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Evolution of a line vortex in stratified flow
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A distributed vortex in a stratified fluid is treated using numerical simulations in two
dimensions. The distributed vortex allows the density field and velocity field to evolve
together, as happens in real flows behind lifting surfaces. The numerical simulations treat
the anelastic equations using a spectral method in space with periodic horizontal directions
and a projection method in time using the third-order Adams-Bashforth method. The
primary parameter is the Froude number. For large Froude number, the distributed vorticity
quickly rolls up and forms a vortex pair, approximately matching cases initiated as a fully
developed vortex pair. For small Froude number, the vortices disintegrate into internal
waves. The results indicate that the transition Froude number with a distributed vortex is
larger than cases initiated with a vortex pair.

DOI: 10.1103/PhysRevFluids.4.064803

I. INTRODUCTION

Numerical results by Garten et al. [1] show that a vortex pair released in a stratified fluid
will disintegrate into internal waves if the Froude number is in the flow regime where buoyancy
dominates, with Froude number defined as

Fr = W0

b0N
. (1)

Here W0 is the velocity that one vortex induces at the center of the other, b0 is the vortex spacing, and
N is the buoyancy frequency. They suggest Fr < 1 is the buoyancy-dominated regime. For Fr > 1,
where flow is dominated by advection, they report that the vortex pair propagates vertically in a
manner similar to the case of constant-density flow.

One important application of the dynamics of a vortex pair is the flow behind a finite length
wing or other surface that generates side force. The existence of a trailing vortex wake behind
wings has been known since the early days of flight and is first mentioned by Prandtl [2], who
included a trailing vortex sheet in his original calculation of wing lift using lifting line theory.
Many subsequent studies have considered the vortex wake of commercial aircraft, as reviewed by
Spalart [3], Rossow [4], Gerz et al. [5], and Paoli and Shariff [6]. It is now generally accepted that
the flow in the near wake of a wing has shed vorticity distributed across the span of the wing, while
the flow in the far wake is more like a pair of discrete vortices [7]. The transition from distributed
vorticity (near wake) to vortex pair (far wake) is referred to as vortex roll-up.

Attempts to understand the roll-up process in constant density flow started with Kaden [8] and
Betz [29]. Betz used the Kutta-Joukowsky theorem to treat a wide variety of cases, including the case
of a symmetric wing that is pertinent here. Since these early efforts, similar but more sophisticated
theories have been considered by Spreiter and Sacks [9], Moore and Saffman [10], Bilanen and
Donaldson [11], and Chadwick and Rahulan [12].

Extensive results using numerical simulation confirms this roll-up pattern; see, for example,
Czech et al. [13], who treat flow over an airplane in three dimensions using the constant-density
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equations. Numerical simulations of the entire wake, including the near wake and the far wake, are
difficult. This practical matter has led many researchers to focus on the far wake using a vortex pair
as the starting point, including the work of Garten et al. [1].

Stratification has been included only in limited cases, such as Saffman [14]. Saffman’s results
extend the previous theoretical results of Turner [15], both treating greatly simplified models of the
behavior of the vortices. An important feature highlighted by Saffman is that a vortex pair traps a
finite volume of fluid and causes this volume to propagate vertically. Since the fluid is stratified,
this volume of fluid experiences a buoyant force acting to restore the volume to its original position.
Ultimately this buoyancy is important for predicting the vertical position of the vortex wake.

Examples in the literature of numerical simulations in a stratified fluid initiated with a vortex pair
include Garten et al. [1], Hill [16], Spalart [17], Robins and Delisi [18], Holzapfel and Gerz [19],
and Nomura et al. [20]. The common approach is to impose the static vertical density profile,
usually chosen to be the profile that corresponds to constant Brunt-Vaisala frequency, and initiate
the velocity field with a pair of laminar vortices.

This previous work has shown that the density field inside a stratified vortex quickly becomes
mixed. Wave motion is initiated during the early stages of motion, before mixing erases the
stratification within the vortex. If wave making is not initiated early, then it will not occur, e.g.,
if the stratification within the vortex core was initially uniform, then the flow would again proceed
without significant internal waves, even if the Froude number (determined with N outside the vortex)
is very small. Hence the manner of initiation of the vortex pair is important to the final behavior, and
initiating the flow with the velocity field of a vortex pair along with the vertically stratified density
field inside the vortex is not consistent with the roll-up process that occurs behind a wing.

Also evident in previous numerical simulations is that the vortices in a vortex pair drift together
in stratified flow. Garten et al. [1] argue that this drift is due to the baroclinic torque that each
vortex experiences as a result of vorticity creation at the edge of the vortices. Crow [21] also reports
this vorticity creation. Ravichandran et al. [22] treat the merging of two counterrotating vortices,
starting with constant density inside the vortices and different constant density outside. They show a
dramatic change in enstrophy shortly after merger. Ravichandran et al. do not consider the instability
treated here, since they initiate the motion as constant density: the wave-making regime of Garten
et al. [1] occurs only when flow is initially stratified inside the vortices.

Recently, Ortiz et al. [23] treated perturbations to a vortex pair in a stratified flow, assuming
weak stratification and a quasisteady base flow. They computed a two-dimensional flow without
noise, then a linear three-dimensional flow with added noise. Growth rates were extracted from the
three-dimensional case after subtracting the two-dimensional flow, all at a single value of time. They
find unstable symmetric modes at small wave number that correspond to the Crow instability [21]
and antisymmetric unstable modes at larger wave number (short-wave). These short-wave unstable
modes dominate the Crow instability and perhaps explain the puffs that are sometimes visible in
contrails. The calculations of Ortiz et al. were performed at relatively high Froude numbers, 2 �
Fr � 10, and thus do not address the lower Froude number instability treated below.

Here the flow is treated with the initial vorticity distributed in a line, a more realistic model of
the near wake. With a line vortex, the velocity and density fields evolve together during the roll-up
process. Results are obtained with numerical simulations of the viscous Navier-Stokes equations.
The wing load distribution is assumed to be constant, matching that of a delta wing. Results obtained
with distributed vorticity are compared to that of a vortex pair, assuming the same circulation for
each half.

At large Froude number with distributed initial vorticity, the effect of inertia is weakened when
compared to a vortex pair, suggesting a higher Froude number (ratio of inertial to gravitational
effects) for the same transition. Indeed, the results show that the distributed vortex delays to a larger
Froude number the transition from buoyancy-dominated flow to advection-dominated flow. It is
difficult to determine this Froude number precisely with repeated numerical simulations, but the
transition value appears to be approximately Fr ≈ 2 when the vorticity is initially distributed with
constant load.
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The largest commercial jets flying at cruise altitudes will have Froude numbers in the range 2 <

Fr < 7 approximately, mostly outside the range of the instability discussed here. Smaller aircraft
will have smaller Froude numbers, and the present results are directly applicable. Other lifting
surfaces, such as wind turbine blades, also have smaller Froude numbers and likely experience the
instability discussed here.

II. THE GOVERNING EQUATIONS

The governing equations are the Navier-Stokes, continuity, energy, and state equations for a
compressible gas. The approximate form used here are the anelastic equations [24]

D�v
Dt

= −∇p∗ + g
θ

θ̄
�k + ν∇2�v, (2)

∇ · (ρ̄�v) = 0, (3)

Dθ

Dt
+ w

d θ̄

dz
= κ∇2θ, (4)

where �v is the velocity, w is the vertical velocity component, θ is the potential temperature, θ̄ is the
background profile of potential temperature, ρ̄ is the background density profile, ν is the kinematic
viscosity, and κ is the thermal diffusivity. The quantity p∗ is defined by

p∗ = cpθ̄

(
p

p0

) R
cp

, (5)

where p is the pressure, cp is the specific heat, R is the ideal gas constant, and p0 is a reference
pressure. This anelastic model eliminates compressible flow effects while retaining the large vertical
change in density that occurs in the atmosphere. While the anelastic effects are retained here, for
the parameter values used here the phenomena could be modeled adequately with the Boussinesq
equations as well.

It is convenient to introduce buoyancy b:

b = g
θ

θ
. (6)

The energy equation (4) becomes

Db

Dt
+ N2

(
1 + b

g

)
w = κ

{
∇2b − 2

g
N2 ∂b

∂z
+

[
N4

g2
− 1

g

∂

∂z
(N2)

]
b

}
, (7)

where N is the buoyancy frequency,

N2 = g

θ̄

d θ̄

dz
. (8)

The extra diffusion terms that appear after substitution of the buoyancy are neglected, as they do not
have much effect. The final energy equation is

Db

Dt
+ N2

(
1 + b

g

)
w = κ∇2b. (9)

We make the equations dimensionless using a length scale L and velocity scale U , to be chosen
later. The buoyancy is rescaled with the quantity N2L. The dimensionless equations are

D�v
Dt

= −∇p + 1

F 2
r

b�k + 1

Re
∇2�v, (10)

Db

Dt
+

(
1 + R

Cp

1

H

)
w = 1

RePr
∇2b, (11)

∇ · �v − 1

H
w = 0, (12)
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where

Re = UL

ν
, (13)

Fr = U

LN
, (14)

Pr = ν

κ
, (15)

1

H
= −L

ρz

ρ
. (16)

An important quantity in the discussion that follows is the vorticity η,

η = wx − uz. (17)

Taking the curl of the momentum equations results in the well-known vorticity equation, which for
the present configuration is

Dη

Dt
= 1

F 2
r

∂b

∂x
+ 1

Re
∇2η. (18)

The spatial discretization uses a Fourier transform in the horizontal with 256 coefficients, and
Chebyshev-Gauss-Lobatto collocation in the vertical with 256 grid points [25]. Higher resolution
with several cases showed no significant change in results.

The temporal integration is a projection method, similar to that of Karniadakis et al. [26],
along with explicit integration of the momentum and energy equations, similar to that of Slinn and
Riley [27]. Here the third-order Adams-Bashforth method is employed, which has minimal artificial
damping of internal waves. The first step determines an intermediate velocity field �v∗:

�v∗ − �vn =
{

23

12

[
−(�v · ∇)�v − b�k + 1

Re
∇2�v

]n

− 16

12

[
−(�v · ∇)�v − b�k + 1

Re
∇2�v

]n−1

+ 5

12

[
−(�v · ∇)�v − b�k + 1

Re
∇2�v

]n−2}
�t . (19)

The velocity at the leading time step �vn+1 and the pressure are related to this intermediate
velocity by

�vn+1 − �v∗ = −∇p�t . (20)

The pressure is determined using

∇2 p − 1

H

∂ p

∂z
= 1

�t

[
∇ · �v∗ + 1

H
w∗

]
, (21)

with the normal derivative of pressure set to zero on top and bottom. The buoyancy is advanced
using

bn+1 − bn =
{

23

12

[
−[�v · ∇]b −

(
1 + R

cp

1

H
b

)
w + 1

RePr
∇2b

]n

− 16

12

[
−[�v · ∇]b −

(
1 + R

cp

1

H
b

)
w + 1

RePr
∇2b

]n−1

+ 5

12

[
−(�v · ∇)b −

(
1 + R

cp

1

H
b

)
w + 1

RePr
∇2b

]n−2}
�t . (22)
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W0

b0 B

W0

FIG. 1. Sketch of the initial conditions, both the vortex pair (left) and the line vortex (right). The downward
velocity vector indicates the velocity of the right vortex induced by the left. The left vortex has the same
downward velocity (not shown).

The presence of stratification causes a cascade of energy to scales of motion that are beneath
the resolution of the present simulations. This cascade results in an accumulation of energy at
the smallest resolved scale. With the present spectral method, this effect causes the last Fourier
coefficient to grow monotonically with time. This growth of the last resolved scale is purely a
computational artifact that does not significantly influence the motion, but must be controlled for
practical reasons, and hence all variables are filtered at each time step.

The filter that is used here is the sequence of spectral filters discussed by Vandeven [28]. The
filter is defined by

ω(ζ ) =
p∑

q=1

(2p − 1)!

(p − 1)!(2p − q)!
ζ q−1(1 − ζ )2p−q, (23)

where ω is the filter value and ζ is a dummy variable for the frequency. Vandeven [28] showed that
spectral accuracy is retained with this filter family.

All results given below were achieved with p = 15, and Re was set at 2500. Overall, the results
given below are insensitive to the value Re. Other parameter values are Pr = 1 and H = 286,
approximately matching that of the atmosphere.

III. INITIAL CONDITIONS

The flow is initiated to approximately model the flow immediately behind a wing where the
vorticity is still distributed across the wing and the fluid is vertically stratified. Such cases will be
compared to the flow initiated traditionally using a vortex pair. For the vortex pair, two Gaussian
vortices with opposite sense are placed at the same vertical position, spaced horizontally the distance
b0 (not to be confused with the buoyancy b). This configuration is shown in the sketch in Fig. 1 (left
diagram).

The vortex line is achieved with a sequence of Gaussian vortices, equally spaced along a
horizontal line of length B, the span. A range of the number of vortices M was considered, and it
was found that the velocity field with M � 300 was adequately smooth with the chosen resolution.
Values of M as large as 10 000 were treated with no significant difference in the final results.

The span of the distributed vortex B is chosen to match the spacing of the discrete vortex pair
b0 in the manner suggested by Betz [29]. Betz showed that the first moment of the final rolled-up
vortex is equal to the moment of each half of the distributed vorticity. For the constant vorticity
distribution chosen here,

B = 2b0;

e.g., the distributed vortex is twice as long as the vortex pair spacing. Furthermore, the strength of
the trailing vorticity is constant, except the sign is chosen to be positive for the right side of the
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vortex line and negative for the left side. This configuration is also shown in the sketch in Fig. 1
(right diagram)

The length scale is now chosen to be the vortex pair spacing, L = b0, and the velocity scale is
chosen to be the induced velocity, U = W0. The velocity field for the vortex pair is

u = − z − z0

(x − x0)2 + (z − z0)2

[
1 − e− (x−x0 )2+(z−z0 )2

2σ2
][ 1

1 − e− 1
2σ2

]

+ z − z0

(x + x0)2 + (z − z0)2

[
1 − e− (x+x0 )2+(z−z0 )2

2σ2
][ 1

1 − e− 1
2σ2

]
, (24)

w = x − x0

(x − x0)2 + (z − z0)2

[
1 − e− (x−x0 )2+(z−z0 )2

2σ2
][ 1

1 − e− 1
2σ2

]

− x + x0

(x + x0)2 + (z − z0)2

[
1 − e− (x+x0 )2+(z−z0 )2

2σ2
][ 1

1 − e− 1
2σ2

]
, (25)

where x0 = 1/2, z0 are the initial vortex positions. The value of σ sets the size of the core of each
vortex. The value σ = 0.125 is chosen here, matching that of Garten et al. [1].

The velocity field for the line vortex is

u = −
M∑

j=1

� j
z − z j

(x − x j )2 + (z − z j )2

[
1 − e− (x−x j )2+(z−z j )2

2σ2
]
, (26)

w =
M∑

j=1

� j
x − x j

(x − x j )2 + (z − z j )2

[
1 − e− (x−x j )2+(z−z j )2

2σ2
]
, (27)

with

x j =
(

2
j − 1

M − 1
− 1

)
,

z j = z0.

The strength of the individual vortices is chosen to be constant, � j = �1, and chosen so that the
distributed vortex has the same circulation as the vortex pair. This is achieved by choosing the
induced velocity due to one-half of the distributed vortex to be equal to induced velocity of an
isolated Gaussian vortex W0:

�1 =
[
1 − e− 1

2σ2
]

∑M/2
j=1

[
1

1
2 + 2 j−1

M−1

][
1 − e− 1

2σ2

(
1
2 + 2 j−1

M−1

)2]
.

(28)

As discussed in Phillips [30], a distributed vortex will roll up and form a core flow. This core
flow is modeled approximately with the mature Gaussian vortex with σ = 0.125. For the distributed
vortex, the core is allowed to form by choosing a much smaller value of σ for the individual vortices.
This value was found by treating a sequence of smaller values of σ until the simulation results no
longer depend on σ , resulting in the value σ = 0.001.

IV. RESULTS

Simulations initiated with a distributed vortex will be compared directly to simulations initiated
with a vortex pair in what follows. Throughout the discussion, reference to a “line vortex” implies
a simulation that is initiated with distributed vorticity using the initial velocity field given by (26)
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FIG. 2. Contours of vorticity for the vortex pair (left) and the line vortex (right) with constant density.
Background gray is zero vorticity, while dark means positive and light means negative vorticity. There are 200
contour levels evenly distributed over the vorticity interval of −10 � η � 10.
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FIG. 3. Vertical position of the centroid of vorticity for the line vortex (solid line) and the vortex pair
(dashed line) with constant density.

and (27). Reference to a “vortex pair” implies a simulation initiated with a vortex pair using the
initial velocity field given by (24) and (25).

A. Fr > 1

Consider the case without stratification by choosing Fr to be infinite. Figure 2 shows contours of
vorticity for this case at three time values. The left panels in Fig. 2 show the vortex pair, while the
right panels show the line vortex. The parameter values for both cases are the same. The remainder
of the results also use these parameter values. Both the vortex pair and the line vortex are released
at the same vertical position. Note that light shading in Fig. 2 indicates positive vorticity, while dark
shading indicates negative.

The left panels in Fig. 2 show that the vortex pair remains coherent and moves downward, as
expected. The right panels show a similar development for the line vortex. The initial vortex line
is straight and horizontal but very quickly gets distorted into a “V” shape, as shown in Fig. 2(a).
The vortex line “rolls up” and moves downward, finally resembling the vortex pair, as shown in
Fig. 2(c).

The vortex pair and line vortex do not reach the same vertical position in Fig. 2(c): the vortex pair
has moved farther downward. The location of the vortex is not well defined but may be approximated
by the location of the centroid of vorticity, denoted by x̄, z̄:

z̄ =
∫

z|η|2 dA∫ |η|2 dA
, x̄ =

∫
x|η|2 dA∫ |η|2 dA

,

where each integral is performed over the entire domain. These integrals are executed using
Gaussian integration with exponential accuracy, and the resulting locations may be any position
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(a) t = 0.2

(b) t = 2.0

(c) t = 4.0

FIG. 4. Contours of vorticity for the vortex pair (left) and the line vortex (right) with Fr = 4 (same contour
increments as Fig. 2).

(not just a grid-point position). Figure 3 shows the vertical centroid position versus time for both
the vortex pair (dashed line) and the line vortex (solid line) for the case of Fig. 2. The slope of the
line is the vertical speed of the vortices, which for the vortex pair gives an average speed of 0.93.
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FIG. 5. Vertical position of the centroid of vorticity for the line vortex (solid line) and the vortex pair
(dashed line) with Fr = 4.

The velocity scale is chosen here to be the induced velocity W0, hence the dimensionless vertical
velocity of the vortex pair is expected to be approximately unity, and this computational value of
0.93 approximately matches the expected value. If the flow was irrotational and the initial conditions
were those of a potential flow vortex, then the vertical velocity should be exactly unity.

The vertical position of the line vortex in Fig. 3 experiences some weak oscillations early in
the motion, t < 2.5. The vortex line is experiencing much of the roll-up process during this time
and appears to decrease in speed, while later (t > 3) the speed is approximately constant. For this
later period (3 < t < 4), the average speed is 0.79, slower than the vortex pair. This slower descent
speed may be due to the roll-up process of the line vortex, which apparently continues throughout
the descent. Again, some of the differences in ascent speed can be attributed to the use of Gaussian
vortices, not potential flow vortices.

Now choose the stratification to be nonzero. Contours of vorticity with Fr = 4 are shown in
Fig. 4. The left and right panels in Fig. 4 are again the vortex pair case and the line vortex
case, respectively. The contours for the vortex pair case do not show any wave-making structures,
matching the previous results of Garten et al. [1]. The contours for the line vortex case also do not
show wave making. Comparing Fig. 4 to Fig. 2, the results for the present Fr = 4 are very similar
to the constant density case for both vortex pair and line vortex. Furthermore, the vertical position
of the vortices shown in Fig. 4 is very close to that of Fig. 2, as shown in Fig. 5.

For such large Froude numbers, the centrifugal acceleration of the spinning fluid is stronger than
the buoyancy effects, and hence the advection dominates. For such cases the temperature in the
core of the vortices becomes mixed very quickly, and each vortex forms into an isolated uniform-
temperature entity. The stratification outside of the core is still mostly vertical, but this is unaffected
by the overturning motion, which is restricted to the core. As the vortex loses energy by viscous
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dissipation, the effective Froude number would seem to decrease; however, waves still do not form
due to the well-mixed interior. The opportunity for the flow to make waves is lost once the mixing
occurs.

Garten et al. [1] used the vorticity equation to demonstrate that vorticity is created baroclinicly in
stratified flow, and as a result the vortex pair leaves behind a vortex wake. The vorticity equation (18)
for the constant-density case in Fig. 2 reduces to

Dη

Dt
= 1

Re
∇2η, (29)

e.g., the baroclinic source term in (18) is zero. This means that there is no significant vorticity
wake above the vortex pair, as can be seen in the left panels in Fig. 2. In contrast, the stratified
case with Fr = 4 in Fig. 4 does have baroclinic vorticity creation, and the vortex pair does indeed
leave a vorticity wake, as can be seen in the left panels of Fig. 4. The relationship between the
baroclinic source term in the vorticity equation and the vorticity wake has also been discussed by
Ortiz et al. [23] and Ravichandran et al. [22].

However, the line vortex treated here has a significant vorticity wake even without stratification,
as can be seen in the right panels in Fig. 2. Baroclinic vorticity generation is zero for this case, thus
this wake is due to the advection effects that occur during roll-up. The wake is also present with
stratification, as in the right panels of Fig. 4, which has Fr = 4. The wake is somewhat stronger with
stratification, but the advection effect remains and the presence of this wake behind the rolling up
vortex line is due to both advection effects and baroclinic vorticity creation.

B. Fr < 1

With Fr < 1, Garten et al. [1] predict wave-making behavior, but they considered only a vortex
pair. The present results with Fr = 0.5 for both the vortex pair and the line vortex are shown in
Figs. 6 and 7, again using contours of vorticity. The three panels in Fig. 6 are a sequence of time
values for the early part of a simulation, while Fig. 7 are later time values.

The sequence for the vortex pair (left panels) shows that the vortex core remains intact for the
early times of Fig. 6, but the vertical position does not change significantly from its initial value of
z = 0 while the horizontal position does change. However, the vorticity field is much more complex
with Fr = 0.5 than before. Complex bands of vorticity have appeared surrounding the original
vortices, in contrast to the Fr = ∞ case in Fig. 2, which does not develop such bands. With
Fr = 0.5 the structures become increasingly complex, with regions of positive and negative vorticity
intermixed. This evolution matches that of Garten et al. [1].

The right panels show the evolution of the line vortex. The results for the line vortex are
significantly different than the vortex pair with Fr = 0.5. The roll-up process appears to begin as
before and the core vortex begins to form, as shown in Fig. 6(a). But the core does not mature, and
by t = 1.0 in Fig. 6(b), each side does not have a single vortex core. Instead each side appears to
have two cores, and by t = 2.0 there are multiple vortex structures on each side, shown in Fig. 6(c).
In contrast, the vortex pair during this time still retains the structure of a single vortex on each side.

Later in the simulation, the vortex pair also disintegrates, as shown in Fig. 7. The disintegration
of the vortex pair is different than the vortex line in that there remain regions of intense vorticity,
presumably the remnants of the original vortices. The line vortex does not retain such regions.

The centroid of vorticity is shown in Figs. 8 and 9 for Fr = 0.5. Importantly, the vertical position
of the vortices (Fig. 8) for both cases does not change significantly with time, a characteristic of the
wave-making behavior regime. Note that the vertical position of the line vortex is very close to the
vertical position of the vortex pair (Fig. 8). In contrast, the horizontal position of the vortex pair is
much different (Fig. 9). The vortex pair retains a strong core, as can be seen in Fig. 6, and the cores
drift outward from the original positions. The vortex line disintegrates faster and does not retain a
single coherent core.
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(a) t = 0.2

(b) t = 1.0

(c) t = 2.0

FIG. 6. Contours of vorticity for the vortex pair (left) and the line vortex (right) with Fr = 0.5 for early
times (same contour increments as Fig. 2).

Note that the simulations allow asymmetry about the centerline; however, the results retain
symmetry for both the vortex pair and line vortex for most of the simulations. No noise or other
disturbance has been introduced.
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(b) t = 4.5

(c) t = 6.0

FIG. 7. Contours of vorticity for the vortex pair (left) and the line vortex (right) with Fr = 0.5 for later
times (same contour increments as Fig. 2).

Results for a lower Froude number, Fr = 0.1, are shown in Fig. 10, again for three time values
(different times than before). These contours of vorticity show that for both the vortex pair and
the line vortex, elongated structures are radiating outward from the original localized vortex flow,
growing farther outward with time. As famously discussed by Mowbray and Rarity [31,32], a local
disturbance in a stratified fluid will create lines of constant phase that are radial. Furthermore,
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FIG. 8. Vertical position of the centroid of vorticity for the line vortex (solid line) and the vortex pair
(dashed line) with Fr = 0.5.
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FIG. 9. Horizontal position of the centroid of vorticity for the line vortex (solid line) and the vortex pair
(dashed line) for the right side of the domain with Fr = 0.5.
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(a) t = 0.2

(b) t = 0.7

(b) t = 1.4

FIG. 10. Contours of vorticity for the vortex pair (left) and the line vortex (right) with Fr = 0.1 (same
contour increments as Fig. 2).

these radial phase lines are the direction of energy propagation of internal waves. Clearly the
structures that are forming in Fig. 10 are precisely these internal wave phase lines. The number
of structures is increasing with time for both the vortex pair (left) and the line vortex (right) in
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FIG. 11. Contours of vorticity for the vortex pair (left) and the line vortex (right) with Fr = 1.0 (same
contour increments as Fig. 2).

Fig. 10. This fact suggests that the core flow is experiencing a broader spectrum of frequencies with
time.
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FIG. 12. Contours of vorticity for the line vortex with Fr = 1.0 for later times (same contour increments as
Fig. 2).
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FIG. 13. Vertical position of the centroid of vorticity for the line vortex (solid line) and the vortex pair
(dashed line) with Fr = 1.

These Fr = 0.1 results indicate that the vortices disintegrate at low Froude numbers by creating
internal waves, as suggested by Garten et al. [1]. With Fr = 0.5 the flow does not show such distinct
internal wave structures; however, the flow remains symmetric about the centerline of the domain,
unlike a turbulent flow, suggesting that the behavior is still related to internal waves.

C. The transitional Fr

Garten et al. [1] quote Fr = 1 as the transitional value, with Fr < 1 being the buoyancy-
dominated or wave-making regime. This result was apparently based purely on the flow patterns
that emerge during the simulations at different Fr , with all cases initialized using a vortex pair. The
present results generally agree with this transitional value for the vortex pair, although the transition
between regimes does not seem to be a sharp change in behavior.

Figure 11 provides contours of vorticity for this transitional value of Fr = 1 for both vortex pair
and the line vortex. The left panels show that the vortex pair maintains its form and propagates
downward. No significant internal waves are created. The vortices move closer together as they
move downward, as can be seen in Fig. 11(c). This feature was present in the simulations of Garten
et al. [1] and others.

The right panels in Fig. 11 are the line vortex case. The line vortex begins to roll up and
form vortices that are similar to the vortex pair but do not move downward like the vortex pair.
Furthermore, the rolled-up vortices are surrounded by bands of positive and negative vorticity that
are not present with the vortex pair. The line vortex is still within the wave-making regime at this
Froude number.

Figure 12 shows later time values in the evolution of the line vortex. The vortex pair has already
reached the bottom of the computational domain and is not shown. Figure 12 shows that the line
vortex continues to generate a complex pattern of vorticity surrounding the remnants of the line
vortex, but then finally creates a much smaller structure that resembles the vortex pair. This structure
then propagates downward, finally impinging on the computational boundary.

Figures 13 and 14 show the evolution of the position of the centroid of vorticity for Fr = 1, both
vortex pair and line vortex. This vorticity centroid has been found to track the obvious position of the
vortex pair when the vortices are coherent. The vertical position of the vortex pair in Fig. 13 (dashed
line) shows that the vortex pair reaches a stage around t ≈ 3 where it moves downward much faster.
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FIG. 14. Horizontal position of the centroid of vorticity for the line vortex (solid line) and the vortex pair
(dashed line) for the right side of the domain with Fr = 1.

The distance between the vortices is decreasing near t ≈ 3, as can be seen in the horizontal position
of the right-hand vortex in Fig. 14, hence the speed increase appears to be related to this feature.
This scenario has been reported previously [1,22,23]. The downward motion is due to the pressure
distribution that develops around the volume of well-mixed fluid inside the vortex pair, similar to
the constant-density case. The horizontal drift is due to the creation of opposite-signed vorticity at
the edge of each original vortex that results in a baroclinic torque. This recently created vorticity is
visible in Fig. 12 and is particularly visible in the middle frame (t = 2.0).

The solid line in Fig. 13 is quite different, indicating that the vortex line does not propagate
downward in the same manner. This fact may not seem consistent with Fig. 12, which does show a
small vortex pair propagating to the bottom of the computational domain. However, the wake of this
vortex pair has strong levels of vorticity, and thus the centroid of vorticity is in a different position
than this small but visible vortex pair.

It may be argued that the line vortex is not really in the wave-making regime with Fr = 1, since it
finally created a vortex pair structure. However, the vortex pair with Fr < 1 will also generate waves
and then finally release a smaller vortex pair structure in this same manner, despite being clearly in
the wave-making regime of Garten et al. [1]. Consider the evolution of the vortex pair with Fr = 0.8
in Fig. 15. The vortex pair structure for the line vortex in Fig. 12 is very similar to that of Fig. 15
and must also be considered within the wave-making regime. Thus the final appearance of a smaller
vortex pair cannot be used to define the regimes of motion.

The characteristics of the wave-making regime are (1) the original vortex structure does not
propagate vertically and (2) complex patterns of vorticity form around the original vortex structure.
These behavior patterns are strikingly different when Fr is much different than unity. However,
near the transition value of Fr , the vorticity patterns are not much different, and the transition
between the two regimes appears to be gradual, making the transitional Fr difficult to determine.
The position of the vorticity centroid appears to be the best measure of transition, although still
imperfect.

Figure 16 shows the vertical position of the centroid of vorticity for the line vortex (solid lines)
with 1 � Fr � 2, along with Fr = 4. The Fr = 4 case closely matches the constant density case,
where waves cannot be generated, and thus Fr = 4 is clearly not in the wave-making regime. The
solid lines with Fr = 1, 2 are labeled, while the solid lines between these two have Fr incremented by
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FIG. 15. Contours of vorticity for the vortex pair with Fr = 0.8 (same contour increments as Fig. 2).
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FIG. 16. Vertical position of the centroid of vorticity for the line vortex (solid lines) for cases with 1 �
Fr � 2, as well as the case with Fr = 4. The dashed line is the vortex pair with Fr = 1.

0.2. Clearly there is a gradual transition in behavior with increasing Fr . With Fr = 2, the vortex line
moves downward similar to the Fr = 4, case, although more slowly, and thus the Fr = 2 case might
not be in the wave-making regime. With Fr = 1, the centroid position does not move downward,
strongly suggesting that Fr = 1 is well within the wave-making regime with the line vortex. The
vortex pair with Fr = 1 is also shown in Fig. 16 with a dashed line and indicates much different
behavior. Overall, Fig. 16 indicates that the transition value is closer to Fr = 2 for the line vortex,
compared to Fr = 1 for the vortex pair.

V. CONCLUSIONS

Previous computational results indicate that vortices in stratified flow at large Fr will remain
coherent and behave in a manner that matches the flow with constant density. Vortices with small
Fr act differently, creating a pattern of internal waves. However, this wave making occurs soon after
initiation, before mixing eliminates any significant stratification. Previous results initiated the flow
with a laminar vortex pair, which does not match the manner in which a vortex is formed behind a
wing or other lifting surface, where the trailing vorticity is distributed. The roll-up of the distributed
vorticity should occur in the presence of stratification.

This process has been treated here with numerical simulations in two dimensions. The initial flow
is a horizontal line vortex with constant strength, created with a sequence of Gaussian vortices. This
allows the velocity field to evolve along with the density field, as happens in practice. The results
show that the distributed vorticity is much more inclined to form internal waves. Previous results
indicate that Fr = 1 is the transitional value for wave generation; however, here the transitional
value has been found to be closer to Fr = 2. This transitional value is found using the vertical
motion of the vortices: coherent vortices will propagate vertically while wave-generating vortices
do not.
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