. The rationale
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behind the choice is to use the power needed to transport a spherical cargo of the same volume
as a reference. We note that reff only serves as a scaling factor in Eq. (5) and so using different
definitions (e.g., reff = 2r1 + r2, which represents the combined drag on the three spheres without
hydrodynamic interactions) does not alter the results qualitatively. Finally, it is important to note
that the Lighthill efficiency is independent of period T and the swimmer size, as one can simply
show from Eq. (5). Therefore, the length variations profile and the size ratio uniquely determine
the efficiency. We also note that unlike the case of cylindrical swimmers, the Lighthill efficiency
provides a reliable measure for calculating the efficiency of sphere-based swimmers, such as the
three-sphere swimmer considered here [42]. By maximizing the Lighthill efficiency, we will always
find the way to move a swimmer with a given total volume at a given speed with minimal power.
Conversely, it will also give us the maximum swimming speed a swimmer with a given volume and
available power can achieve.

B. Computational framework

We discretize the length variations of the rods during one cycle using N time points, and at each
segment, refer to their lengths using Li = [Li

1, Li
2], where i ∈ {1, 2, . . . , N}. Our aim is to find a

trajectory (i.e., Li) and a size ratio (r1/r2) that maximize the efficiency of the swimmer. Under this
discretization, we can calculate the translational speed and the net power as

Ū = 1

2N�t

N∑
i=1

[(0, 1, 0)� · (Ci + Ci+1)] (Li+1 − Li ), (8)

P = 1

2N�t2

N∑
i=1

(Li+1 − Li )
�(
C�

i RiCi + C�
i+1Ri+1Ci+1

)
(Li+1 − Li ), (9)

where the index boundaries are periodic (e.g., LN+1 ≡ L1), and �t = T/N is the time step.
To find R (and subsequently C), we solve for the hydrodynamic interactions between the spheres

by adapting a boundary element method routine prtcl_ax from the BEMLIB library by Pozrikidis
[43]. We validate our results against those obtained using HYDROLIB [44] for the case of equally
sized spheres, and observe excellent agreement. To proceed with the optimization, by means of
Numerical Algorithms Group (NAG) routine e04jyf, we use a quasi-Newton algorithm for tuning
2N variables of Li. For a given set of Li generated by the optimizer, the efficiency is calculated
by substituting Eqs. (8) and (9) into Eq. (5), and the iterations continue until no higher value can
be reached. We repeat the procedure systematically for different values of size ratio and maximum
allowable arm length (Lmax). For the results reported henceforth, we have set N = 100, as further
increasing N did not result in any quantitative changes.

III. RESULTS AND DISCUSSION

To properly evaluate the role of sphere radii on the efficiency, throughout this section, we scale
lengths with rch = 3

√
(1/3)(2r3

1 + r3
2 ) and use notation ( ˜ ) to distinguish dimensionless entities from

dimensional ones. We begin our analysis with the optimal trajectory of the swimmer. We find that
the optimal trajectories can be broadly categorized into three classes, depending on the value of
L̃max. For L̃max � 1, the swimmer follows a four-step motion, shown by black squares in Fig. 2(a).
Starting from all three spheres touching, the sequence goes as follows: The left arm opens first, the
right arm opens so the swimmer reaches its fully extended state, then the left arm closes and finally
the right arm closes, as illustrated in Fig. 2(b). When 1 < L̃max < 20, the fully extended state is
no longer sought, and the swimmer rather takes two short steps, resulting in a semi-trapezoidal
trajectory shown in Fig. 2 (those in blue color). Interestingly, further increasing the maximum
allowable arm length (20 � L̃max) causes the swimmer to select a simpler trajectory consisting of
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FIG. 2. (a) Optimal strokes of the three-sphere swimmer, for different values of maximum allowable arm
length L̃max. L̃1 and L̃2 are the arm lengths, and the swimmer follows these trajectories clockwise. Different
classes of trajectories are marked by different colors and the trajectories for 20 � L̃max are shown in inset.
(b) Examples of the optimal propulsion mechanisms for three different classes of the trajectories versus time.
The dashed lines indicate the position of each sphere throughout a cycle and colors correspond to trajectory
classes.

three steps: opening of the left arm, then opening of the right arm while simultaneously closing the
left arm, and finally closing of the right arm (trajectories in red).

To elude the scallop theorem, the swimmer exploits the nonreciprocal asymmetries it can
create with its cyclic body deformations, and so “stronger” asymmetries can lead to larger net
displacements. Our results indicate that indeed the swimmer maximizes its asymmetry by first
extending one arm and closing the other, and then vice versa. In fact, these two states of the swimmer
are shared between all classes of the optimal trajectories shown in Fig. 2, and the only difference
between these trajectories arises in the steps the swimmer takes between these two common states.

We may now determine the effect of the size ratio of the spheres on the efficiency of the swimmer.
Clearly, when r1/r2 → ∞, we are making the middle sphere obsolete, essentially removing one
degree of freedom from the swimmer. Hence, the efficiency is negligibly small in this limit.
Similarly, r1/r2 → 0 is inefficient as in this case both degrees of freedom vanish. Thus, the variation
of the efficiency with size ratio is nonmonotonic, as our computational results also confirm in
Fig. 3(a). Remarkably, for all values of Lmax, the efficiency reaches its maximum when the size
ratio is r1/r2 = 1.196 ≈ 1.2. Thus, there exists a unique size ratio at which the swimmer is optimal,
and that is when the side spheres are around 20% larger than the middle one.

On the other hand, as expected, efficiency monotonically rises with increasing the maximum
allowable arm length, as shown in Fig. 3(b). As Lmax increases, the swimmer can further extend its
body, allowing for more propulsive thrust. Thus, Ū rises, but so does the viscous dissipation. While
the increase of the former is shown to be always faster than the latter, the efficiency seems to plateau
for very large values of L̃max. Indeed, by allowing for larger body extensions, we cannot increase
the efficiency of the swimmer indefinitely, and there exists an upper limit that the efficiency tends
toward when L̃max → ∞. To find this upper limit, we consider a swimmer for which there are no
length constraints on the arms. As shown earlier, this swimmer has a three-step motion, depicted in
Fig. 2(b). At the first step, sphere A moves away from spheres B and C. Since L̃max is infinitely large
and that hydrodynamic interactions decay quadratically with distance [46,47], one may neglect the
hydrodynamic interactions between sphere A and the other two spheres. Under this approximation,
and recalling that spheres B and C do not have any relative motion in this step, we can alternatively
formulate the drag law as [

fA

f(BC)

]
=

[
RAA 0

0 R(BC)(BC)

] [
UA

U(BC)

]
. (10)
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FIG. 3. (a) Variations of the efficiency with the spheres size ratio, for different values of maximum
allowable arm length L̃max. The dashed line indicates the efficiency for the limiting case at which L̃max → ∞.
(b) Efficiency versus maximum allowable arm length for different size ratios. Solid lines are the computational
results and dashed lines are those of the limiting case. Colors (and symbols) refer to size ratios. See the videos
in the Supplemental Material [45].

Here, we have grouped spheres B and C as a single particle, namely particle (BC), and diagonalized
the resistance tensor by ignoring hydrodynamic interactions between assembly (BC) and sphere
A. In the second step, sphere B separates from sphere C and moves toward sphere A. Relying on
the same argument provided for the first step, this time, we neglect the hydrodynamic interactions
between all the spheres and arrive at⎡

⎣ fA

fB

fC

⎤
⎦ =

⎡
⎣RAA 0 0

0 RBB 0
0 0 RCC

⎤
⎦

⎡
⎣UA

UB

UC

⎤
⎦. (11)

Finally, for the third step, we group spheres A and B and so the drag law is reduced to[
f(AB)

fC

]
=

[
R(AB)(AB) 0

0 RCC

] [
U(AB)

UC

]
. (12)

These equations, combined with Eqs. (2) and (3), can simply be solved and the net displacement
and dissipated power at each step can be found. Note that here the resistance tensors are exactly
known. For the “isolated” spheres, we have RAA = RCC = 6πμr1, and RBB = 6πμr2. For the two-
sphere assemblies, we use the exact solutions for motion of two spheres in Stokes flow, obtained by
Stimson and Jeffery [48], and Maude [49] (also see [50] for some corrections). For instance, when
r1 = r2, we have R(AB)(AB) = R(BC)(BC) ≈ 7.74πμr1. Now to find the efficiency in this limiting case,
we need to determine the net displacement and the net power. However, one cannot simply add
the contribution of these three steps, as the period may not be equally divided between them; the
swimmer may spend more time in a step compared to another. Relying on the fact that the rate of
energy dissipation must be constant throughout an optimal stroke [40], we simply find the portion of
the period spent on each step, use that to find the net displacement and power, and finally calculate
the efficiency. We see that this limiting case indeed sets the upper limit for the efficiencies, as shown
by dashed lines in Fig. 3. Interestingly, the optimal size ratio of ∼1.2 is also accurately captured in
this analytical limit.

IV. CONCLUSION

We have determined the efficiency limits and optimal strokes for the three-sphere swimmer with
no other constraints than the maximal allowed arm extension. This result gives us the minimum
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power needed for the locomotion of a three-sphere swimmer with a given total volume at a given
speed. Whereas the previous studies assumed spheres of equal sizes, we show that the efficiency
can be improved if the side spheres are 20% larger than the central one. Depending on the allowed
extension, the optimal trajectories change their shape from a four-point to a three-point cycle. We
can finally state that to have the most efficient three-sphere swimmer, the arms should be able to
extend indefinitely and they should follow a three-step motion shown in Fig. 2. All these combined,
the absolute upper limit for the three-sphere swimmer is found to be 1.17%. It is interesting to note
that the efficiency limit of the three-sphere swimmer is of the same order of magnitude as that of a
ciliated micro-organism [4], a bacterium with a rotary flagellum [13], and somewhat lower than the
efficiency of beating flagella (6% [51]).
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